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THE THIRD BOUNDARY VALUE 
PROBLEM FOR A NONLINEAR SYSTEM 

OF SECOND ORDER HYPERBOLIC 
INTEGRO-DIFFERENTIAL EQUATIONS 

ANDRZEJ BORZYMOWSKI 

(Communicated by Michal Feckan ) 

ABSTRACT. The paper concerns a boundary value problem for a system of 
nonlinear second order integro-differential equations whose leading parts contain 
the operator QXQ , with the linear boundary conditions containing both the 
unknown function u and its normal derivatives. The problem is reduced to an 
auxiliary problem (E) and hence the local existence of its solution is proved by 
using the Schauder fixed point theorem. 

Introduction 

Boundary value problems with the third of Neumann boundary conditions 
have been examined intensively for second order hyperbolic partial differential 
equations whose leading parts correspond to the second canonical form [Ju := 

4 - 1 ~ \ ^ z t (cf- -2-> -3-> -4]--12]> -14] a n d t h e references therein). To the best 
^Si c ^ S 2 

of our knowledge, analogous problems for the equations with the leading parts 
d2u corresponding to the first canonical form Lu := ~ ~ have not been taken up 

so far (cf. Remark 3 in the sequel). 

In this paper we deal with the third boundary value problem for a system 
of nonlinear integro-differential equations of the form Lu = F. We reduce the 
problem to an auxiliary problem (£) and hence prove the existence of a solution 
by using Schauder's fixed point theorem. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 35L70. 
K e y w o r d s : hyperbolic equation, integro-differential equation, normal derivative, Schauder 
fixed point theorem, local existence of solutions. 
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1. 

Let V = [0, A] x [0, B], where 0 < A, B < oo, and consider the curves T and 
f of equations y = f(x) and x = g(y), respectively, where / : [0, .A] —> [0,B] 
and g: [0, B] -» [0, A] are functions of class C1 . We introduce the class tC of all 
functions u = (uk): V —> Rn (n being arbitrarily fixed in N, where N denotes 

r\ r\ 

the set of all positive integers) such that the derivatives v := ~^—u, w := ~^-u 
and Lu exist and are continuous. 

We deal with the system of integro-differential equations 

Lu(x, y) = F [x, y, u(x, y), §(x, y), Q(x, y)] (1) 

where $ = (v, w); 
x y 

Q(x, y) = j f £ [x, y; t, r, u(t, r), $(i, r)] dr d*, (2) 
o o 

and F, £ are given functions. 
By a solution of system (1) in V we mean a function u G /C satisfying (1) at 

each point (x,y) G V. 
Denote by n and fi the unit normal vectors to Y and V, respectively. 
We examine the following boundary value problem (P): 
(P) Find a solution of system (1) in V satisfying the boundary conditions 

£-u[x, f(x)] + 7(x)u[x, f(x)] = M(x), 

d ( 3 ) 

ggu[ff (»)>»] +Tf(y)u[g(y),y] = N(y) 
((x,y) G V), where 7, 7, M and N are given functions. 

We make the following assumptions. 

I. The function F: V x R4n -> Rn satisfies the conditions 

|F(0,0,0,(0),0)| = 0; 

\F(x, y, i,r], C) - F(x,y,tfj,C)\ 2 (4) 

</f1((x-xr + (y-tfro+if2(ie-fi + ic-ci)+^^ 

((0) = 0,0; 0 is the system of n zeros; 77 =- (T71?r72), 0 < x < x < A; 0 < y < 
y < B), where ax G (0,1], and K{ (i = 1,2,3) are positive constants. 

II. The function £: V2 x R3n —> Rn is continuous and fulfils the condition 

\£(x, y; t, r; £, v)\ < K4 + KJ^ + ^ J ) (5) 
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where K4 and Kb are positive constants. Moreover, it satisfies Holder's con
ditions with respect to x and y, with a positive coefficient and an exponent 
^ ( 0 , 1 ] . 

III. Let c, c, 5, 5, ra, ra and a, a be positive constants such that 

s^ := max(s, s) < ax; (6) 

max|/ ' (x) | < a; max|g'(</)| < a; (7) 
[o,A] [o,B] 

rara<min(l, (aa)"^°) (8) 

for a certain number (30 G (0,1). All the mentioned constants except c and c 
are required to be independent of A and B, while c and c are demanded to 
satisfy the condition [min(c, c)]~ <b where b is a constant independent of A 
and B. 

We assume that the functions / and g fulfil the inequalities 

/ '(*) > m a x ( ^ g - , c x s ) ; g'(y) > m a x ( ^ , c / ) (9) 

(x G (0,A]; y G (0,B]). Moreover, the derivatives / ' and g' satisfy Holder's 
condition with a positive coefficient and an exponent h2 G (0,1]. 

IV. The functions 7: [0,A] -> R and 7: [0,£] -> R satisfy Holder's condi
tion with a positive coefficient X6 and an exponent a2 G (0,1], and fulfil the 
equalities 

7(0) = 7(0) = 0. (10) 

V. The functions M: [0,A] -+ Rn and JV: [0,B] -^ En satisfy the condi
tions 

M(0) = N(0) = 0, 

\M(x) - M(x)\ < K7x
a3~h3(x - x)h3, \N(y) - N(y)\ < K7y

a3~h3(y - yf3 

(11) 
where K7 is a positive constant, h3 G (0,1] and a3 is a number such that 

a, + 1 < a3 . (11') 

Moreover, at the common points of T and f the functions M and N satisfy 
suitable compatibility conditions. 
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COROLLARY 1. It follows from Assumptions I, IV and V that the inequalities 

2 

\F(x,y, Z,r,, ()\<K, (*Ql + ya i) + K2{\£\ + |C|) +K3J2\%\; 
I / = l 

|7(x)| <K6x«>\ |7(y)| < ^ 6 y ° 

|M(x)|<IY-7xa3; l - V ^ l ^ ^ y ' 

/lO/d good. 

Remark 1. Assume that f(A) = B\ g(B) = A, and that the curves T and f 
have no common point apart from (0,0) and (A, B). Setting T0 = T U T and 
denoting by VQ the domain bounded by T 0 , we can assert that (P) is in the 
considered case the third boundary value problem for the domain V0 with the 
conditions (3) given on its boundary T0 . The compatibility conditions for M 
and N are in this case M(0) = N(0); M(A) = N(B). 

Remark 2. If j(x) = 'j(x) = 0 then (P) is the Neumann problem for sys
tem (1). Let us point out that, due to the assumptions and the method of 
treating the problem, the present result is not contained in that of paper [1] de
voted to a Neumann-type problem for a system of high order integro-differential 
equations. 

Remark 3. Let us observe that the present problem cannot be, in general, 
obtained from those concerning the equation 

(i) D ^ = FX^,^) (for simplicity we discuss the linear case). 

Indeed, every of the problems for equation (i) dealt with in the papers mentioned 
in the Introduction contains the initial conditions 

(ii) 1 ^ , 0 ) = ^ ( 0 ; ^ ^ i , 0 ) = u 1 ( e i ) ; 0 < e i < a , 

where a > 0 and u^^) (v = 0,1) are given functions. 

The linear map r : x = f-_ — cf2; y = fx + c£2 transforms equation (i) to 

(iii) Lu = F{xiy) = \F(^J^)i 

and conditions (ii) to 

(iv) u(x,x) = u0(x) = u0(x)] -~u(x,x) = u^x) = —^y=ru1(x). 
un cv2 

Problem (P) does not contain conditions (iv) and hence it cannot be obtained 
from the said problems by using transformation r . 
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EXAMPLE. We give an example of the curves satisfying Assumption III. Let A = 
B and v G (1, a1 +1). Set f(x) = A1~vxv and g(y) = A1~vyv. Assumption III 
is satisfied with m = m = 1/V; c = c = vAl~v, s = s = v — 1, a = a = v and 
any /?0G(0,1). 

2. 

Assume that the normal vectors n and n are directed so that 

/ Ч f'(") / 4 1 

cos(x,n) = ^ -; cos(т/, n) = e(x) ' УУì J e(x) ' 

cos(x,ñ) = -----; cos(?/, ñ) = — -
(13) 

e(2/)' V i " * v _ e(2/)' 

where 

e(x) = y/l~~~7); e(y) = \/~~~~~, (14) 
and denote by Kj the class of all functions u G /C such that 

u(0,0) = u(0,0) = w(0,0) = 0. (15) 

It is easily observed that, in the class tCx, problem (P) is equivalent to the 
following problem (S) (cp. with that in [13]): 

(E) Find a solution u G /Cx of system (1) in V satisfying the boundary 
conditions 

v[x,f(x)]=G*(x); w[g(y),y] = H^(y) (16) 

((x,y) £ V), where 

G^(0) = H^(0) = 0; 

G^(x) = G^(x) + G^(x) for x€ (0 , .4 ] , (17) 

H*(ff) = H*(y) + H9(y) for ye(0,B] 

with 

<?*(*) = ^ t « [*,/(*)]; -*•(») = ^ « t o . » h (is) 

G*(x) = j^(l(x)u[x,f(x)] - M(x)) , 

H*(y) = ^)(i(yHg(y),y]-N(y)). 
(19) 
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It follows from Taylor's formula with the integral remainder that if u G IC1, 
then 

x y 

u(x,y) = A^(x,y) := / v(f,y) d£ + / w(0, rj) drj 

o o 
y x 

= Jw(x,r))dn + J v(Z,0)dZ 

0 0 

((-r,y)€X>). 
If, moreover, i* is a solution of system (1) in P , then 

y 

v(x,y) = v(x,0)+ / F[x,rj,u(x,77),$(x,r/),n(x,r/)] dry, 

o 

«;(a:,y)--ti;(Oly) + yF[e>i/,«(i;,y))$(e,y)>n($,y)] d£ 

(21) 

( (x ,y )G2?) . 
In the sequel, AJ denotes the expression fi (cp. (2)) with u = A^, while A | 

and A | stand for v and uj given by (21), respectively, with u = A$, fi = A^. 

Now, let us consider the following system of integro-functional equations 

v(x, y) = T^(x, y); w(x, y) = T $(x, y) (22) 

((x,y) G P ) with the unknowm vector $ (cp. (1)), where 

y x 

T*(x,y)=Gs(x)+ y ^(i.ryjdr/; f9{x,y) = H9{y)+ J d^,y) 6^. 
/ ( * ) ff(j/) 

(23) 
Above, e*(0) = ^ $ ( 0 ) = 0; ^ ( x ) = Q$(x) + Q^(x) for x G (0,-4], 

^<*>(y) = # $ ( y ) + ^ ^ ( y ) for y G (0,J3], where ^ , 7 ^ denote the expres
sions (18), respectively, with v = A^, ID = A | , and Q$, ii^ the expressions 
(19) respectively, with u = A$. Moreover, 17$ is given by 

#*(x,y) = F[x, y, A^(x, y), $ ( s , y), A J f o y)] . (24) 

One can prove the following lemma: 

LEMMA 1. If u is a solution of problem (S) , tlien $ is a continuous solution 
of system (22). Conversely, if $ is a continuous solution of system (22), then 
the function u = A^ is a solution of problem (S ) . 
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3. 

We shall prove the existence of a solution to system (22) (and hence of prob
lem (P)) by using Schauder's fixed point theorem. 

Let S be the set of all systems $ = (v, w), where the components v: V^ —•> W1 

and w: V^ -» Rn (with V^ = V \ {0,0}) are continuous functions such that 

B$ :=max^sup[(x + y )~^(x ,y ) | ] , sup[(x + 2/)""1|'av(x,2/)|]J < o o . (25) 

We define the addition of points and the multiplication of a point by a number 
in the ordinary way, and introduce the norm 

11*11 = •»• (26) 
($ G S). It is easily observed that S is a Banach space. 

We consider the set Z of all points $ G S satisfying the conditions 

\v(x, y)\<Q1(x + y)^h ; \w(x, y)\ < Q2(X + y)x+h (27) 

and 
\v(x,y) - v(x,y)\ < KX(X + y)[(x - x)h + (y - y)h] , 

\w(x, y) - w(x, y)\ < K2(X + y) [(x - x)h + (y - y)h] 
(0 < x < x < .A; 0 <y <y < A), where QX,Q2, K^K2 > 0 are parameters to be 
chosen later, and 

0<h<h.:= m i n ^ m m ^ , /?0, ax - s „ a2, a3 - 8„ - l ) . (29) 

Evidently, Z is a closed and convex set. In order to prove its compact
ness, let us consider an arbitrary sequence { $ m } , where $ m = (vm,vJm) G Z, 

and introduce the sequence { $ m } , where $ m = (vm,wm) with vm(x, y) = 
(x+v)-lvm(x,y) for (x,</) G ©,; vm(0,0) = 0 and wm(x,y) = (x+yT^^x.y) 
for (x,y) G £>„; wm(0,0) = 0. By (27), the functions vm and tym, defined on 
the closed and bounded set V, are uniformly bounded: 

\vm(x,y)\ < (x + y)h
6l < (2A)h

6l; \wm(x,y)\ < (x + y)he2 < (2A)*g2 

((x,y) € V), where A = max(A, B). 

We shall prove the equicontinuity of vm and wm. 
Let us observe that if (x, y) = (0,0), then 

rx(x,y,x,y) := \vm(x,y) ~ vm(x,y)\ < 2AQX [(X - x)h + (y - y)h]; 

r2(x,y,x,y) := \wm(x,y) - wm(x,y)\ < 2AQ2[(X - x)h + (y - y)h] • 

277 



ANDRZEJ BORZYMOWSKI 

For (x, y) € Vt; (x, y) € £>„, we have 

rx (x, y, x, y) < «! [(x - x)h + (y - y)h] 

+ Ox ^ f [(x - x)hx*~h + (y - y)hf~h] 

<(Ql + Kl)[(x-x)h + (y-y)h] 

and similarly 

r2(x, y, x, y) < (02 + K2) [(x - x)h + (y - y)h) . 

Thus, for all (x, y) G V\ (x,y) G V, we get 

rx (x, y, x, £) < [max(2.4, l)Ql + K-J [(x - x)h + (y - y)h] ; 

r2(x, y, x, £) < [max(2.4, l)g2 + «2] [(x - x)h + (y - y)h] 

which shows that vm and wm are equicontinuous. 

By the Arzela theorem there is a subsequence {3>m }, where <£m = 

(vmk>
wmk) J uniformly convergent in V and hence the relations 

S U P \vmk (
x> y) - v

mi (*> y)I = S U P [(x + y)~l \vmk (
xi y) - vml (

x^ y)I] < e ; 

s u P . W m f c f o y ) - W ( x , y ) ^ <£ 
V Vm 

(e>0; kJ>N(e)). 
It follows from the said relations that the subsequence {®mk}, where $mfc = 

(um f c ,^mJ of {$m} satisfies the Cauchy condition in the norm (26) and hence, 
by the completeness of S and the closedness of Z, its limit exists and belongs 
to Z. Thus, Z is compact, as required. 

In view of system (22), we map Z by the transformation T defined by 
(cp. (23)) 

v(x,y) = T^(x,y); w(x,y) = f9(x,y) (30) 
((x,y)eVt). 

We shall find sufficient conditions for the inclusion T(Z) C Z. 
In order to estimate the functions v and w, let us first observe that by 

Assumption II, Corollary 1 and relations (20), (27) we have 

|Ai(s, y)\ < const(^ + Q2)(X + y)2+h ; (31) 

|AJ(x, y)\ < const e(Q)(x + yf+h ; (32) 

(above and in the sequel, const denotes a positive constant independent of Q1 , 
Q2, « j , K2), where 

e(e) = 1 + Ql + Q2 (33) 
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{Q={QI,Q2))-

Using Assumption III, Corollary 1 and relations (18), (21), (31), (32), we get 
the estimate 

\G*{x)\ < {m1+hahQ2 + conste(0)(_4a ; i + K ^ - ' ^ x 1 ^ (34) 

with LJ1 — al — {s^ + h). 

Moreover, by Assumptions I I I - V and formulae (14), (19) and (31), we obtain 

\G*{x)\ < conste{o)Au}2x1+h, (35) 

where u2 = min[a 2 — {s^ — 1), a3 — {s^ + h + 1)]. 

Finally, we have (cp. Corollary 1 and formulae (24), (27), (31), (32)) 

У 

I tfф(x,r/) dV 

/(*) 

< const e(g)AUa(x + y)1+h (36) 

where uiz = min(a 1 — h, 1). 

Relations (17), (23) and (34)-(36) yield 

\T9{x,y)\<{m1+hahQ2 + coaste(Q)(Au + KsA
1-'-)}(x + y)1+h, (37) 

with UJ — min uj1t. 
l < z y < 3 v 

In a similar way we get the estimate (cp. (23)). 

\f*{x,y)\ < {m1+hah

Ql + conste{ e){A» + KzB
l-**)}{x + y)1+h. (38) 

Thus, by (30), (37) and (38), the functions v and w satisfy conditions (27) 
if the following system of inequalities 

m1+hahQ2 + Ce{e){A» + K^A1—) < Qx , 

m1+hahQ1 +Ce{o){A" + K3A
1~3^) < Q2 

holds good, where C is a positive constant independent of Q, KX) K2. 

Let us observe that by ( 8 ) 1 ; , there is a number 0 E (0,1) fulfilling the 
condition 

{mfh)1+h{aa)h == 62 . 

We choose Q1 and Q2 in (27) so that 

Q_ _ _ àhm1+h 

ř?i ahm Һ^I+Һ ~ fì ' ^40) 

1^Due to the condition h < (30 (cp. (29)), inequality (8) implies (mm)1Jth(aa)h < 1 and 
mm(aa)h < 1. 
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whence (39) reduces to 

Ce(e)(Au + KzA
1--) < ( l - f l )min(e 1 > t ? 2 ) . (41) 

It is easily seen that inequality (41) is satisfied, provided that 

lju/ 

A< 
\ (l-0)min(Q1,Q2) \ 

\č[l + 2max(QvQ2)]f 

where u>' = min(o;, 1 — s») and C is a positive constant of the same type as C 
above. 

We proceed to the examination of conditions (28). 
Basing on Assumptions I, II and relations (20), (27), (28), we get 

\Al(x, y) - Al(x, y)\ < const(^ + Q2 + KI)(X + y)2 [(x - x)h + (y- y)h] ; 
(43) 

IAJOE, y) - A%(x,y)\ < const(? 1 + Q2 + K,)(S + y)2 [(x - x)h + (y - y)h] , 
(44) 

whence, and from Assumptions I, III, Corollary 1 and relations (18), (21), (27), 
(28), we obtain 

\G*(x)-G*(x)\ < {mahK2 + const[g2 + e(g,K)(A* + tf3A
1"5)]}, (45) 

where 
2 

e(g,K) = l + Y,(g„ + *l/) (46) 
v=l 

(g is as in (33) and K = (KVK2))>
 a n ( ^ ^ = m i n ( l ~K l — h + al — 2s J . 

Furthermore, by Assumptions III-V and formulae (14), (31) and (34), we 
get 

< const eiQt^A^xix - x)h 

with ux = min(a2 — (s — 1), h2 — (s^ — 1)), and 

< const e(g, K)AQ2X(X - x)h e(x) . - e(x) ,,,_, 
r-y r̂-M - • ; : M(x) 

with CJ2 = a 3 — (s„ + h + 1), whence and from (19) we obtain 

|£»(-0-£»(*) ! < conste(ft(c)A 4S(j_i)k (47) 

where u> = m i n ^ , £>2). 
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Inequalities (45) and (47) yield (cp. (17)) 

\G*(x)-G*(x)\ < { m a ^ 2 + const[e2 + e ( & ^ (48) 

where u =- min(uJ, u). 
It is easily proved by using Assumptions I, II, Corollary 1 and formulae (31), 

(32), (43), (44) that 

y y 

f ^ ( X , T ? ) dry- f tf»(x,r/) dr] < e(g,K)A^(x+y)[(x-x)h + (y-y)h] (49) 

fix) f(x) 

with (Dj = min(l, ax — h). 
On joining (23), (48) and (49), we get 

\T9(x)-T9(x)\ 

< {mahK2 + const[£2 + e(g, K)(A"' + K3A
1_S*)] }(* + y) [(x - x)h + (y - y)h] 

(50) 
where u^ = min(u), d)1). 

In a similar way we obtain 

\f9(x)-f9(x)\ 

< {mahK1 + const[^ + e(g,K)(A"' + K^1'"')] } • (51) 

•(x + y)[(x-x)h + (y-y)h]. 

As a consequence of (50), (51) we can assert that the functions v and w 
(cp. (30)) satisfy conditions (28) if the system of inequalities 

mahK2 + C, [g2 + e(g, K)(A"' + /^A-1"8*)] < KX , 

ma!1^ + Cm [Qi + e(g, K)(AW' + K3A
X~S')] < K2 

is valid, where Ct is a constant of the same type as C in (39). 
The discussion of (52) is analogous to that of (39). 
Basing on (8) (cf. the footnote *)), we can assert that mm(aa)h = 6\ € (0,1), 

and choose gv, KV (U = 1,2) so that (40) and 

- ^ - A _ - mahah . c < - ~ gi .. . C n < ±^®-K (V{\ 
«x ~ mah ~ ex ' °*02 - 2 K l ' ° - e - - 2 K2 {b6) 

are satisfied. 
As a result of (53), inequalities (52) reduce to 

CJ(g,K)(A"' +K3A
1~a') < i ^ - m i n ( K l , K 2 ) . (54) 
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It is easily observed that inequality (54) holds good if 

A<[ - (l-'i)™(*i.*2) 1 \ (55) 
[ 2C, [1 + 4 max max(to l/, «„)] J 

where u;̂  = m i n ^ , 1 — s j and C^ is a positive constant independent of p, AC. 

The above-obtained results make it possible to assert that if A is sufficiently 
small, so that inequalities (42) and (55) are satisfied, then T(Z) C Z. 

One can also prove the following lemma: 

LEMMA 2. The transformation T (cp. (30)) is continuous. 

Thus, all assumptions of Schauder's fixed point theorem are satisfied and 
hence we can assert that there is a fixed point of transformation T , that is a 
system $ 0 = (v0,w0) G Z satisfying the system of integro-functional equations 
(22) in V+. Setting 

vЛx>У) = { 
0 for x = y — 0 , 

v0(x,y) for (x,y) ЄV^, 

( 0 for x = ?! = 0 , 
^ ( x , ? l ) = < 

I ™0(:r,?/) for (x,H) G £>„ 

wre get the system 3^ = (v^,w^) of continuous functions satisfying (22) in V. 
As a result (cp. Lemma 1), problem (E)has a solution u^ = A^ G KLl which, 
by the equivalence of problems (P) and (£ ) , is also a solution to problem (P). 

As a result, we can formulate the following final theorem: 

THEOREM. If Assumptions I - V are satisfied and A = max(./l,i?) is suffi
ciently small, so that inequalities (42) and (55) hold good, then problem (P) has 
a solution. 
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