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ABOUT VARIETIES OF 
WEAKLY ABELIAN /-GROUPS 

S. A. GURCHENKOV 

ABSTRACT. For every prime p a variety of weakly abelian /-groups which is 
no t generated by the set of itself nilpotent /-groups is constructed . 

A lattice ordered group G is called weakly abelian if the /-group G sat
isfies the identity (|.3 |̂ |̂r/||.a |̂ A |y|~2) V e = e. It is well known that every 
weakly abelian /-group G is representable [1] and that every locally nilpotent 
/-group G is weakly abelian [2], The following question is known in the theory 
of /-varietes: 

Let JVn be the variety of all nilpotent / -groups of class = n and let Wa be 
oo 

the variety of all weakly abelian / -groups. Is this equality Wa = (J J\fn true? 
n = l 

Here for every prime p we construct a variety of weakly abelian /-groups 
A4P which is not generated by the set of itself nilpotent /-groups. 

Let TV be a wreath product (a) I (b) of infinite cyclic groups (a), (b). It 
is known that W admits a weakly abelian total order P. Let T denote a 

oo 

subgroup ~\ (b~%ab%) of group W with total order which is induced on T by 
i = —oo 

the total order P of group W. And let A = (c) x T be a lexicographic product 
of an infinite cyclic group (c) and totally ordered group T. Now we define two 
automorphisms a, 0 of group A as follows: ca = c, aa = an+i , n G Z , c@ = c, 

Q i GnC, 

< = i 
l «n, 

if n = 0 (mod p) 

if n Џ 0 (mod p), 

where an denotes an element b nabn , n E 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06F15. 
K e y w o r d s : /-variety, Weakly abelian group, Nilpotent group. 
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L E M M A 1. Automorphisms a, ft of group A preserve the total order on A. 

P r o o f . For every element u = u\cn , u £ A, where u\ £ T , n £ Z , we 

have ua = uf(cn)a = u\cn. But in the /-group A u > e if a n d only if u\*> e 

in T , or tti = e a n d cn > e in (c) . Since conjugation by b in (a) I (b) ( a n d , 

part icularly, in T ) is an order automorphism of (a) I (b), t h e n u > e follows 

ua > e in A. Hence, a is an order automorphism of A. A u t o m o r p h i s m ft acts 

as t h e identi ty in t h e factor-group A/(c) and in the group ( c ) , so t h a t 

.'-.?(«•)'-{£ w i c m c n for some m £ Z , if u\ ̂  e , 

if u\ = e . 

B u t u i ^> c in A and, hence, u > e if and only if u& > e . T h e proof is 

completed. 

Let now G denote a subgroup (a, ft) of the group order-preserving a u t o 

m o r p h i s m s Aut A of t h e abelian totally ordered group A. 

L E M M A 2 . The group G can be described in terms of generators and relations 

as: 

G = (a, ft | | [ap, a-lftal] = e , [a~lfta\ a~jftaJ] = e , i,j £ Z ) . 

P r o o f . In t h e group G we have 

if p + n _ 0 ( m o d p ) , «"/? _ ß _(an+Pc, if p + n = 0 
«„ -an+p-\an+pì i f p + n Ş é 0 ( m o d p ) . 

if n _ 0 ( m o d p ) , 

if n ?_ 0 ( m o d p ) . 

B u t p + n _ 0 (mod p) if and only if n _ 0 (mod p ) , hence a^ ^ = a^a? 

for every n £ Z a n d so apft = ftap in G. For every i £ Z we now have 

a - 1 /3a l = a-la~PftaPal = a - p a - l / 3 a 1 ^ , therefore, [ a p , a~l fta1] = e . 

In the same way we establish t h a t the relations [a~lfta1, a~J fta3] = e for 

i,j £ Z are t r u e in G. Now it is not h a r d to see t h a t every element u in G can 

be wr i t ten in t h e form 

u = a a KF }p er - . . . - a p p ev/O p 

for some integers m, m i , . . . , mp . Let us have in G some relat ion u = e . T h e n 

for every n £ Z we must have in A. 

_ u _ a - ( p - 1 ) / ? m i < * p - 1 - . . . - a - 1 / ? m p - 1 a / ? m p _ m . 

°n — an ~ an+m ~ an+mc •> 
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where n + m + i = 0 (mod p). But in A an = an+mcmi if and only if m = 0, 
771, = 0. Hence, choose n = 1,2, ...,p — 1, we immediately have ra = 0, 
mi = 0, . . . , mp = 0. Therefore, every relation in G follows from relations 
[ap, a~l/3al] = e, [a~ l/?a l , a~J f3aJ] = e. The proof is completed. 

LEMMA 3. The group G satisfies the identity [x\, x?>] = e. 

P r o o f . As it follows from Lemma 2, for any element xi, X{ G G, we have 
x, = ani fi for some integer n, and some element fi, / , G G* , where 

G* =-= (/J, a - a /?a , . . . , a~^-1)/3ap-1) . 

Hence, 
xf = ( a n i / i ) P - a n i t ' M i , 

where u. = a _ n ' ( p _ 1 ) / j a n ^ p _ 1 ^ • . . . • a _ n i / . a n ' / , . As it follows from Lemma 2, 

[zp, *£] = [ a n i p
u i , an^u2] = [a"'P, a"2"] [a" l P , u2] [u,, a"2P] [Ul, u2] = e. 

The proof is completed. 

The group G is solvable of class 2 (it follows from Lemma 2). Let F be a 
free solvable of class 2 group with two generators aa, ap , and let <{>: F —• G be 
a homomorphism such that <j)(aa) = a, (j)(ap) = (3. Let II denote a semidirect 
product A o F of groups A, F, where for a G A and / G F a* = a^I) . It is 
well known that the free solvable of class 2 group F admits some weakly abelian 
total order Q. Now we introduce a weakly abelian order on group H as follows: 
for faeH, where a G A, f G F let fa > e in II if and only if / > e in 
(F, Q), or / = e and a > e in (A, P ) . 

LEMMA 4. .4 lattice ordered group II satisfies the identity 

[ [ £ - , x 2 J ' r ^ ' X4JJ = e -

P r o o f . Consider a centralizer C = CH(A) of subgroup A in the group 
II . It is easy to see that C 2 A, C is normal in II, and ker(^) C C. Let 
us shown that C is an abelian subgroup. It is sufficient to show that ker(</>) is 
abelian. A group G admits representation 

G = (a,P || [a~l(3al, a~Jf3aJ] = [ap, /?] = e) . 

Therefore, ker(^), as a normal subgroup of F, is generated by the set 
X = {[«~ la/3<> a*JaPaa}i K > a/?K hj e Z } , but X C [F, F], a subgroup 
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[F, F] is fully invariant in F and abelian, and, hence, ker(0) = gi (A')^ is 

abel ian. Let now x\, £2, £3, x4 he any elements in H . As follows from L e m m a 3 

we have inclusions [x~, x~] G C , [2*3, x~] G C . Hence, [ [ T ' \ X__], [X~, X~]] = c 

because C is abelian. Proof is completed. 

Let now Mp denote a /-variety generated by the / -g roup H, and let Bp 

denote a subvariety of Mp generated by all ni lpotent lat t ice ordered groups 
from Mp . 

T H E O R E M . MP ^ Bp. 

P r o o f . It is not ha rd to see tha t the following identities are t rue in Mp : 

[[y\.....ylz\.....z%[u*.....u»n,v\.....vll}}=e, (*) 

where fc, s, n , m are integers and y;, Zj, ut, vq are variables. Consider any 

n i lpotent / -g roup _?, B G Mp. The latt ice ordered group B satisfies the 

identi t ies (* ) , therefore, the identi ty [[_/, z], [„, D]] = e is t rue in subgroup _OH 

of g roup H, generated by the set {x p , x G H} . As it follows from theorem 

of B a u m s l a g [3], every identi ty of ni lpotent torsion free g roup pB must 

be t rue in ni lpotent completion (pB)* of pB. But as it follows from the theo

rem of M a F c e v [4], B C (pB)* , and, hence, the identi ty [[y, r ] , [w, D]] = c 

is t rue in the / -g roup B. So, the identi ty [[_/, z], [?t, D]] = e is t rue in the 

/ -var ie ty Bp. Let now y = ao , z = a a , 1/ = a ! 1 , D = a " 1 . We have 

[y, z] = a ^ a ^ a o f l a = ajj"lflo = S ~ l a i > 

[[y, z], [u,v]]=(a^a\)-l.(a-'a\)^ 

= a0a-1(a0-1a1) /?cv/?" la"1 = a o a r 1 ^ ^ " 1 ^ ) ^ ~ l a _ 1 

_ i , -1 -1 r S a " 1 f a o a ^ a ' ^ - ^ t ! = c _ 1 if p ^ 2 , 
= a0al (a1 c a__ j = < _. 

[ aoa 1~ 1a 0~ 1c - 1(a2C _ 1 )cv — c~2 if /> = 2 . 

In b o t h cases we have [[y, 2], [u, t>]] 7- e in the / -g roup H . So Mp ^ Bp . T h e 

proof is completed. 

C O R O L L A R Y . The I-variety Mp has no divisible embedding property. 
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