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ABSTRACT. We show tha t the box-counting dimension of the sine-curve is | . 

It is well known that the "dimension" (box-counting, Hausdorff-Besicovitch, 
divider dimension etc.) of the graph of a real valued continuous function on an 
interval can take values strictly greater than one ([1], [2]). The examples studied 
of this kind are mostly of a very ill-behaved nature (being nowhere differentiable). 
We showT that the celebrated sine-curve provides a simple example of a smooth 
function on an interval whose graph has box-counting dimension exceeding one. 

PROPOSITION 1. The box-counting dimension of the graph of the function 

/ : ( 0 , 1 ] - - > R , / ( x ) = s i n ^ 

exists and is equal to | . 

P r o o f . Let G denote the graph of / : 

G={(x,y)eR2 | x 6 ( 0 , 1 ] , y = s i n ± } . 

It suffices to show that the box-counting dimension of the closure G = 
G U {0} x [—1,1] of G in R2 exists and is equal to §. We compute the box 
dimension of G with mesh-counting. Consider a mesh of size ek = ̂ -f — (2fc+iw 
where H N , and let N(G,sk) denote the number of mesh-squares intersect
ing; G. It is not difficult to see that — can be taken as a lower bound for 

_ £k 

N(G,ek) (compare the figure and consider the vertical middle-segments of the 
"wave-hills"). To find an upper bound, we define 

Gx = {(x,y)eG\ x< {2kl1)n} and G2 = {(x,y)eG\ x> ( 2 f c ^ 1 ) 7 r } -

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54F45, 26A09. 
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F I G U R E 1. 

Obviously 
W(G,є f c)<ЛГ(G1,Є f c) + ЛГ(G2,єfc). 

Covering the rectangle 0, 
(2A+l)тr 

N(G1,єk)<(2k + 2)[f- + 2) <27k 

x [—1,1] we get 

(for k sufficiently large). 7 7,3 

To find an estimate for N(G2,£k), we apply Proposition 11.1 of [2] to a 

number of subintervals of .1 r2FfIT7r' x I ' o n w hi c n the function is monotone. This 
proposition can be formulated for a monotone function / : [a, b] —> R as follows: 

Let a 5-mesh for M2 be given. Then the number of squares intersecting the 
graph of / can be bounded from above by 

2 - - ^ + 4 + } | / ( 6 ) - / ( a ) | . 

Applying this upper bound to the 4fc + 2 intervals 

1 
L(2fc + l)7г' (4k+l)тг 

1 
' [(4k + l)7г' 2foг 

" 2 1" '1 2" ÍЧ 
7Г 

, . . . , _3тг ' 7Г_ 
5 

_ 7 Г ' 7Г_ 
5 ÍЧ 

7Г 
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and adding them up, we obtain: 

2 4k 4- 2 
-V(G2, ek)< — + 4(4k + 2) + — — < 27k3 (for k sufficiently large). 

ek £k 

Hence 

^ < i V ( G , £ f e ) < 2 8 A ; 3 , 
£k 

2k2(2k + 1)TT < JV(O, efc) < 28A;3 , 

fc3<N((7.e..)<28Jfe3. 

Now we can pass to the dimension calculation using the bounds 

log A;3 \og N(G,ek) log28A;3 

l o g ^ - l o g i - l o g i 

log A;3 logN (g ,e . . ) _log28A;3 

log 2A;(2A: + l)тr - log --- ~ log 2A;(2A; + l)тr ' 
Єfc 

logA;3 logAt(G,£,) log28A;3 ,e „. . , , 
— < 6 v ' kJ < ° (for sufficiently large k), log25A;2 l °g7" log A;2 

31ogA; logiV(Č,£ fe) 8 log 2 + 3 log A: 
51og2 + 2 1 o g k _ log^- ~ 21ogk 

Hence lim - ^ M % ^ = f. D 
h->oo l o S 7£ 2 

R e m a r k . To see the existence of the limit lim o g, *! 'g^ rigorously, one must 

consider a continuous approach e —r 0, or a geometric-sequential approach ê . = 
rfc -> 0 ([3]). But the test o f B a r n s l e y can easily be improved as follows: 

Assume there is a monotone decreasing null-sequence ek such that 

1. there are numbers 0 < cx < c2 and 0 < r < 1 with cx < ^ < c2 for all 
keN, 

2. lim l os "(*»**) exists ( I c f compact). 
k—>-oo 1 O S £ f c 

Then lim ! °S"I££l e x i s t s . 
e->0 loS F 

In our case, a subsequence of ek = 2k(2k+i)7r s atisfying the first condition 
also can easily be chosen. 
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