Mathematica Slovaca

L'udovít Pinda

A remark on the existence of small solutions to a fourth order boundary value problem with large nonlinearity

Mathematica Slovaca, Vol. 43 (1993), No. 2, 149--170

Persistent URL: http://dml.cz/dmlcz/136578

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS TO A FOURTH ORDER BOUNDARY VALUE PROBLEM WITH LARGE NONLINEARITY

LUDOVİ́T PINDA
(Communicated by Milan Medved')

Abstract

The existence of small solutions to nonlinear boundary value problem for the fourth order is proved. The main technique used is obtaining a priori bounds and applying Leray-Schauder degree arguments.

Ir this paper we show the existence of at least one small solution to the nonlinear boundary value problem

$$
\mathcal{L} y=L y+\eta y^{2 l}=y^{(4)}+\left(m^{2}+n^{2}\right) y^{\prime \prime}+m^{2} n^{2} y+\eta y^{2 l}=f,
$$

$0<m<n, l \geq 4, l, m, n \in \mathbb{N}, \eta= \pm 1$ with periodic boundary conditions $y^{(i)}(0)=y^{(i)}(2 \pi), i=0,1,2,3$, under the assumption that the function f is in $L^{1}([0,2 \pi])$, and that the norm $\|f\|_{1}$ is sufficiently small. We call the solution of that problem small if it is lying inside a small ball in $B C=\{y \in D(\mathcal{L})\}$, where $D(\mathcal{L})=\left\{y(t) \in C^{3}([0,2 \pi]), y^{(4)} \in L^{1}([0,2 \pi]): y^{(i)}(0)=y^{(i)}(2 \pi)\right.$, $i=0,1,2,3\}$. L. Lefton in [5] has considered the existence of at least one small solution of the second order nonlinear boundary value problem $L_{1} y+\eta y^{3}=$ $y^{\prime \prime}+p(x) y^{\prime}+q(x) y+\eta y^{3}=f$ with the boundary conditions $M_{1} y=\alpha_{1} y(a)+$ $\alpha_{2} y(b)+\alpha_{3} y^{\prime}(a)+\alpha_{4} y^{\prime}(b)=0, M_{2} y=\beta_{1} y(a)+\beta_{2} y(b)+\beta_{3} y^{\prime}(a)+\beta_{4} y^{\prime}(b)=0$, $\alpha_{i}, \beta_{i} \in \mathbb{R}, i=1,2$. He supposed that the operator L_{1} has a one-dimensional null space spanned by φ, and that $\varphi^{3} \in R\left(L_{1}\right)$ (the range of the operator $\left.L_{1}\right)$. In this paper the null space of L is a four-dimensional space generated by the functions $\cos m t, \sin m t, \cos n t, \sin n t$. The special form of these functions enables easy calculations of a priori bounds. The form of the operator \mathcal{L} has been taken from [7]. In this paper J. D.Schuur has considered the boundary value

[^0]
L'UDOVÍT PINDA

problem $x^{4}+\left(m^{2}+n^{2}\right) x^{\prime \prime}+m^{2} n^{2} x+h(x)=p(t), x^{i}(\mathbb{O})=x^{i}(2 \pi), i=0,1,2,3$, where he has assumed that the function h is $|h(x)| \leq c_{1}+c_{2}|x|, 0 \leq c_{1}, 0<c_{2}$ and hence our result is not a consequence of the Schuur theorem. He has used a modification of the Cesari method. However, we apply a modification of the Mawhin method, proposed by L.Lefton in [5]. The main difference between this paper and [5] consists in considering a four-dimensional null space of L and in the other form of the nonlinearity. This has made difficulties in degree calculations. S.H.Ding and J. Mawhin in [2] considered the more general resonance problem $L_{2}(u(t))+g(u(t))=s+e(t, u(t))$, where L_{2} is a Fredholm operator of index zero. The order of L_{2} is $m \geq 3$. They assumed that the null space of L_{2} is generated by the constant, $\lim _{|v| \rightarrow \infty} g(v)=\infty, s$ is the parameter and $e(t, u(t))$ is the Caratheodory function.

1. Introduction

Consider the fourth order nonlinear differential operator $\mathcal{L} y=L y+\eta y^{2 l}=$ $y^{(4)}+\left(m^{2}+n^{2}\right) y^{\prime \prime}+m^{2} n^{2} y+\eta y^{2 l}$, where $0 \leq m \leq n, l \geq 4, l, m, n \in \mathbb{N}$. The linear part of \mathcal{L} is $L y=y^{(4)}+\left(m^{2}+n^{2}\right) y^{\prime \prime}+m^{2} n^{2} y$. The operator \mathcal{L} as well as L is defined on the domain
$D(\mathcal{L})=\left\{y(t) \in C^{3}([0,2 \pi]), y^{(4)} \in L^{1}([0,2 \pi]): y^{(i)}(0)=y^{(i)}(2 \pi), i=0,1,2,3\right\}$.
Hence $\mathcal{L}: D(\mathcal{L}) \rightarrow L^{1}([0,2 \pi])$. We will study the existence of solutions of

$$
\begin{equation*}
\mathcal{L} y=f \tag{1.1}
\end{equation*}
$$

with periodic boundary conditions

$$
\begin{equation*}
y^{(i)}(0)=y^{(i)}(2 \pi), \quad i=0,1,2,3, \tag{1.2}
\end{equation*}
$$

and $f \in L^{1}([0,2 \pi])$. Define

$$
B C=\left(D(\mathcal{L}),\|\cdot\|_{\infty}\right),
$$

where $\|y\|_{\infty}=\sup _{t \in[0,2 \pi]}|y(t)|$ for all $y \in D(\mathcal{L})$.
Note the null space of $L: B C \rightarrow L^{1}([0,2 \pi])$ as $N S(L) . N S(L)$ is fourdimensional and consists of the functions

$$
\begin{array}{r}
N S(L)=\left\{y \in B C: y(t)=c_{1} \cos m t+c_{2} \sin m t+c_{3} \cos n t+c_{4} \sin n t\right. \\
\left.c_{i} \in \mathbb{R}, i=1,2,3,4\right\}
\end{array}
$$

Let the range of the operator be denoted as $R(L)$ and I be the identity operator in $B C$. First we study the operator L.

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS

Lemma 1.1. Let the operator L be defined on $B C$. Then $N S(L) \cap R(L)=\{0\}$.
Proof. The problem $L(x)=0, x^{(i)}(0)=x^{(i)}(2 \pi), i=0,1,2,3$ is selfadjoint and therefore the assertion of the lemma is true.

The functions $\varphi_{1}(t)=\cos m t, \varphi_{2}(t)=\sin m t, \varphi_{3}(t)=\cos n t, \varphi_{4}(t)=\sin n t$ form a fundamental system of solutions of the equation $L y=0$ and satisfy the boundary conditions (1.2). It is obvious that zero is the eigenvalue of the operator L. In this case the Green function does not exist. In the next lemma we show that the operator $L+K \cdot I$ has not the eigenvalue 0 for some $K \in \mathbb{R}$.

LEMMA 1.2. Let $K>\frac{1}{4}\left(n^{2}-m^{2}\right)^{2}$. Then 0 is not the eigenvalue of the operator $L+K \cdot I$.

Proof. λ is the eigenvalue of the problem $L y=\lambda y$ if and only if there exists such a $k \in \mathbb{Z}$ that $i k$ is the root of the characteristic equation

$$
r^{4}+\left(m^{2}+n^{2}\right) r^{2}+m^{2} n^{2}-\lambda=0
$$

This happens if and only if k satisfies the equation

$$
k^{4}-\left(m^{2}+n^{2}\right) k^{2}+m^{2} n^{2}-\lambda=0 .
$$

Denote by $g: \mathbb{R} \rightarrow \mathbb{R}$ the function

$$
g(k)=k^{4}-\left(m^{2}+n^{2}\right) k+m^{2} n^{2} .
$$

The eigenvalues of the problem $L y=\lambda y$ are the values of the function g at $k \in \mathbb{Z}$. The function g is an even function and $\min g(k)=-\frac{1}{4}\left(n^{2}-m^{2}\right)^{2}, k \in \mathbb{R}$, and hence all eigenvalues $\lambda_{j} \geq-\frac{1}{4}\left(n^{2}-m^{2}\right)^{2}$. By the form of the function g it follows that all its eigenvalues form a sequence $\left\{\lambda_{j}\right\}$ which approaches to infinity as $j \rightarrow \infty$. If we add a constant $K>\frac{1}{4}\left(n^{2}-m^{2}\right)^{2}$ to the function g, then $g+K$ will be positive for all k. The corresponding characteristic equation will be

$$
r^{4}+\left(m^{2}+n^{2}\right) r^{2}+m^{2} n^{2}+K=0
$$

and the corresponding differential operator will be $L y+K y=0$, where $K^{\prime}>\frac{1}{4}\left(n^{2}-m^{2}\right)^{2}$.

From this lemma it follows that the equation $(L+K \cdot I) y=0$ has only the trivial solution for $K>\frac{1}{4}\left(n^{2}-m^{2}\right)^{2}$. By [3, Lemma 4.3, p. 145] it follows that the operator $L+K \cdot I$ is one-to-one and maps $B C$ onto $L^{1}([0,2 \pi])$. Therefore the operator $(L+K \cdot I)^{-1}$ is completely continuous ([3, Lemma 4.4, p. 145]).

l'UDOVÍT PINDA

COROLLARY 1.1. The operator $L: B C \subset L^{1}([0,2 \pi])$ into $L^{1}([0,2 \pi])$ is
(i) a Fredholm operator of index zero,
(ii) a closed operator.

Moreover,
(iii) $\quad L^{1}([0,2 \pi])=N S(L) \oplus R(L)$, where \oplus is a topological direct sum.

Proof. The conditions of Theorem $1[7$, p. 555] are satisfied.

2. Construction of the operator K_{P}

Define a projection P_{0} by

$$
P_{0} y(t)=\frac{1}{\pi} \sum_{i=1}^{4} \int_{0}^{2 \pi} y(t) \varphi_{i}(t) \mathrm{d} t \cdot \varphi_{i}(t) \quad \text { for } \quad y \in B C .
$$

Note that P_{0} maps $B C$ onto $N S(L)$ and that $L^{1}([0,2 \pi])=N S(L) \oplus N S\left(P_{0}\right)$ holds, where $N S\left(P_{0}\right)$ is the null space of P_{0}. The operator L is one-to-one on $B C$ but its restriction to $B C_{P_{0}}=B C \cap N S\left(P_{0}\right)$ is one-to-one and onto $R(L)$. Therefore there exists the inverse operator $K_{P}: R(L) \rightarrow B C \cap N S\left(P_{0}\right)$ to the operator $\left.\left.L\right|_{B C \cap N S} \cap P_{0}\right)$. Now we construct the operator K_{P}. The Cauchy function for the equation $L(x)=0$ is

$$
\begin{gathered}
K_{1}(t, s)=\left[m n\left(n^{2}-m^{2}\right)\right]^{-1} \cdot[n \sin m(t+s)-m \sin (t+s)] \\
\text { for } \quad 0 \leq s<t \leq 2 \pi .
\end{gathered}
$$

Let $x \in B C_{P_{0}} \cap N S\left(P_{0}\right)$ be the solution of the equation $L x=y, y \in R(L)$. Then it has the form
$x(t)=\sum_{n=1}^{4} c_{i} \varphi_{i}(t)+\left[m n\left(n^{2}-m^{2}\right)\right]^{-1} \cdot \int_{0}^{t} K_{1}(t, s) y(s) \mathrm{d} s, \quad$ for $\quad 0 \leq t \leq 2 \pi$.
The function $x \in B C P_{0}$ and therefore it is true that for all $\varphi_{i} \in N S(L)$ we have

$$
\int_{0}^{2 \pi} x(t) \cdot \varphi_{i}(t) \mathrm{d} t=0, \quad i=1,2,3,4
$$

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS.

For the constants $c_{i}, i=1,2,3,4$ we obtain

$$
\begin{equation*}
0=\pi \cdot c_{i}+\int_{0}^{2 \pi} \int_{0}^{t} K_{1}(t, s) y(s) \varphi_{i}(t) \mathrm{d} s \mathrm{~d} t, \quad i=1,2,3,4 . \tag{2.2}
\end{equation*}
$$

By (2.2) we see that the constants $c_{i}, i=1,2,3,4$ are uniquely determined. From periodic conditions it follows that $y \in R(L)$ if and only if

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\partial^{i} K_{1}(2 \pi, s)}{\partial t^{i}} \cdot y(s) \mathrm{d} s=0, \quad i=1,2,3,4 \tag{2.3}
\end{equation*}
$$

is true. Therefore $R(L)$ consists of the functions which fulfil (2.3). By Fubini's theorem in (2.2) as well as by putting the constants $c_{i}, i=1,2,3,4$ in (2.3) we get that

$$
\begin{align*}
x(t)= & -\frac{1}{\pi} \int_{0}^{2 \pi} \int_{s}^{2 \pi}[\cos m t+\sin m t+\cos n t+\sin n t] \cdot K_{1}(t, s) \mathrm{d} t y(s) \mathrm{d} s \\
& +\int_{0}^{t} K_{1}(t, s) y(s) \mathrm{d} s, \quad 0 \leq t \leq 2 \pi . \tag{2.4}
\end{align*}
$$

Denote the inner integral by $I(s)$ and compute

$$
\begin{aligned}
I(s)= & \int_{s}^{2 \pi}[\cos m t+\sin m t+\cos n t+\sin n t] \cdot K_{1}(t, s) \mathrm{d} s \\
= & {\left[m n\left(n^{2}-m^{2}\right)\right]^{-1} \cdot\left\{\frac{1}{2}(2 \pi-s)[n(\sin m s+\cos m s)-m(\sin n s+\cos n s)]\right.} \\
& -\frac{m}{2 n} \sin n s[\sin 2 n s+\cos 2 n s]-\frac{n}{2 m} \sin m s[\sin 2 m s+\cos 2 m s] \\
& +\frac{n}{n-m} \sin \frac{(m-n) s}{2}\left[\cos \frac{(3 m-n) s}{2}-\sin \frac{(3 m-n) s}{2}\right] \\
& -\frac{m}{n-m} \sin \frac{(n-m) s}{2}\left[\cos \frac{(3 n-m) s}{2}-\sin \frac{(3 n-m) s}{2}\right] \\
& +\frac{n}{n+m} \sin \frac{(m+n) s}{2}\left[\sin \frac{(3 n+m) s}{2}-\cos \frac{(3 n+m) s}{2}\right] \\
& \left.-\frac{n}{n+m} \sin \frac{(m+n) s}{2}\left[\sin \frac{(3 m+n) s}{2}-\cos \frac{(3 m+n) s}{2}\right]\right\} .
\end{aligned}
$$

L'UDOVÍT PINDA

Putting it in (2.4) we obtain

$$
\begin{aligned}
& x(t)=\left[-\pi m n\left(n^{2}-m^{2}\right)\right]^{-1} \int_{0}^{2 \pi} I(s) y(t) \mathrm{d} s+\int_{0}^{t} K_{1}(t, s) y(s) \mathrm{d} s \\
& \text { for } \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

Define the function $K(t, s)$ in $[0,2 \pi] \times[0,2 \pi]$

$$
K(t, s)= \begin{cases}K_{1}(t, s), & 0 \leq s<t \leq 2 \pi \tag{2.5}\\ 0, & 0 \leq t<s \leq 2 \pi\end{cases}
$$

Then we can write the function $x(t)$ in the form

$$
\begin{aligned}
x(t) & =\left[-\pi m n\left(n^{2}-m^{2}\right)\right]^{-1} \int_{0}^{2 \pi}\left\{I(s)-\pi\left[m n\left(n^{2}-m^{2}\right)\right] K(t, s)\right\} y(s) \mathrm{d} s \\
& =\left[-\pi m n\left(n^{2}-m^{2}\right)\right]^{-1} \int_{0}^{2 \pi}\{I(s)-\pi[n \cdot \sin m(t+s)-m \cdot \sin n(t+s)]\} y(s) \mathrm{d} s .
\end{aligned}
$$

Denote by

$$
\begin{equation*}
K^{*}(t, s)=I(s)-\pi[n \cdot \sin m(t+s)-m \cdot \sin n(t+s)] . \tag{2.6}
\end{equation*}
$$

THEOREM 2.1. The form of the inverse operator $K_{P}: R(L) \rightarrow B C \cap N S\left(P_{0}\right)$ to $\left.L\right|_{B C \cap N S\left(P_{0}\right)}$ is

$$
\begin{equation*}
K_{P} y(t)=\left[-\pi m n\left(n^{2}-m^{2}\right)\right]^{-1} \int_{0}^{2 \pi} K^{*}(t, s) y(s) \mathrm{d} s, \quad 0 \leq t \leq 2 \pi \tag{2.7}
\end{equation*}
$$

$y \in R(L)$ and $K^{*}(t, s)$ is determined by (2.6).
Estimate the function $K^{*}(t, s)$ as

$$
\begin{equation*}
\left|K^{*}(t, s)\right| \leq 3 \pi(n+m)+\frac{n^{2}+m^{2}}{m n}+\frac{8 m n}{n^{2}-m^{2}} . \tag{2.8}
\end{equation*}
$$

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS ...

Using the estimate (2.8) we obtain that

$$
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|K^{*}(t, s)\right|^{2} \mathrm{~d} s \mathrm{~d} t<+\infty
$$

and therefore K_{P} is the Hilbert-Schmidt operator. We have the following estimate for the norm of the operator K_{P} in $L^{2}([0,2 \pi] \times[0,2 \pi])$

$$
\begin{aligned}
\left\|K_{P}\right\| & <\left[\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left[\pi^{2} m^{2} n^{2}\left(n^{2}-m^{2}\right)^{2}\right]^{-1} \cdot\left|K^{*}(t, s)\right|^{2} \mathrm{~d} t \mathrm{~d} s\right]^{\frac{1}{2}} \\
& \leq \frac{6}{m n(n-m)}+\frac{2\left(n^{2}+m^{2}\right)}{m^{2} n^{2}\left(n^{2}-m^{2}\right)}+\frac{16}{n^{2}-m^{2}}<+\infty
\end{aligned}
$$

By (2.6) it follows that K_{P} is a continuous operator on $[0,2 \pi]$ and by [3, Lemma 4.4, p. 145] we have that the operator K_{P} is a completely continuous operator on $R(L)$.

3. A priori bound for $\mathcal{L} y$

The next lemma is true.
LEMMA 3.1. Let $a, b, c, d \in \mathbb{R}$ be arbitrary constants. Then $(a \cos m t+$ $+b \sin m t+c \cos n t+d \sin n t)^{2 l} \in R(L)$, i.e., there exists such a $w \in B C$, $w \in N S(L)^{\perp}$ that $L w=(a \cos m t+b \sin m t+c \cos n t+d \sin n t)^{2 l}$.

Proof. Denote by $y(t)=(a \cos m t+b \sin m t+c \cos n t+d \sin n t)^{2 l}$. It follows from the definition of the projection P_{0} and Corollary 1.1 (iii) that $y \in R(L)$ if and only if $P_{0} y(t)=0$. We investigate the following integrals

$$
\begin{gathered}
I_{1}=\int_{0}^{2 \pi} \cos ^{i} m t \cdot \cos ^{j} k t \mathrm{~d} t, \quad I_{2}=\int_{0}^{2 \pi} \sin ^{i} m t \sin ^{j} k t \mathrm{~d} t \\
i+j=2 l+1, \quad k=m, n \\
I_{3}=\int_{0}^{2 \pi} \cos ^{i} m t \cdot \cos ^{j} n t \sin k t \mathrm{~d} t, \quad I_{4}=\int_{0}^{2 \pi} \sin ^{i} m t \sin ^{j} n t \cos k t \mathrm{~d} t \\
i+j=2 l, \quad k=m, n
\end{gathered}
$$

L'UDOVİT PINDA

$$
\begin{gathered}
I_{5}=\int_{0}^{2 \pi} \sin ^{i} k t \cdot \cos ^{j} p t \sin r t \mathrm{~d} t, \quad I_{6}=\int_{0}^{2 \pi} \sin ^{i} k t \sin ^{j} p t \cos r t \mathrm{~d} t \\
i+j=2 l, \quad k, p, r=m, n
\end{gathered}
$$

In the integrals I_{1}, I_{2} we have the functions $\cos m t, \sin m t$ with an odd exponent for $k=m$ and therefore $I_{1}=I_{2}=0$. If $k=n$ we first multiply the trigonometric functions and then we integrate and get that $I_{i}=0$, $i=1,2, \ldots, 6$. Similarly $I_{i}=0, i=3,4,5,6$ for $k=m$. Therefore $P_{0} y(t)=0$.

Lemma 3.2. Let $\left\|\mathcal{L} y_{k}\right\|_{1}=o\left(\left\|y_{k}\right\|_{\infty}^{2 l}\right)$ for some sequence $\left\{y_{k}\right\} \subset B C, y_{k} \rightarrow 0$ uniformly. Then $\left\|y_{k}\right\|_{\infty}=O\left(\sum_{j=m, n}\left(\left|A_{j}^{k}\right|+\left|B_{j}^{k}\right|\right)\right)^{\prime}$, for $k \rightarrow \infty$, where A_{j}^{k}, B_{J}^{k} are the Fourier coefficients of the function y_{k} for $j=m, n$.

Proof. We can write that

$$
y_{k}(t)=A_{m}^{k} \cos m t+B_{m}^{k} \sin m t+A_{n}^{k} \cos n t+B_{n}^{k} \sin n t+u_{k}(t),
$$

where $w_{k}(t) \in N S(L)^{\perp}$. Observe that

$$
\begin{equation*}
L w_{k}=\mathcal{L} y_{k}-\eta y_{k}^{2 l} \tag{3.1}
\end{equation*}
$$

Hence $\mathcal{L} y_{k}-\eta y_{k}^{2 l} \in R(L)$. Apply the operator K_{P} to (3.1) to get $w_{k}=K_{\rho}\left(\mathcal{L} y_{k}-\eta y_{k}^{2} l\right)$. Using the assumption of this lemma and the continuity of K_{P} we find

$$
\begin{equation*}
\left\|w_{k}\right\|_{\infty} \leq C\left(\left\|\mathcal{L} y_{k}\right\|_{1}+\left\|y_{k}\right\|_{1}^{2 l}\right) \leq C\left(o\left(\left\|y_{k}\right\|_{\infty}^{2 l}\right)+(2 \pi)^{2 l}\left\|y_{k}\right\|_{\infty}^{2 l}\right)=O\left(\left\|y_{k}\right\|_{x}^{2 i}\right) \tag{3.2}
\end{equation*}
$$

From the form of the function y_{k} and (3.2) it follows that

$$
\begin{equation*}
\left\|y_{k}\right\|_{\infty} \leq M \sum_{j=m, n}\left(\left|A_{j}^{k}\right|+\left|B_{j}^{k}\right|\right)=O\left(\sum_{j=m, n}\left(\left|A_{j}^{k}\right|+\left|B_{j}^{k}\right|\right)\right), \quad \text { for } \quad k \rightarrow \infty \tag{3.3}
\end{equation*}
$$

This completes the proof.
Remark 3.1. The case that there exists such a subsequence of the sequence $\sum_{j=m, n}\left(\left|A_{j}^{k}\right|+\left|B_{j}^{k}\right|\right)$ which is a null sequence cannot happen. If it were true, then there would exist $y_{k}=w_{k}$ and (3.2) would contradict to the assumption on y_{k}. Therefore there exists such a k_{0} that for all $k \geq k_{0}$

$$
\sum_{j=m, n}\left(\left|A_{j}^{k}\right|+\left|B_{j}^{k}\right|\right)>0 .
$$

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS

Denote

$$
\begin{aligned}
\alpha_{k} & =\sqrt{\left|A_{m}^{k}\right|^{2}+\left|B_{m}^{k}\right|^{2}+\left|A_{n}^{k}\right|^{2}+\left|B_{n}^{k}\right|^{2}}, \\
\beta_{k} & =\left|A_{m}^{k}\right|+\left|B_{m}^{k}\right|+\left|A_{n}^{k}\right|+\left|B_{n}^{k}\right| .
\end{aligned}
$$

As the $\alpha_{k}>0$ for $k \geq k_{0}$ we consider the sequences

$$
\begin{equation*}
a_{m}^{k}=\frac{A_{m}^{k}}{\alpha_{k}}, \quad b_{m}^{k}=\frac{B_{m}^{k}}{\alpha_{k}}, \quad a_{n}^{k}=\frac{A_{n}^{k}}{\alpha_{k}}, \quad b_{n}^{k}=\frac{B_{n}^{k}}{\alpha_{k}} . \tag{3.4}
\end{equation*}
$$

It is true that $\left(a_{m}^{k}\right)^{2}+\left(b_{m}^{k}\right)^{2}+\left(a_{n}^{k}\right)^{2}+\left(b_{n}^{k}\right)^{2}=1$ for $k \geq k_{0}$. So there exists such a subsequence of indices $\left\{k_{p}\right\}$ that

$$
\lim _{p \rightarrow \infty} a_{m}^{k_{p}}=a_{m}, \quad \lim _{p \rightarrow \infty} b_{m}^{k_{p}}=b_{m}, \quad \lim _{p \rightarrow \infty} a_{n}^{k_{p}}=a_{n}, \quad \lim _{p \rightarrow \infty} b_{n}^{k_{p}}=b_{n}
$$

and

$$
\begin{equation*}
a_{m}^{2}+b_{m}^{2}+a_{n}^{2}+b_{n}^{2}=1 \tag{3.5}
\end{equation*}
$$

From this it follows that at least one of the numbers $a_{m}, b_{m}, a_{n}, b_{n}$ is different from zero.

Proposition 3.1. If $\left\|\mathcal{L} y_{k}\right\|_{1}:=o\left(\left\|y_{k}\right\|_{\infty}^{2 l}\right)$ for some sequence $\left\{y_{k}\right\} \subset B C$, $y_{k} \rightarrow 0$ uniformly, then there exists such a subsequence $\left\{y_{k_{p}}\right\}$ that the corresponding sequences of coefficients $\left\{a_{m}^{k_{p}}\right\},\left\{b_{m}^{k_{p}}\right\},\left\{a_{n}^{k_{p}}\right\},\left\{b_{n}^{k_{p}}\right\}$ have the limits $\lim _{p \rightarrow \infty} a_{m}^{k_{p}}=a_{m}, \lim _{p \rightarrow \infty} b_{m}^{k_{p}}=b_{m}, \lim _{p \rightarrow \infty} a_{n}^{k_{p}}=a_{n}, \lim _{p \rightarrow \infty} b_{n}^{k_{p}}=b_{n}$, and these limits sutisfy (3.5).

LEMMA 3.3. Let the function $w \in B C$ be the solution of the equation $L v=\left(a_{m} \cos m t+b_{m} \sin m t+a_{n} \cos n t+b_{n} \sin n t\right)^{2 i}, u \in N S(L)^{\perp}$. Suppose further that there is no solution $v \in B C$ of $L v=\left(a_{m} \cos m t+b_{m} \sin m t+a_{n} \cos n t+\right.$ $\left.b_{u} \sin n t\right)^{2 l-1} w$. Then, there exist $\delta>0, c>0$, such that $\|\mathcal{L}\|_{1} \geq c\|y\|_{\infty}^{4 l-1}$ for all $y \in B C$ with $\|y\|_{\infty}<\delta$.

Lew Lefton proved the same lemma for $4 l-1=5$ in [5, Lemma 1.4, p. 175].

4. Degree calculation

In this section we show the existence of at least one small solution in $B C$ of the equation $\mathcal{L} y=f$ for small enough $f \in L^{1}([0,2 \pi])$. First we describe the neighbourhood of the origin which will act as the domain of our compact

l'udovít PINDA

operator. We will use the constants δ and c from Lemma 3.3. Let $0<\varepsilon<c$ and Δ be a ball, centered at the origin in $B C$, defined by

$$
\Delta=\left\{y \in B C:\|y\|_{\infty}<\left(\frac{1}{c-\varepsilon}\|f\|_{1}\right)^{\frac{1}{41-1}}<\delta\right\}
$$

Note that the radius of Δ monotonically depended on $\|f\|_{1}$. Therefore, if we need to consider smaller functions y, we need only reduce $\|f\|_{1}$.

Consider the operator $A_{t}: \Delta \rightarrow B C$ defined as

$$
\begin{equation*}
A_{t} y=P_{0} y+P_{0}\left(t f-\eta y^{2 l}\right)+K_{P} \cdot P_{1}\left(t f-\eta y^{2 l}\right), \quad 0 \leq t \leq 1 \tag{4.1}
\end{equation*}
$$

where $P_{1}: L^{1}([0,2 \pi]) \rightarrow R(L)$ is a continuous projection onto $R(L)$.
Lemma 4.1. $A_{t} y=y$ if and only if $\mathcal{L} y=t f$.
Proof. The proof of this lemma is similar as in [5, Lemma 2.1, p. 176].
We have shown that the solutions of the problem $\mathcal{L} y=f$ are precisely the fixed points of A_{1}. The next step is to show that the Leray-Schauder degree $d\left(I-A_{1}, \Delta, 0\right) \neq 0$ and hence the equation $\mathcal{L} y=f$ has at least one solution in Δ. We construct the homotopy in two steps. $P_{0}: L^{\infty}([0,2 \pi]) \rightarrow L^{\infty}([0,2 \pi])$ is continues projection into the finite-dimensional space, $K_{P}: L^{1}([0,2 \pi]) \rightarrow B C$ is the completely continuous operator, therefore the operator $A_{t}: L^{\infty}([0,2 \pi]) \rightarrow$ $L^{\infty}([0,2 \pi])$ is a completely continuous operator too for all $t \in[0,2 \pi]$. Let $K(\Delta)$ be the set of all compact mappings $A: \Delta \rightarrow B C$ with the norm $\|A\|=\sup _{x \in \Delta}\|A x\|$. Define $h(t)=A_{t}$ and note that $h:[0,1] \rightarrow K(\Delta)$ is continuous. This defines a homotopy of compact transformations.

LEMMA 4.2. The equation $\left(I-A_{t}\right) y=0$ has no solution on $\partial \Delta$ for any $t \in[0,2 \pi]$.

Proof. The proof of this lemma is the same as in [5, Lemma 2.2, p. 177] for $2 l-1=5$.

By the homotopy invariance of the Leray-Schauder degree we get that $d\left(I-A_{t}, \Delta, 0\right)$ is independent of t. In particular

$$
d\left(I-A_{1}, \Delta, 0\right)=d\left(I-A_{0}, \Delta, 0\right)
$$

For the second step of the homotopy we define

$$
\begin{align*}
& \tilde{h}(\lambda) y=A^{\lambda} y \\
= & P_{0} y-P_{0}\left(\eta y^{2 l}\right)-(1-\lambda) K_{P} P_{1}\left(\eta y^{2 l}\right)-\lambda P_{w} K_{P} P_{1}\left(\eta y^{2 l}\right) . \tag{4.2}
\end{align*}
$$

Here P_{w} is the projection onto the space generated by the function w, $w \in N S(L)^{\perp}$ and $L w=\left(a_{m} \cos m t+b_{m} \sin m t+a_{n} \cos n t+b_{n} \sin n t\right)^{2 l}$. It follows immediately that $\tilde{h}(t)$ is a homotopy of compact transformations. It is true that $A^{0}=A_{0}$. So the homotopies can be combined appropriately. We need to show that $A^{\lambda} y=y$ has no solution on $\partial \Delta$.

Lemma 4.3. Assume that the assumptions of Lemma 3.2 and Lemma 3.3 hold. Then for an arbitrary $\varepsilon>0$ the equation $A^{\lambda} y=y$ for $\lambda \in[0,1]$ has no solution y with the norm $\|y\|_{\infty}<\varepsilon$ except $y=0$.

Proof. Suppose that there exists such a sequence of solutions $\left\{y_{k}\right\}_{k=1}^{\infty}$ that for all $\frac{1}{k}>0 A^{\lambda_{k}} y_{k}=y_{k}$ with the norm $\left\|y_{k}\right\|_{\infty}<\frac{1}{k}, y_{k} \neq 0$. Then we can write y_{k} in the form

$$
y_{k}(t)=A_{m}^{k} \cos m t+B_{m}^{k} \sin m t+A_{n}^{k} \cos n t+B_{n}^{k} \sin n t+z_{k}(t)
$$

where $z_{k} \in N S(L)$. Applying $I-P_{0}$ to $y_{k}=A^{\lambda_{k}} y_{k}$, we obtain

$$
z_{k}(t)=-(1-\lambda) K_{P} P_{1}\left(\eta y_{k}^{2 l}\right)-\lambda P_{w} K_{P} P_{1}\left(\eta y_{k}^{2 l}\right) .
$$

By the continuity of the operator K_{P} and of the projections P_{1}, P_{w} we get

$$
\begin{equation*}
\left\|z_{k}\right\|_{\infty}=\left\|(1-\lambda) K_{P} P_{1}\left(\eta y_{k}^{2 l}\right)-\lambda P_{w} K_{P} P_{1}\left(\eta y_{k}^{2 l}\right)\right\|_{\infty} \leq C \cdot\left\|y_{k}\right\|_{\infty}^{2 l} \tag{4.3}
\end{equation*}
$$

Note that the constant C does not depend on λ_{k}. Similarly as in Lemma 3.2 in (3.2), (3.3) we get $\left\|y_{k}\right\|_{\infty}=O\left(\beta_{k}\right)$. By the continuity of P_{0} we obtain that $\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)=O\left(\left\|y_{k}\right\|_{\infty}\right)$. Using this fact we come to the equality

$$
\begin{equation*}
y_{k}^{2 l}(t)=\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}+O\left(\beta_{k}^{4 l-1}\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{align*}
y_{k}^{2 l}(t)= & {\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)^{2 l}\right]^{2 l} } \tag{4.5}\\
& +2 l\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)^{2 l}\right]^{2 l-1} z_{k}(t)+O\left(\beta_{k}^{6 l-2}\right)
\end{align*}
$$

L'UDOVÍT P!NDA

Apply P_{0} to $A^{\lambda_{k}} y_{k}=y_{k}$ to see that $P_{0}\left(\eta y_{k}^{2 l}\right)=0$. Therefore $P_{1}\left(\eta y_{k}^{2 l}\right)=\eta y_{k}^{2 l}$. Using this fact and (4.2) we get

$$
\begin{aligned}
& K_{P} P_{1}\left(\eta y_{k}^{2 l}\right)=K_{P}\left(\eta y_{k}^{2 l}\right) \\
= & \eta K_{P}^{\prime}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right)+O\left(\beta_{k}^{4 l-1}\right), \quad k \rightarrow \infty .
\end{aligned}
$$

With this estimate, (4.2) can be written as

$$
\begin{align*}
& A^{\lambda_{k}}\left(y_{k}\right)(t) \\
& =P_{0}\left(y_{k}\right)(t)-P_{0}\left(\eta y_{k}^{2 l}\right)(t)-\left(1-\lambda_{k}\right) \eta K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right) \\
& \quad-\lambda_{k} \eta P_{w} \circ K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right)+O\left(\beta_{k}^{4 l-1}\right) . \tag{4.6}
\end{align*}
$$

Now apply $I-P_{0}$ to the equation $y_{k}=A^{\lambda_{k}} y_{k}$, where $A^{\lambda_{k}} y_{k}$ is given by (4.6) to obtain

$$
\begin{align*}
z_{k}(t)= & -\left(1-\lambda_{k}\right) \eta K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right) \\
& -\lambda_{k} \eta P_{w} \circ K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right)+O\left(\beta_{k}^{4 l-1}\right) . \tag{4.7}
\end{align*}
$$

Using (4.7) in (4.5) we get

$$
\begin{gather*}
y_{k}^{2 l}(t)=\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}-2 l\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l-1} \times \\
\times\left[\left(1-\lambda_{k}\right) \eta K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right)\right. \\
\left.+\lambda_{k} \eta P_{w} \circ K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right)+O\left(B_{k}^{4 l-1}\right)\right] \\
+O\left(\beta_{k}^{6 l-2}\right): \quad k \rightarrow \infty . \tag{4.8}
\end{gather*}
$$

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS ...

Apply P_{0} to (4.8) and by the Lemma 3.1 and $\beta_{k} \rightarrow 0$ as $k \rightarrow \infty$ we see that

$$
\begin{align*}
& P_{0}\left(\eta 2 l\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l-1} \times\right. \\
& \times\left[\left(1-\lambda_{k}\right) K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right)\right. \\
& \left.\left.+\lambda_{k} P_{w} \circ K_{P_{0}}\left(\left[\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)\right]^{2 l}\right)\right]\right) \\
& =o\left(\beta_{k}^{4 l-1}\right), \quad k \rightarrow \infty \tag{4.9}
\end{align*}
$$

Divide (4.9) by $\beta_{k}^{4 l-1}$. From (3.4) and $\beta_{k}=c_{k} \alpha_{k}, 1 \leq c_{k} \leq c_{0}, c_{0}>1$ we have

$$
\begin{align*}
P_{0}\left(\eta \frac{2 l}{c_{k}^{4 l-1}}[\right. & \left.\frac{\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)}{\alpha_{k}}\right]^{2 l-1} \\
& \times\left[\left(1-\lambda_{k}\right) K_{P_{0}}\left(\left[\frac{\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)}{\alpha_{k}}\right]^{2 l}\right)\right. \\
+ & \lambda_{k} P_{w} \circ K_{P_{0}}\left(\left[\frac{\sum_{j=m, n}\left(A_{j}^{k} \cos j t+B_{j}^{k} \sin j t\right)}{\alpha_{k}}\right]\right) \\
& =o(1), \quad k \rightarrow \infty \tag{4.10}
\end{align*}
$$

The sequence $\left\{c_{k}\right\}_{k=1}^{\infty}$ is bounded. So there exists such a subsequence $\left\{c_{k_{p}}\right\}_{p=1}^{\infty}$ that $\lim _{p \rightarrow \infty} c_{k_{p}}=c, 1 \leq c \leq c_{0}$. In the sequence of the indices $\left\{k_{p}\right\}_{p=1}^{\infty}$ there exists such a subsequence $\left\{k_{p_{r}}\right\}_{r=1}^{\infty}$ that Proposition 3.1 is valid. The sequence $\left\{\lambda_{k_{p_{r}}}\right\}_{r=1}^{\infty}$ is bounded, therefore there exists a subsequence which approaches to λ_{0}, where $0 \leq \lambda_{0} \leq 1$. The operators P_{0}, K_{P} are continuous, therefore we can do the passage to the limit in (4.10) and we obtain

$$
\begin{gathered}
P_{0}\left(\eta \frac { 2 l } { c } [\sum _ { j = m , n } (a _ { j } \operatorname { c o s } j t + b _ { j } \operatorname { s i n } j t)] ^ { 2 i - 1 } \left[\left(1-\lambda_{0}\right) K_{P_{0}}\left(\left[\sum_{j=m, n}\left(a_{j} \cos j t+b_{j} \sin j t\right)\right]^{2 l}\right)\right.\right. \\
\left.\left.+\lambda_{0} P_{w} \circ K_{P_{0}}\left(\left[\sum_{j=m, n}\left(a_{j} \cos j t+b_{j} \sin j t\right)\right]^{2 l}\right)\right]\right)=0 .
\end{gathered}
$$

L'UDOVÍT PINDA

It is true that $L(w)=\left(a_{m} \cos m t+b_{m} \sin m t+a_{n} \cos n t+b_{n} \sin n t\right)^{2 l}$. Therefore

$$
\begin{aligned}
w & =K_{P_{0}}\left(\left[\sum_{j=m, n}\left(a_{j} \cos j t+b_{j} \sin j t\right)\right]^{2 l}\right) \\
& =P_{w} \circ K_{P_{0}}\left(\left[\sum_{j=m, n}\left(a_{j} \cos j t+b_{j} k \sin j t\right)\right]^{2 l}\right) .
\end{aligned}
$$

We get

$$
P_{0}\left(\eta \frac{2 l}{c}\left[\sum_{j=m, n}\left(a_{j} \cos j t+b_{j} \sin j t\right)\right]^{2 l-1} \cdot w(t)\right)=0 .
$$

This contradicts the hypothesis that

$$
\left[\sum_{j=m, n}\left(a_{j}^{k} \cos j t+a_{j}^{k} \sin j t\right)\right]^{2 l-1} \cdot w(t) \notin R(L)
$$

Denote the linear span of the functions x_{1}, \ldots, x_{p} as $\left\langle x_{1}, \ldots, x_{p}\right\rangle$. Now wc show that $d\left(I-A^{1}, \Delta, 0\right) \neq 0$ for small Δ. Note that A^{1} is already an operator of finite rank; in fact $R\left(A^{1}\right) \subset\left\langle\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, w\right\rangle$. Hence we must compute $d(S, \bar{\Delta}, 0)$, where $\bar{\Delta}=\Delta \cap\left\langle\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, w\right\rangle$ and

$$
S=\left.\left(I-A^{1}\right)\right|_{\left\langle\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, w\right\rangle}=\left(I-P_{0}\right) y+P_{0}\left(\eta y^{2 l}\right)+P_{w} K_{P}^{-} P_{1}\left(\eta y^{2 l}\right)
$$

$y \in\left\langle\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, w\right\rangle$. We can write the function y in the form

$$
y=\sum_{i=1}^{4} t_{i} \varphi_{i}(t)+t_{5} \cdot w(t)
$$

Hence

$$
\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4} \\
t_{5}
\end{array}\right] \rightarrow\left[\begin{array}{l}
s_{1}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) \\
s_{2}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) \\
s_{3}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) \\
s_{4}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) \\
s_{5}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)
\end{array}\right]=\left[\begin{array}{c}
\eta \frac{1}{\pi} \int_{0}^{2 \pi}\left(\sum_{i=1}^{4} t_{i} \varphi_{i}(t)+t_{5} w(t)\right)^{2 l} \varphi_{1} t \mathrm{~d} t \\
\eta \frac{1}{\pi} \int_{0}^{2 \pi}\left(\sum_{i=1}^{4} t_{i} \varphi_{i}(t)+t_{5} w(t)\right)^{2 l} \varphi_{2} t \mathrm{~d} t \\
\eta \frac{1}{\pi} \int_{0}^{2 \pi}\left(\sum_{i=1}^{4} t_{2} \varphi_{i}(t)+t_{5} w(t)\right)^{2 l} \varphi_{3} t \mathrm{~d} t \\
\eta \frac{1}{\pi} \int_{0}^{2 \pi}\left(\sum_{i=1}^{4} t_{i} \varphi_{i}(t)+t_{5} w(t)\right)^{2 l} \varphi_{4} t \mathrm{~d} t \\
t_{5}+\eta P_{w} K_{p} P_{1}\left(\left[\sum_{i=1}^{4} t_{i} \varphi_{i}(t)+t_{5} w(t)\right]^{2 l}\right)
\end{array}\right]
$$

Note, $s_{5}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)$ is a scalar multiple of the function w. We replace the assumption that there is no solution $v \in B C$ of the equation $L v(t)=\left(a_{m}+\right.$ $\left.\cos m t+b_{m} \sin m t+a_{n} \cos n t+b_{n} \sin n t\right)^{2 l-1} w(t)$ by the assumption that all integrals

$$
\int_{0}^{2 \pi}\left[c_{1} \cos m t+c_{2} \sin m t+c_{3} \cos n t+c_{4} \sin n t\right]^{2 t-1} w(t) \varphi_{j}(t) \mathrm{d} t \neq 0
$$

$j=1,2,3,4$, if at least one of $c_{i} \in \mathbb{R}, c_{i} \neq 0$. From that assumption it follows that there is no solution $v \in B C$ of the equation $L v(t)=\left(c_{1} \cos m t+c_{2} \sin m t+\right.$ $\left.c_{3} \cos n t+c_{4} \sin n t\right)^{2 l-1} w(t)$. So Lemma 4.3 holds with new assumption. Make the change of variables $T\left(x_{1}, \ldots, x_{5}\right)=\left(t_{1}, \ldots, t_{5}\right)$, where $t_{i}=x_{i}, i=1,2,3,4$ and $t_{5}=\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{8}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}$. Thus if $\left(x_{1}, \ldots, x_{5}\right)$ tend to zero and at least one of $x_{j} \neq 0, j=1,2,3,4$ and $x_{5} \neq 0$, then

$$
\begin{aligned}
& s_{j}\left(T\left(x_{1}, \ldots, x_{5}\right)\right) \\
& =0+\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] 2 \operatorname{l\eta } \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{j}(t) \mathrm{d} t \\
& \quad+o\left(\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}}\left|x_{5}\right|+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right]^{2}\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{l-2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& s_{5}\left(T\left(x_{1}, \ldots, x_{5}\right)\right)=\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2} \\
& +\eta P_{w} K_{P} P_{1}\left(\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)+\left(\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right) w(t)\right]^{2 l}\right) \\
& =\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}+\eta P_{w} K_{P} P_{1}\left(\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l}\right) \\
& \quad+o\left(\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}}\left|x_{5}\right|+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right]\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{l-1}\right) .
\end{aligned}
$$

Again, using homotopy invariance, we simplify the operator $S \circ T$ before calcu-
lating its degree. Define

$$
\left.\left.\left.\begin{array}{rl}
\Omega_{t}:\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
\end{array} \rightarrow\left[\begin{array}{l}
{\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \cdot 2 l \eta \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{1}(t) \mathrm{d} t} \\
{\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \cdot 2 l \eta \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{2}(t) \mathrm{d} t} \\
{\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \cdot 2 l \eta \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{3}(t) \mathrm{d} t} \\
{\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \cdot 2 l \eta \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{4}(t) \mathrm{d} t}
\end{array}\right] \begin{array}{l}
\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+(1-t)\left[\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}+\eta P_{w} K_{P} P_{1}\left(\left[\sum_{i=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l}\right)\right]
\end{array}\right] \begin{array}{l}
(1-t) o\left(\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}}\left|x_{5}\right|+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right]^{2}\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{l-2}\right) \\
(1-t) o\left(\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}}\left|x_{5}\right|+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right]^{2}\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{l-2}\right) \\
(1-t) o\left(\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}}\left|x_{5}\right|+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right]^{2}\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{l-2}\right)
\end{array}\right] \begin{array}{l}
{\left[(1-t) o\left(\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}}\left|x_{5}\right|+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right]^{2}\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{l-2}\right)\right.} \\
\left.\left.(1-t) o\left(\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}}\left|x_{5}\right|+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right]\right]^{5} \sum_{i=1}^{5} x_{i}^{2}\right)^{l-1}\right)
\end{array}\right]
$$

In the next lemma we show that the equation $\Omega_{t} x=0$ has the trivial solution for $t \in[0,1]$ which is separated, i.e., in its sufficient small neighbourhood there is no other solution of the equation $\Omega_{t} x=0$.

LEMMA 4.4. The equation $\Omega_{t} x=0$ has the trivial solution in $\bar{\Delta}$ for $t \in[0,1]$ which is separated.

Proof. If this were not the case, then for all $\delta=\frac{1}{n}, n \in \mathbb{N}$ there would exist such a vector $\left(x_{1_{n}}, \ldots, x_{5_{n}}\right)$ that $0<\left|x_{i_{n}}\right|<\delta=\frac{1}{n}, i=1,2,3,4,5$

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS ...

and such a $t_{n} \in[0,1]$ that $\Omega_{t_{n}} x_{n}=0$, i.e.,

$$
\begin{gather*}
{\left[\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}} x_{5_{n}}+\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}\right] \cdot 2 \ln \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{i=1}^{4} x_{i_{n}} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{j}(t) \mathrm{d} t} \\
=\left(1-t_{n}\right) \circ\left(\left[\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}}\left|x_{5_{n}}\right|+\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}\right]^{2} \cdot\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{l-2}\right), \\
j=1,2,3,4, \tag{4.11}
\end{gather*}
$$

and

$$
\begin{array}{r}
\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}} x_{5_{n}}+\left(1-t_{n}\right)\left[\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}+\eta P_{w} K_{p} P_{1}\left(\left[\sum_{i=1}^{4} x_{i_{n}} \varphi_{i}(t)\right]^{2 l}\right)\right] \\
\quad=\left(1-t_{n}\right) o\left(\left[\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}}\left|x_{5_{n}}\right|+\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}\right]\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{l-1}\right) . \tag{4.12}
\end{array}
$$

Consider the following cases.

1. Let there exist such a subsequence $\left\{x_{i_{n_{k}}}\right\} \subset\left\{x_{i_{n}}\right\}$ that

$$
\left|x_{j_{{n_{n}}}}\right|=\max \left\{\left|x_{i_{n_{k}}}\right|, i=1,2,3,4,5\right\} \quad \text { for all } \quad n_{k} \quad \text { and } \quad j_{0} \in\{1,2,3,4\} .
$$

Rewrite $x_{i_{n_{k}}}=x_{i_{n}}$. Then there exists such $z_{i_{n}} \in \mathbb{R},\left|z_{i_{n}}\right| \leq 1$ that $x_{i_{n}}=$ $z_{i_{n}} \cdot x_{j_{0_{n}}}, \quad i=1,2,3,4,5$. Consider the expression $\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}} x_{5_{n}}+\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}$. It is true that $x_{5_{n}}^{2} \leq x_{j_{0_{n}}}^{2} \leq \sum_{i=1}^{4} x_{i_{n}}^{2}$. If $\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}} x_{5_{n}}+\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}=0$, then $-x_{5_{n}}=\frac{\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}}{\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}}}>\frac{\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}}{\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{2}}=\frac{\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}}{\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}+2 \sum_{i=1}^{4} x_{i_{n}}^{2} x_{5_{n}}^{2}+x_{5_{n}}^{4}} \geq \frac{1}{1+2+1}=\frac{1}{4}$

This case cannot hold for $x_{5_{n}}$ sufficiently small. Dividing (4.11) by

L'UDOVİT PINDA

$$
\begin{align*}
& \left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}} x_{5_{n}}+\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2} \text { and letting } j=j_{0} \text { we get } \\
& \quad 2 \operatorname{l\eta } \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{i=1}^{4} x_{i_{n}} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{j}(t) \mathrm{d} t \\
& \quad=o\left(\left[\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{\frac{5}{2}}\left|x_{5_{n}}\right|+\left(\sum_{i=1}^{4} x_{i_{n}}^{2}\right)^{2}\right] \cdot\left(\sum_{i=1}^{5} x_{i_{n}}^{2}\right)^{l-2}\right), \quad j=1,2,3,4 . \tag{4.13}
\end{align*}
$$

Writing $x_{i_{n}}=z_{i_{n}} x_{j_{o_{n}}}$ in (4.13) we have

$$
\begin{align*}
x_{j_{0_{n}}}^{2 l-1} \cdot A_{j_{0_{n}}} & =o\left(\left[\left(\sum_{i=1}^{5} z_{i_{n}}^{2}\right)^{\frac{5}{2}}\left|z_{5_{n}}\right| \cdot x_{j_{0_{n}}}^{6}+\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right)^{2} x_{j_{0_{n}}}^{4}\right]\left(\sum_{i=1}^{5} z_{i_{n}}\right)^{l-2} x_{j_{0_{n}}}^{2 l-4}\right) \\
& =o\left(\left[\left(\sum_{i=1}^{5} z_{i_{n}}^{2}\right)^{\frac{5}{2}}\left|z_{5_{n}}\right| \cdot x_{j_{0_{n}}}^{2}+\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right)^{2}\right]\left(\sum_{i=1}^{5} z_{i_{n}}\right)^{l-2} x_{j_{0_{n}}}^{2 l}\right) \tag{4.14}
\end{align*}
$$

Dividing (4.14) by $x_{j_{0_{n}}}^{2 l-1}$ we get

$$
\begin{equation*}
A_{j_{0_{n}}}=o\left(\left[\left(\sum_{i=1}^{5} z_{i_{n}}^{2}\right)^{\frac{5}{2}}\left|z_{5_{n}}\right| \cdot x_{j_{0_{n}}}^{2}+\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right)^{2}\right]\left(\sum_{i=1}^{5} z_{i_{n}} \varphi_{i}(t)\right)^{l-2}\left|x_{j_{0_{n}}}\right|\right) \tag{4.15}
\end{equation*}
$$

where

$$
A_{j_{0_{n}}}=2 \operatorname{l\eta } \frac{1}{\pi} \int_{0}^{2 \pi}\left[\varphi_{j_{0}}(t)+\sum_{\substack{i=1 \\ i \neq j_{0}}}^{4} z_{i_{n}} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{j_{0}}(t) \mathrm{d} t
$$

Consider such a subsequence $\left\{x_{i_{n_{k}}}\right\}$ of the sequence $\left\{x_{i_{n}}\right\}$ that $z_{i_{n_{k}}} \rightarrow z_{i_{0}}$ as $n_{k} \rightarrow \infty$. Then from the Lebesgue dominant convergence theorem it follows that

$$
A_{j_{0_{n}}} \rightarrow 2 \ln \frac{1}{\pi} \int_{0}^{2 \pi}\left[\varphi_{j_{0}}(t)+\sum_{\substack{i=1 \\ i \neq j_{0}}}^{4} z_{i_{0}} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{j_{0}}(t) \mathrm{d} t \neq 0
$$

By the equation (4.15) we get the contradiction, therefore $\sum_{i=1}^{5} z_{i_{n_{k}}}^{2}$ is bounded.
2. Let there exist such a subsequence $\left\{x_{i_{n_{k}}}\right\} \subset\left\{x_{i_{n}}\right\}$ that

$$
\left|x_{5_{n_{k}}}\right|=\max \left\{\left|x_{i_{n_{k}}}\right|, \quad i=1,2,3,4,5 \text { for all } n_{k} \in \mathbb{N}\right\} .
$$

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS

Rewrite $x_{i_{n_{k}}}=x_{i_{n}}$. Then there exists such $z_{i_{n}} \in \mathbb{R},\left|z_{i_{n}}\right| \leq 1$ that $x_{i_{n}}=z_{i_{n}} \cdot x_{5_{n}}$. Using this fact in (4.12) we write

$$
\begin{align*}
&\left(\sum_{i=1}^{4} z_{i_{n}}^{2}+1\right)^{\frac{5}{2}} x_{5_{n}}^{6}+\left(1-t_{n}\right)\left[\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right)^{2} x_{5_{n}}^{4}+x_{5_{n}}^{2 l} \eta P_{w} K_{P} P_{1}\left(\left[\sum_{i=1}^{4} z_{i_{n}} \varphi_{i}(t)\right]^{2 l}\right)\right] \\
&=o\left(\left[\left(\sum_{i=1}^{4} z_{i_{n}}^{2}+1\right)^{\frac{5}{2}} x_{5_{n}}^{6}+\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right)^{2} x_{5_{n}}^{4}\right]\left(\sum_{i=1}^{5} z_{i_{n}}^{2}\right)^{l-1} x_{5_{n}}^{2 l-2}\right) . \tag{4.16}
\end{align*}
$$

The sequence $\left\{t_{n}\right\}$ is bounded and hence we can use the subsequence $t_{n_{k}} \rightarrow t_{0}$ for $n_{k} \rightarrow \infty$ and $t_{0} \in[0,1]$. Dividing (4.16) by $x_{5_{n}}^{6}$ we get

$$
\begin{aligned}
\left(\sum_{i=1}^{4} z_{i_{n}}^{2}+1\right)+ & \left(1-t_{n}\right)\left[\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right)^{2} \frac{1}{x_{5_{n}}^{2}}+x_{5_{n}}^{2 l-6} \eta P_{w} K_{P} P_{1}\left(\left[\sum_{i=1}^{4} z_{i_{n}} \varphi_{i}(t)\right]^{2 l}\right)\right] \\
& =o\left(\left[\left(\sum_{i=1}^{4} z_{i_{n}}^{2}+1\right)^{\frac{5}{2}} x_{5_{n}}^{2}+\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right)^{2}\right] \cdot\left(\sum_{i=1}^{5} z_{i_{n}}^{2}\right)^{l-1} x_{5_{n}}^{2 l-4}\right) .
\end{aligned}
$$

It is true that $1<\sum_{i=1}^{4} z_{i}^{2}+1 \leq 5,0 \leq\left(1-t_{n}\right)\left(\sum_{i=1}^{4} z_{i_{n}}^{2}\right) \frac{1}{x_{5_{n}}^{2}}$. The other expressions are sufficiently small and this gives the contradiction.

Using the homotopy invariance and Lemma 4.4 we obtain that $d\left(\Omega_{0}, \bar{\Delta}, 0\right)=$ $d\left(\Omega_{1}, \bar{\Delta}, 0\right)$. Now we compute the degree of the mapping

$$
\Omega_{1}:\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \rightarrow\left[\begin{array}{c}
A_{1}\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \\
A_{2}\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \\
A_{3}\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \\
A_{4}\left[\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}+\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{2}\right] \\
\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{5}{2}} x_{5}
\end{array}\right],
$$

where

$$
A_{j}=2 \operatorname{l\eta } \frac{1}{\pi} \int_{0}^{2 \pi}\left[\sum_{j=1}^{4} x_{i} \varphi_{i}(t)\right]^{2 l-1} w(t) \varphi_{j}(t) \mathrm{d} t, \quad j=1,2,3,4
$$

L'UDOVÍT PINDA

Using the Borsuk theorem in generalized form ([1, p. 46-47]), we compute the degree of the mapping Ω_{1}. It is necessary to show that $\frac{\Omega_{1}(x)}{\left|\Omega_{1}(x)\right|} \neq \frac{\Omega_{1}(-x)}{\left|\Omega_{1}(-x)\right|}$ and it is equivalent with $\Omega_{1}(x) \neq k \cdot \Omega_{1}(-x)$, where $k>0$ and $k=\frac{\left|\Omega_{1}(x)\right|}{\left|\Omega_{1}(-x)\right|}$. By the fifth component of the mapping Ω_{1} we see that this condition is fulfilled. Therefore $d\left(\Omega_{1}, \bar{\Delta}, 0\right) \neq 0$. We have shown that

$$
\begin{equation*}
d(S \circ T, \bar{\Delta}, 0) \neq 0 \quad \text { for sufficiently small } \quad \bar{\Delta} \tag{4.17}
\end{equation*}
$$

To return to the original operator S we can use the multiplication theorem for the degree. Note the Jacobian

$$
J_{T}=\left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\rho x_{1} & \rho x_{2} & \rho x_{3} & \rho x_{4} & \rho^{\frac{3}{2}}\left[5 x_{5}^{2}+\sigma\right]
\end{array}\right|=\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{3}{2}}\left[5 x_{5}^{2}+\sum_{i=1}^{5} x_{i}^{2}\right] \geq 0
$$

where ρ denotes the sum $5\left(\sum_{i=1}^{5} x_{i}^{2}\right)^{\frac{3}{2}} x_{5}+4 \sum_{i=1}^{4} x_{i}^{2}$ and σ the sum $\sum_{i=1}^{5} x_{i}^{2}$, respectively. It is easily verified that T is a homeomorphism from \mathbb{R}^{5} to \mathbb{R}^{5} which takes $(0,0,0,0,0)$ to $(0,0,0,0,0)$. By the definition of degree in finitedimensional normed space it follows that for any open subset $D \subset\left\langle\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, w\right\rangle$ and any $p \in T(D)$ is $d(T, D, p)=1$. In particular

$$
\begin{equation*}
d(T, D, p)=1 \quad \text { for all } \quad p \in T(\bar{\Delta}) \tag{4.18}
\end{equation*}
$$

Let M be an open ball containing $T(\partial \bar{\Delta})$ and so that the equation $S y=0$ has no solutions in M except $y=0$. By Lemma 4.4 and from the fact that T is a honeomorphism with $T(0,0,0,0,0)=(0,0,0,0,0)$ it follows that such an M exists. The multiplication theorem for the degree of mapping tells us that

$$
\begin{equation*}
d(S \circ T, \bar{\Delta}, 0)=\sum_{\Delta_{j}} d\left(S, \Delta_{j}, 0\right) \cdot d\left(T, \bar{\Delta}, \Delta_{j}\right) \tag{4.19}
\end{equation*}
$$

where Δ_{j} are the components of $M \backslash T(\partial \bar{\Delta})$. Since T is a homeomorphism, $M \backslash T(\partial \bar{\Delta})$ has only two components. Let Δ_{1} be the component which does not contain the origin and Δ_{2} the complementary component. Observe that $S y=0$ has no solutions in Δ_{1}; therefore $d\left(S, \Delta_{1}, 0\right)=0$. By the definition of S and (4.17), (4.18), (4.19) it follows that

$$
0 \neq d(S \circ T, \bar{\Delta}, 0)=d\left(S, \Delta_{2}, 0\right) \cdot 1
$$

A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS .

Therefore $d\left(I-A_{1}, \Delta, 0\right) \neq 0$. We summarize our result in the next theorem.

THEOREM 4.1. Suppose that the integrals

$$
\begin{gathered}
\int_{0}^{2 \pi}\left[c_{1} \cos m t+c_{2} \sin m t+c_{3} \cos n t+c_{4} \sin n t\right]^{2 l-1} \cdot w(t) \varphi_{j}(t) \mathrm{d} t \neq 0 \\
\text { for } j=1,2,3,4
\end{gathered}
$$

where c_{1}, \ldots, c_{4} are arbitrary constants such that at least one of $c_{i} \neq 0$, $\varphi_{1}(t)=\cos m t, \varphi_{2}(t)=\sin m t, \varphi_{3}(t)=\cos n t, \varphi_{4}(t)=\sin n t, w \in N S(L)^{\perp}$ is the solution of the equation

$$
L w(t)=\left(a_{m} \cos m t+b_{m} \sin m t+a_{n} \cos n t+b_{n} \sin n t\right)^{2 l},
$$

for arbitrary constants $a_{i}, b_{i}, i=m, n$, satisfying (3.5), $\eta= \pm 1$,

$$
\Delta=\left\{y \in B C:\|y\|_{\infty}<\left(\frac{1}{c-\varepsilon}\|f\|_{1}\right)^{\frac{1}{41-1}}<\delta\right\}
$$

and f is sufficiently small. Then the equation $\mathcal{L} y(t)=L y(t)+\eta y^{2 l}(t)=f(t)$, $l \geq 4$ has at least one solution in $\Delta \subset B C$.

REFERENCES

[1] DEIMLING, K.: Nichtlineare Gleichungen and Abbildungsgrade, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
[2] DING, S. H-MAWHIN, J.: A multiplicity result for periodic solutions of higher order ordinary differential equations, Differential Integral Equations 1 (1988), 31-39.
[3] GREGUŠ, M.-ŠVEC, M.--ŠEDA, V.: Ordinary Differential Equations. (Slovak), Alfa, Bratislava, 1985.
[4] LALOUX, B.-MAWHIN, J.: Coincidence index and multiplicity, Trans. Amer. Math. Soc. 217 (1976), 143-162.
[5] LEFTON, L.: Existence of small solutions to a resonant boundary value problem with large nonlinearity, J. Differential Equations 85 (1990), 171-185.
[6] REKTORYS, K. ETAL. : Survey of Applied Mathematics. (Czech), SNTL - Nakladatelství technické literatury, Praha, 1963.
[7] SCHUUR, J. D.: Perturbation at resonance for a fourth order ordinary differential equation, J. Math. Anal. Appl. 65 (1978), 20-25.

l'UDOVÍT PINDA

[8] ŠEDA, V.: Some remarks to coincidence theory, Czechoslovak Math. J. 38 (113) (1988), 554-572.

Received October 23, 1991
Department of Mathematics
University of Economics
Odbojárov 10
88633 Bratislava
Slovakia

[^0]: AMS Subject Classification (1991): Primary 34B15.
 Key words: Cauchy function, completely continuous operator, Leray-Schauder degree.

