Mathematic Slovaca

Ján Jakubík; Štefan Černák
 On convex linearly ordered subgroups of an $h \ell$-group

Mathematica Slovaca, Vol. 50 (2000), No. 2, 127--133
Persistent URL: http://dml.cz/dmlcz/136772

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON CONVEX LINEARLY ORDERED SUBGROUPS OF AN $h \ell$-GROUP

Ján Jakubík* - Štefan Černák**
(Communicated by Tibor Katriñák)

Abstract

Giraudet and Lucas proved that if the increasing part $G \uparrow$ of a half lattice ordered group is linearly ordered, then it is abelian. We present a generalization of this result.

1. Introduction

The notion of a half lattice ordered group was introduced and studied in [3]; cf. also [1], [2], [4], [5], [6], [7].

For a half lattice ordered group (briefly: $h \ell$-group) we apply the same notation as in [3]; some definitions are recalled in Sections 2 and 3 below. In particular, the set of all increasing elements of an $h \ell$-group G is denoted by $G \uparrow$; then $G \uparrow$ is a lattice ordered group.

The system of all convex linearly ordered subgroups of an $h \ell$-group G is denoted by $\mathcal{C}(G)$; next, $\mathcal{C}_{m}(G)$ is the set of all maximal elements of $\mathcal{C}(G)$.

For any group G we put $E(G)=\left\{x \in G: x \neq x^{2}=e\right\}$, where e is the neutral element of G.

We denote by
\mathcal{L} - the class of all lattice ordered groups;
\mathcal{H} - the class of all $h \ell$-groups;
$\mathcal{H}_{1}=\mathcal{H} \backslash \mathcal{L}$;
\mathcal{L}_{1} - the class of all $H \in \mathcal{L}$ such that there exists $G \in \mathcal{H}_{1}$ with $G \uparrow=H$. The following result has been proven in [3]:
(A) Let $G \in \mathcal{H}_{1}$ such that the set $G \uparrow$ is linearly ordered. Then the group $G \uparrow$ is abelian.

[^0]We remark that if G satisfies the assumption of (A), then $G \uparrow \in \mathcal{C}_{m}(G)$ and $G \uparrow$ is a normal subgroup of G.

In the present paper we prove the following generalization of (A) :
$\left(\mathrm{A}_{1}\right)$ Let $G \in \mathcal{H}_{1}$ and let $X \in \mathcal{C}_{m}(G)$. Suppose that X is normal in G. Then X is abelian.

In fact, $\left(\mathrm{A}_{1}\right)$ is a particular case of:
$\left(\mathrm{B}_{1}\right)$ Let $G \in \mathcal{H}_{1}$ and let $X \in \mathcal{C}_{m}(G)$. Suppose that there exists $a \in E(G)$ such that $a X=X a$. Then $X \in \mathcal{L}_{1}$ and X is abelian.
Further, we prove:
$\left(\mathrm{B}_{2}\right)$ Let $G \in \mathcal{H}_{1}$ and let $X \in \mathcal{C}_{m}(G)$. Suppose that X is not abelian. Then for each $a \in E(G)$ the relation $a X \neq X a$ is valid. Moreover, if $a \in$ $E(G)$, then $Y=a X a$ belongs to $C_{m}(G)$ and the following conditions are satisfied:
(i) $X Y=X \times Y$ is a convex ℓ-subgroup of $G \uparrow$ belonging to \mathcal{L}_{1};
(ii) X and Y are isomorphic as lattices;
(iii) X and Y are isomorphic as groups.

2. Preliminaries

Let G be a group and suppose that G is, at the same time, a partially ordered set.

We denote by $G \uparrow$ (and $G \downarrow$) the set of all $x \in G$ such that, whenever $y, z \in G$ and $y \leqq z$, then $x y \leqq x z$ (or $x y \geqq x z$, respectively).
1.1. Definition. (cf. [3]) G is called a half lattice ordered group if the following conditions are satisfied:

1) the partial order on G is non-trivial;
2) if $x, y, z \in G$ and $y \leqq z$, then $y x \leqq z x$;
3) $G=G \uparrow \cup G \downarrow$;
4) $G \uparrow$ is a lattice.

The neutral element of G is denoted by e. In view of 1$), G \neq\{e\}$.
1.2. Proposition. (cf. [3]) Let $G \in \mathcal{H}_{1}$. Then
(i) $G \uparrow$ is a subgroup of G having the index 2 ;
(ii) the partially ordered sets $G \uparrow$ and $G \downarrow$ are isomorphic;
(iii) if $x \in G \uparrow$ and $y \in G \downarrow$, then the elements x and y are incomparable.

Let $G \in \mathcal{H}_{1}$. We denote by $\mathcal{C}(G)$ the system of all subsets X of G such that
(i) X is linearly ordered;
(ii) X is a convex subset of G;
(iii) X is a subgroup of G.

The system $\mathcal{C}(G)$ is partially ordered by set-theoretical inclusion.
If $X \in \mathcal{C}(G)$, then in view of (iii) we have $e \in X$; thus according to (i) and 1.2 we have $X \subseteq G \uparrow$.
1.3. Lemma. Let $X, Y \in \mathcal{C}(G)$ be such that $X \cap Y \neq\{e\}$. Then either $X \subseteq Y$ or $Y \subseteq X$.

Proof. Put $X \cap Y=Z$. Assume that Y is not a subset of X. Hence there exists $y \in Y \backslash X$. Without loss of generality we can suppose that $y>e$. We have to prove that the relation $X \subseteq Y$ is valid; by way of contradiction, assume that this relation fails to hold. Hence there exists $x \in X \backslash Y$; again, it suffices to consider the case $x>e$. Both x and y belong to $G \uparrow$, hence there exists $x \wedge y$ in $G \uparrow$. Put $x \wedge y=z$. We have $z \in Z$.

Since $Z \neq\{e\}$ there exists $z_{1} \in Z$ with $z_{1} \neq e$. From the fact that Z is a subgroup of G we infer that without loss of generality we can assume that $z_{1}>e$. Thus for each $e<x_{1} \in X \backslash Z$ and each $e<y_{1} \in Y \backslash Z$ we must have $x_{1}>z_{1}$ and $y_{1}>z_{1}$. Hence $x_{1} \wedge y_{1} \geqq z_{1}$.

In view of the convexity of X and Y we have $x(x \wedge y)^{-1} \in X$ and $y(x \wedge y)^{-1}$ $\in Y$. If $x(x \wedge y)^{-1} \in Z$, then $x \in Z$, which is impossible. Hence $e<x(x \wedge y)^{-1} \in$ $X \backslash Z$. Similarly, $e<y(x \wedge y)^{-1} \in Y \backslash Z$. Then

$$
\left(x(x \wedge y)^{-1}\right) \wedge\left(y(x \wedge y)^{-1}\right)=(x \wedge y)(x \wedge y)^{-1}=e
$$

On the other hand, if we put $x_{1}=x(x \wedge y)^{-1}, y_{1}=y(x \wedge y)^{-1}$, then we get $x_{1} \wedge y_{1} \geqq z_{1}$. Thus $e \geqq z_{1}$, which is a contradiction.

Let $\mathcal{C}_{m}(G)$ be as in the Introduction.
1.4. Lemma. Let $X \in \mathcal{C}(G), X \neq\{e\}$. Then there exists an element X^{0} of $\mathcal{C}_{m}(G)$ such that $X^{0} \supseteq X$ 。

Proof. Put $A=\{Y \in \mathcal{C}(G): Y \supseteq X\}$. If $Y_{1}, Y_{2} \in A$, then in view of 1.3 we have either $Y_{1} \subseteq Y_{2}$ or $Y_{2} \subseteq Y_{1}$. Put

$$
X^{0}=\bigcup_{Y_{i} \in A} Y_{i}
$$

Then $X^{0} \in \mathcal{C}(G)$ and $X^{0} \in A$. It is clear that X^{0} is a maximal element of $\mathcal{C}(G)$ and that $X^{0} \supseteq X$.
1.5. Lemma. Let $X, Y \in \mathcal{C}_{m}(G), X \neq Y$. Then $X \cap Y=\{e\}$.

Proof. By way of contradiction, assume that $X \cap Y=Z \neq\{e\}$. Then in view of $1.3, X$ and Y are comparable. This is impossible, since both X and Y are maximal.

1.6. Lemma. Let X and Y be as in 1.5. Then

(i) $x y=y x$ for each $x \in X$ and each $y \in Y$;
(ii) $X Y=X \times Y$.

Proof. From 1.5 and from the convexity of X and Y we conclude that $x \wedge y=e$ whenever $x \in X^{+}$and $y \in Y^{+}$; hence $x y=x \vee y=y x$. Thus (i) holds. Then by a simple calculation we obtain that (ii) is valid.
1.7. Lemma. Let X and Y be as in 1.5. Then $X Y$ is a convex ℓ-subgroup of $G \uparrow$.

Proof. Let $u, v \in X Y, z \in G \uparrow, u \leqq z \leqq v$. Then

$$
e \leqq z u^{-1} \leqq v u^{-1}
$$

and in view of 1.6, $v u^{-1} \in X Y$. Thus there are $x \in X^{+}, y \in Y^{+}$, with $v u^{-1}=x y$. According to Riesz theorem there are $x_{1}, y_{1} \in G \uparrow$ with $e \leqq x_{1} \leqq x$, $e \leqq y_{1} \leqq y, z u^{-1}=x_{1} y_{1}$. We have $x_{1} \in X, y_{1} \in Y$, whence $x_{1} y_{1} \in X Y$ and so $z \in X Y$.

2. Proofs of $\left(B_{1}\right)$ and $\left(B_{2}\right)$

Let H be a lattice ordered group with the neutral element $e, H \neq\{e\}$. We denote by $I(H)$ the system of all mappings $F: H \rightarrow H$ such that
(i) F is a group automorphism of the group (H, \cdot);
(ii) F is a dual automorphism of the lattice $(H ; \leqq)$;
(iii) $F(F(x))=x$ for each $x \in H$.
2.1. Lemma. (cf. [3; III.3]) For each $F \in I(H)$ there exists $G=G_{H, F} \in \mathcal{H}_{1}$ such that
(i) $G \uparrow=H$;
(ii) there is $a \in E(G)$ with $F(x)=$ axa for each $x \in H$;
(iii) G is uniquely determined up to H-isomorphism.
2.2. Proposition. (cf. [3; I.3.1]) If $G \in \mathcal{H}_{1}$, then $E(G) \neq \emptyset$.
2.3. Lemma. Let $G \in \mathcal{H}_{1}, a \in E(G)$. Put $F(x)=$ axa for each $x \in G \uparrow$. Then $F \in I(G \uparrow)$.

Proof. This is an immediate consequence of the definition of $E(G)$.
In what follows we suppose that G is an element of $\mathcal{H}_{1}, H=G \uparrow$. Let $X \in \mathcal{C}_{m}(G)$. Further let a and F be as in 2.3.

Put $F(X)=Y$. Then Y is an element of $\mathcal{C}_{m}(G)$. We distinguish two cases:
(a) $Y=X$;
(b) $Y \neq X$.

First suppose that (a) is valid. Put $T=X \cup a X$.
2.4. LEMMA. T is a subgroup of the group G.

Proof. If $x_{1}, x_{2} \in X$, then clearly $x_{1} x_{2} \in T$. Further, let $x \in X, y \in a X$. Hence $y=a x_{1}$ for some $x_{1} \in X$. Also, $x=F\left(x^{\prime}\right)$ for some $x^{\prime} \in X$. Then

$$
x y=a x^{\prime} a a x_{1}=a x^{\prime} x_{1} \in a X
$$

since $x^{\prime} x_{1} \in X$. Further

$$
y x=a x_{1} x \in a X .
$$

If y_{1} is another element of $a X$, i.e., $y_{1}=a x_{2}$ for some $x_{2} \in X$, then

$$
y y_{1}=a x_{1} a x_{2}=x_{1}^{\prime} x_{2} \in X
$$

where $x_{1}^{\prime}=F\left(x_{1}\right)$.
Thus the set T is closed under the group operation.
Let $t \in T$. If $t \in X$, then $t^{-1} \in X$. Suppose that $t \in a X$, thus $t=a x$ for some $x \in X$. Hence $t^{-1}=x^{-1} a^{-1}=x^{-1} a$. From (a) we conclude that $X a=a X$, therefore $t^{-1} \in a X$.
2.5. Lemma. T is a half lattice ordered group; moreover, $T \in \mathcal{H}_{1}$.

Proof. We have $X \subseteq H=G \uparrow$ and $a X \subseteq G \downarrow$. This yields that $X=T \uparrow$ and $a X=T \downarrow$. Then in view of 1.1 we infer that T is a half lattice ordered group. Further, since $a X \neq \emptyset$, we get $T \in \mathcal{H}_{1}$.
2.6. PROPOSITION. If (a) is valid, then the group X is abelian.

Proof. This is a consequence of (A) and 2.5.
Now, $\left(\mathrm{B}_{1}\right)$ is a corollary of 2.3 and 2.6 . Also, $\left(\mathrm{A}_{1}\right)$ follows immediately from (B_{1}).

Suppose that the condition (b) holds. Put

$$
Z=X Y, \quad T_{1}=Z \cup a Z .
$$

According to the results of Section 1, Z is a convex ℓ-subgroup of $G \uparrow$ and $Z=X \times Y$.
2.7. LEMMA. T_{1} is a subgroup of G.

Proof. From the definition of Y we obtain

$$
a X=Y a, \quad X a=a Y, \quad a Z=Z a
$$

Let $t_{1}, t_{2} \in T_{1}$. We have to show that $t_{1} t_{2}$ belongs to T_{1}.
If $t_{1}, t_{2} \in Z$, then $t_{1} t_{2} \in Z \subseteq T_{1}$. Suppose that $t_{1} \in Z, t_{2} \in a Z$. Hence there exist $x_{i}, y_{i}(i=1,2)$ such that $x_{i} \in X, y_{i} \in Y$ and

$$
t_{1}=x_{1} y_{1}, \quad t_{2}=a x_{2} y_{2}
$$

Thus

$$
t_{1} t_{2}=x_{1} y_{1} a x_{2} y_{2}=a x_{1}^{\prime} y_{1}^{\prime} x_{2} y_{2}
$$

for some $x_{1}^{\prime} \in X, y_{1}^{\prime} \in Y$. Hence $t_{1} t_{2} \in T_{1}$. Similarly, $t_{2} t_{1} \in T_{1}$. Next, let $t_{2}^{0} \in a Z, t_{2}^{0}=a x_{0} y_{0}$. Then

$$
t_{2} t_{2}^{0}=a x_{2} y_{2} a x_{0} y_{0}=a a x_{2}^{\prime} y_{2}^{\prime} x_{0} y_{0}=x_{2}^{\prime} y_{2}^{\prime} x_{0} y_{0}
$$

for some $x_{2}^{\prime} \in X$ and $y_{2}^{\prime} \in Y$. Hence $t_{2} t_{2}^{0} \in T_{1}$. Therefore T_{1} is closed under the group operation. If $z \in Z$, then $z^{-1} \in Z$. Next, $(a z)^{-1}=z^{-1} a^{-1}=z^{-1} a \in$ $Z a=a Z$, which completes the proof.

The proof of the following lemma is analogous to that of 2.5 .
2.8. LEMMA. T_{1} is a half lattice ordered group; moreover, $T_{1} \in \mathcal{H}_{1}$.

Proof of $\left(\mathrm{B}_{2}\right)$. Let the assumptions of $\left(\mathrm{B}_{2}\right)$ be valid. Hence, in particular, X is not abelian. Then in view of 2.6 , for each $a \in E(G)$ the relation $a X \neq X a$ is valid. Now it suffices to apply $2.8,1.6,1.7$ and the properties of the mappings $F \in I(H)$.

REFERENCES

[1] ČERNÁK, Š.: On the maximal Dedekind completion of a half partially ordered group, Math. Slovaca 47 (1996), 379-390.
[2] ČERNÁK, Š. : Cantor extension of a half lattice ordered group, Math. Slovaca 48 (1998), 221-231.
[3] GIRAUDET, M.--LUCAS, F.: Groupes à moitié ordonnés, Fund. Math. 139 (1991), 75-89.
[4] GIRAUDET, M.-RACHUNEK, J.: Varieties of half lattice-ordered groups of monotonic permutations in chains. Prepublication No 57, Université Paris 7, CNRS Logique, 1996.
[5] JAKUBÍK, J. : On half lattice ordered groups, Czechoslovak Math. J. 46 (1996), 745-767.
[6] JAKUBÍK, J. : Lexicographic products of half linearly ordered groups, Czechoslovak Math. J. (To appear).

ON CONVEX LINEARLY ORDERED SUBGROUPS OF AN $h \ell$-GROUP

[7] TON, DAO-RONG: Torsion classes and torsion prime selectors of he-groups, Math. Slovaca 50 (2000), 31-40.

Received March 9, 1998
Revised June 26, 1998

```
* Matematický ústav SAV
    Grešákova 6
    SK-040 01 Košice
    SLOVAKIA
** Department of Mathematics
    Faculty of Civil Engineering
    Technical University
    Vysokoškolská }
    SK-040 01 Košice
    SLOVAKIA
```


[^0]: 1991 Mathematics Subject Classification: Primary 06F15.
 Key words: half lattice ordered group, convex linearly ordered subgroup.
 Supported by Grant GA SAV 95/5305/471.

