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ASYMPTOTIC BEHAVIOUR 
OF A CLASS OF THIRD ORDER 

DELAY-DIFFERENTIAL EQUATIONS 

N. PARHI — SESHADEV PADHI 

(Communicated by Milan Medved}) 

ABSTRACT. Sufficient conditions in terms of coefficient functions or a delay-
differential inequality are obtained so that delay-differential equations of the form 

y'"(t) + a(t)y"(t) + b(t)y'(t) + c(t)y(g(t)) = 0 (*) 

have the property (B), that is, every nonoscillatory solution y(t) of (*) satisfies 
y(t)yW(t) > 0, 0 < i < 3, for large t, where a,b,c,g G C([<J,oo),R), cr G R, 
such that a(t) < 0, b(t) < 0, c(t) < 0, g(t) < t and g(t) —> oo as t —> oo. 

1. 

In this paper, we study the asymptotic behaviour of solutions of a class of 
third order delay-differential equations of the form 

y'"(t) + a(t)y"(t) + b(t)y'(t) + c(t)y(g(t)) = 0, (1.1) 

where a G C2([a, oo),R) , b G (^([o^oo^R) and c G C([a,oo),R) such that 
a(t) < 0, b(t) < 0, c(t) < 0, a G R, and g G C([<7, oo),R) such that g(t) < t, 
g(t) —> oo as t —> oo. Equation (1.1) may be written as 

(r(t)y"(t)y + q(t)y'(t)+p(t)y(g(t))=0, (1.2) 

where r(t) = exp(fa(s) d s ) , g(i) = 6(i)r(i) < 0 and p(t) = c(t)r(t) < 0. If 

g(t) = t, then (1.1) takes the form 

y'" + a(t)y" + b(t)yf + c(̂ )H - 0 (1.3) 

2000 M a t h e m a t i c s Sub jec t C l a s s i f i c a t i o n : Primary 34C10, 34C11, 34K11. 
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which has been studied by many authors in recent years (see [1], [4], [6], [9], [10]). 
In [1], A h m a d and L a z e r obtained the following criteria for the asymptotic 
behaviour of solutions of (1.3): 

LEMMA 1.1. A necessary and sufficient condition for (1.3) to have an oscil
latory solution is that for an arbitrary nonosdilatory solution u(t) of (1.3) the 
following conditions hold: 

u(t)u'(t)u"(t)u'"(t) ± 0 for t>t0>a 

and 
sgn u(t) = sgnu'(t) = sgnu"(t) = sgn u'"(t), t > t0 > o. 

Further, lim \u(t)\ = lim \u'(t)\ = oo and lim \u"(t)\ — lim \u'"(t)\ = oo if 
t—>oo t—>oo t—>oc t—>oo 

lim c(t) ^ 0. 
t->oo 

In [10], P a r h i and D a s obtained the following result: 

LEMMA 1.2. Suppose that a'(t) > 0, c(£) - &'(£) + a"(£) < 0 and 
0 0 

/ 
2a___ + a(t)b(t) _ _ 2a(t)a'(t) + ђ 

Å i ó ó 

3/2 

dt = oo. -^w-iTsCjr1-*'-^)) 
Tften (1.3) has an oscillatory solution. 

From the proof of Lemmas 1.1 and 1.2 it is clear that such techniques cannot 
be applied to derive similar results for (1.1). This is due to the presence of delay 
in (1.1). However, the study of the asymptotic behaviour of solutions of (1.1) is 
possible because of the canonical transformation due to T r e n c h [12] and some 
comparison results by K u s a n o and N a i t o [8]. 

For results concerning property (A) / (A ' ) , the reader is referred to [3], [11]. 
By a solution of (1.1) we mean a thrice continuously differentiable function 

y: [T , oo) -» R, Ty > a, which satisfies (1.1) for t > T . Such a solution of 
(1.1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called 
nonoscillatory. 

DEFINITION. Following K i g u r a d z e [7], we say that (1.1) or (1.2) has prop
erty (B) if every nonoscillatory solution y(t) of the equation satisfies 

2 / ( % ( i ) ( t ) > 0 , 0 < i < 3 , (1.4) 

for t > t0 > a. 

In Section 2, we obtain sufficient conditions in terms of the coefficient func
tions of (1.1) so that the equation has property (B). We have used a delay-
differential inequality to establish that (1.1) has property (B) in Section 3. 
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2. 

Setting 
Ly=(r(t)y")' + q(t)y', (2.1) 

one may write (1.2) as 
Ly(t)+p(t)y(g(t))=0. (2.2) 

It is easy to see that the operator (2.1) may be written in the form 

»=U^(&))' 
where v(t) is a positive solution of the second order linear differential equation 

(r(t)v')f + q(t)v = 0, t G [a, oo). (2.4) 
LEMMA 2.1. Equation (2.4) admits a positive increasing solution v(t) satisfying 

oo oo 

/
v(t) dt = oo and / < oo. (2.5) 

J vz(t)r(t) 
a a 

P r o o f . Suppose that v(t) is a solution of (2.4) with v(a) > 0 and 
v'(a) > 0. From the continuity of v'(t) it follows that there exists a S > 0 
such that v'(t) > 0 for t G [a,a + £). We claim that T/(£) > 0 for t > a. 
If not, then there exists a tx > a such that v'(tx) = 0 and v'(t) > 0 for 
t G [a,tx). Integrating (2.4) from a to t15 we obtain a contradiction. Thus 

oo 

t>(£) > 0 and v'(t) > 0 for t > a. Consequently, J v(t) dt = oo. Further, 
(r(£)*/(£))' > -q(t)v(t) > 0 for £ > a implies that r(<)t/(t) > r(t0)v'(t0) for 
^ > ô -̂  a • Hence 

2 

v2(t) > (r(t0)v'(t0))
2 I 

t 
ds 

r(s) 

Thus, for t>t1>tQ, 
t t 

ds 1 f ds ľ ds 1 ľ 
J г(в)«-(в) ^ Гг(řn)г;'(ín)ì2 1 ^ (r(toW(t0))

2(r(s)(f^y 
1 1 

< « : < oo. 
(r(*0M*o)) }*»-

J r(s) 
to 

oo 

Hence J ^TT^T-T < oo. This completes the proof of the lemma. • 
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THEOREM 2.2. Equation (2.2) can be represented essentially uniquely in the 
canonical form 

Ly(t)+p(t)y(g(t))=0, (2.2c) 
where 

Ly = W)\W){w)(^)))) • (2'6) 

oo 

r- e C([(7,oo),R) such that r?:(t) > 0, 0 < i < 3, and /r-(t) dt = oo, i = 1,2. 
a 

P r o o f . In view of Lemma 2.1, the operator Ly given by (2.1) may be 
written in the form (2.3). Since 

oo 

/ 
dť 

< oo, r(t)v2(t) 

then proceeding as in the proof of Lemma 2 of T r e n c h [12], one may write 
(2.3) in the form 

Ly = W){w){m(w))) ' (2-7) 

c o * o o v — 2 

where f0(t) = 1, f,(t) = „(t) f j^jfa, f2(t) = - ^ ^ ( / - ^ - . . j , 
OO OO OO 

f3(t) = v(t) f r{s)v\(s) • Clearly, f f2(t) dt = oo. If / fx{t) dt = oo, then we 
t a a 

oo 
set r-(t) = f-(t), 0 < % < 3. If / rx(t) dt < oo, then (2.7) may be written in the 

a 
form (2.6), where 

oo / oo v — 2 

r0(t) = r0(t) j fx(s) ds, r-(*) = ?-.(*) I Jr,(s) ds) , 
t M ' 
oo 

r2(t)=f2(t)jf1(s)ds, rz(t) = f3(t). 
t 

OO 

Clearly, / r^(t) dt = oo, i = 1, 2. Thus the theorem is proved. • 
<7 

Setting F0H = y/r0(t) and F^ — (Lt_±y) /rt(t), 1 < z < 3, we see that 
(2.2c) may be written as 

Lsy(t)+p(t)y(g(t))=0. (2.2c) 
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DEFINITION. Equation (2.2c) is said to have property (Bf) if every nonoscil-
latory solution y(t) of the equation satisfies 

y(t)LiУ(t)>0, 0 < ż < 3 , (2.8) 

foг ť > t0 > a. 

LEMMA 2.3. If y(t) is a nonoscillatory solution of (2.2c), then either 

sgn L0y(t) = sgnLxy(t) = sgn L2y(t) = sgn L3y(t) 
or 

sgn L0y(t) = sgnLxy(t) = sgn L3y(t) ^ sgn L2y(t) 

for t>t0> a. 

The proof is straightforward and is thus omitted. 

Remark. Lemma 2.3 is true for g(t) = t. It holds whether L3y is given by 
(2.6) or (2.7). 

Remark. Lemma 5 in [8] holds for r(t) = t. 

THEOREM 2.4. Let g G C1 ([a, oo), R) with g'(t) > 0 for t > a. If the canon
ical ordinary differential equation 

-ìУ + ̂ Л Г . < ľ У - 0 (2-9) 
p{9-l(t))r3{g-\t)) 

9'{9-l(t))r3(t) 

has property (B') ; then (2.2c) has property (B'). 

P r o o f . Let y(t) be a nonoscillatory solution of (2.2c). Without loss of 
generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t > t0 > a. Hence 
L0y(t) > 0, Lxy(t) > 0 and L3y(t) > 0 for large t due to Lemma 2.3. To 
complete the proof of the theorem, it is enough to prove, in view of Lemma 2.3, 
that L2y(t) > 0 for large t. If possible, suppose that L2y(t) < 0 for t > t1 > t0. 
Integrating (2.2c) from t (> t1) to oo, we obtain 

oo 

-L2y(t) > I r3(s3)\p(s3)\y(g(s3)) ds3. 

t 

Further integrating from t > tx to oo yields 

OO / OO s 

Lxy(t) > j r2(s2)[ J r3(s3)\p(s3)\y(g(s3)) ds3) ds2. 
t ^s2 ' 
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Integrating the above inequality from t1 to t we get 

L0y(t) > 

>K+ / r i ( S l ) ( J r
2 ( S 2) ( J r3(S3)\P(S3)\y(d(S3)) d s

3 ) d s 2 ) d s l 
t i ^ i 52 

t / OO / C O 

>K + jr1(s1)Ur2(s2)i J 
ti ^ * i \ ( * 2

A 

t / oo • OO 

>K + jr1(sl)Ur2(82)U-

t i ^ 5 1 ^ 5 2 ' ' 

where iif = L0y(tx) > 0. Thus from [8; Lemma 5] it follows that the integral 
equation 

„«) - *+/,.,.,,( / , , w ( / a f e ^ ^ » W ! ) « ) d5) „., 
t l ^ 5 i ^ 5 2 ' ' 

admits a solution u e C([t1? oo), (0, oo)) satisfying 

K < u(t) < L0y(t), t > tx . 

Setting z(£) == r0(t)u(t) > 0, £ > tx, we notice that z(t) > 0 for £ > t1 and it 
satisfies the equation 

^t) = K + frM(JrM(J^<m^^ «) d82) a, 

t i X 5 i x 5 2 

9'(9-H0)) I 2I X 

t i X 5 i P ( S 2 ) 

9'(9-H0)) 1 2) ' 
t i X 5 i 

ť 

> " 
ť l X 5 i V 5 2 

' ( í T 1 ^ ) ) 
*1 

> 0 . 

Hence 

LAt)=Jr2(s2)U ^ - ^ d ^ l d S 2 > 0 , 
t ^ 5 2 ' 

r , t ) _ 7r3(9'1(0))\p(9-l(O))HO) d C , Q 
L - * ( i ) - - / P5=i(íj) á 0 < o 
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and thus z(t) is a solution of the equation 

, , , r3(g-'(t))p(g-'(t))__ 
L"z+ •(r'MJr.M z-° 

since L2z(t) < 0, we get a contradiction to the assumption that (2.9) has prop
erty (B'). Hence the theorem is proved. • 

Remark. We may recall that Lsy is given by (2.7) if 

?-_(*) <.tt = oo (2.10) h 
and it is given by (2.6) if 

oo 

/ 
í (ť)<-í< 00 . (2.11) 

THEOREM 2.5. Suppose that (2.10) holds and (2.4) admits a solution v(t) 
satisfying (2.5) and 

(
OO v - 1 

frW^)) • < 2 ' 1 2 ) 
Let geC1 ([a, oo), R) such that g'(t) > 0 for t > a. If 

W ) ' + ' w + E w t j S r s = 0 (2-13) 

has property (B), then 

P ( f f _ 1 ( l ) ) ^ ( p _ 1 ( l ) ) , , L-y+ UAmu y=0 (2-14) 

has property (B'), where L3y is given by (2.7). 

P r o o f . Let y(t) be a nonoscillatory solution of (2.14). We may take 
y(t) > 0 for t > t0 > a. Since y(t) is a solution of (2.13) w^hich has prop
erty (B), then y'(t) > 0, y"(t) > 0 and y"'(t) > 0 for t > tx > t0. Thus 
L0y(t) > 0 and Lsy(t) > 0 for t > ^ . Further 

L^=mMt))'=m(m)'=^M>0 for '*'•• 
From the assumption (2.12) it follows that r[(t) < 0 for t > lx and hence 
L2y(t) > 0 for t > tx. Thus (2.14) has property (B'). This completes the proof 
of the theorem. • 
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THEOREM 2.6. Suppose that geC1 ([a, oo),K) such that g'(t) > 0 for t > a, 
a'(t) > 0 and c*(t) - b'(t) + a"(t) < 0, where 

Џ 
OO 

/ 
2a___ + a(t)b(t) _ __ 2a(t)a'(t) + ђ 

Ł ( O ô 

dt = oo, 

then (2.13) /ias property (B). 

The proof follows from Lemmas 1.1 and 1.2. 

THEOREM 2.7. Let (2.10) /io/d and 0 < lim r^t) < oc. Let g £ C 1 ([a. oc), R) 

&e snc/i t/iat g'(t) > 0 /or t > a. If (2.13) has property (B). ^/ien (2.14) /ias 
property (B ' ) ; uj/iere F3y is gzuen fry (2.7). 

P r o o f . Let y(t) be a nonoscillatory solution of (2.14). Let y(t) > 0 for 
^ > ô — a - Since y(t) is a solution of (2.13), from the given condition it follows 
that y'(t) > 0, y"(t) > 0 and y'"(t) > 0 for t > tx > t 0 . Thus lim y'(t) = oc. 

t—>oo ' 

On the other hand, it is clear that L0y(t) > 0 and L3y(t) > 0 for t > t 1 . Since 
f0(t) = 1, then Lxy(t) > 0 for t > t x . In view of Lemma 2.3 and the remark 
that follows, L2y(t) > 0 or < 0 for t > t2 > tx. If L22/(*) < 0 for t > t 2 , then 
0 < lim L,y(t) < oo. Hence lim y'(t) = lim rAt)L,y(t) < oo, a contradiction. 

t—»oo x i-»oo' t-»oo x 

Thus the theorem is proved. • 
THEOREM 2.8. Suppose that the conditions of Theorem 2.6 are satisfied. Let 
(2.10) hold. If either 0 < lim T, (t) < oo or (2.4) admits a solution v(t) satisfy-

t—>oo 

ing (2.5) and (2.12), then (2.2c) has property (B ' ) . where L3y is given by (2.7). 

The proof follows from Theorems 2.4-2.7. 

E X A M P L E 1. Consider 

y'"(t) - \y"(t) - Jry'(t) - e(l - \ - j_-)y{t - 1) = 0 

for t > 3 . The associated second order equation 

9 (M í3 
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admits a solution v(t) = t3 which satisfies (2.5) and (2.12). Clearly, fx(t) = 

J - = r3(t), f2(t) = 48£3 and f0(t) = 1. Thus (2.10) holds and the given 

equation may be written in the canonical form as 

12t(-W^12ty,)')' ~ 3 e ( } ~T~ ¥)y{t~l) -°> l - 3-
As g(t) = t — 1, g~~(t) = t H- 1 and p(t) = — 3 e ( | — p- — | r ) , one may easily 
verify that 

c*(t) = -eť 1 
L(t + i)2 (t + if (t + i)4J 

and all the conditions of Theorem 2.6 are satisfied. Thus from Theorem 2.8 
it follows that the above canonical equation has property (B'). In particular, 
y(t) = el is a positive solution of the equation such that L0y(t) = y(t)/r0(t) > 0, 
L i » W = K®(LoV(t)Y > °> L2y(t) = ^(LlV(t))' > 0 and L3y(t) = 
ML2y(t)y>0. 

THEOREM 2.9, Let (2.11) hold and g G C1 ([a, oo),R) such that g'(t) > 0 for 

fta5 property (B), tten (2.9) /las property (B') ; where L3y is given by (2.6). 

P r o o f . Let y(t) be a nonoscillatory solution of (2.9). We may assume that 
y(t) > 0 for t > t0 > a. Since y(t) is a solution of (2.15), then from the given 
hypothesis it follows that y'(t) > 0, y"(t) > 0 and y'"(t) > 0 for t > tx > t0. 
Thus lim y(t) = oc. Clearly, LQy(t) > 0 and L3y(t) > 0 for t > t1. From 
Lemma 2.3 it follows that Lxy(t) > 0 and L2y(t) > 0 or < 0 for t > tx. 
If possible, let L2y(t) < 0 for t > t1. Hence 0 < lim Lxy(t) < oo. Further, 

t—>oo 
(L0y(t))' = r^fjL^t) implies that 

r (t)L Hff) - yl{t) V®r»® - y,{t) + f l ( t ) y ( ^ rx WMt) --r^- -^y- - ^ + - ^ j -
>r1(t)y(t). 

Taking the limit as t —» oo we get oo = lim y(t) < lim L,y(t) < oo, a 
t-^oo t—>-oo 1 

contradiction. This completes the proof of the theorem. • 
THEOREM 2.10. Suppose that g e ^([cr, oo),R) sucft ttat #'(£) > 0 for 
t>a, af(t) > 0 and c**(t) - b'(i) + a"(t) < 0, w/iere 

c**(í) -
5 ' ( 5 -Ҷ í ))r 3 (ř)r( í) • 
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I/ 
oo 

/[-2a3(ŕ) + a(t)b(t) _ c „ ( i ) _ 2a(t)a'(t) + ђ 

Z I ó ó 

-*®-ås{iг-hl,)+"mT dt -= oo, 

tten (2.15) has property (B). 

The proof follows from Lemma 1.1 and 1.2. 

THEOREM 2.11. Let the conditions of Theorem 2.10 hold. If (2.11) holds, then 
(2.2c) has property (Bf), where Lsy is given by (2.6). 

The theorem follows from Theorems 2.4, 2.9 and 2.10. 

oo 

THEOREM 2.12. Suppose that (2.11) holds and f p(t) dt — - o o , where p(t) — 
(7 

c(£)expf f a(s) ds) . If (2.2c) has property (Bf) with Lsy as in (2.6), £/ien (1.1) 

/ifl5 property (B). 

P r o o f . Let y(t) be a nonoscillatory solution of (1.1) and hence of (1.2). 
We may assume, without loss of generality, that y(t) > 0 and y(g(t)) > 0 for 
t >t0 > a. Since y(t) is a solution of (2.2c) which has property (B7), we have 
L0y(t) > 0, L±y(t) > 0, L2y(t) > 0 and Lsy(t) > 0 for t > tx > tQ. Hence 
lim Lxy(t) = oo. If /? > a > t, be such that yff(a) > 0, y"((3) < 0 and 

t—>oo 

y'(£) > 0 for £ £ (a, /?), then integrating (1.2) from a to 3 we obtain 

0 > r(/%"(/3) - r(a)y,f(a) = - J q(t)y'(t) dt - Jp(t)y(g(t)) dt > 0 , 

a a 

a contradiction. Hence yf(t) > 0 or < 0 for large t. If yf(t) < 0 for £ > t2 > tx, 

then lim ?/(£) < oo. On the other hand, (L0y(t)) = r1(t)L1y(t) implies that 

r m r „m - & . - y^rW _ j / W j . g(*)^iW r l W L i y W - r o ( t ) ^ - ^ ^ , ^ 

<2/(lK(l), 

since F3H is given by (2.6) in this case. Thus lim y(i) — oc. a contradic-
t—>oo 

tion. Hence y'(£) > 0 for t > t2 > tx. Consequently from (1.2) it follows that 
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{r{t)y"(t))' > 0 for t > t2. If y"(t) < 0 for t > t3 > t 2 , then integrating (1.2) 
from t3 to t (t > t3) we get 

t t 

r(t)y"(t) = r(t3)y"(t3) - j q(s)y'(s) ds - J' p(s)y(g(s)) ds 

г 

>r(t3)y"(Ч)-y{g(t3)) Jp(s)ds. 
*3 

Thus y"(t) > 0 for large £, a contradiction. Hence y"(t) > 0 for t > t3. From 
(1.1) we get y'"(t) > 0 for t > t3. This proves that (1.1) has property (B), 
which completes the proof of the theorem. • 

COROLLARY 2.13. Let the conditions of Theorem 2.10 hold. If (2.11) holds and 
OO , t v 

/ p(t) dt = - c o . £ften (1.1) has property (B), where p(t) = c(t)expf J a(s) ds) . 

Further, lim |y(£)| = lim \y'(t)\ = oo and lim \y"(t)\ = lim |y"'(t)| = oo if 
t—>oo t->oo t-*oo t->oo 

lim c(t) ? -0 . 
£-»oo 

This follows from Theorems 2.11 and 2.12. 

E X A M P L E 2. Consider 
y'"(t) - \y"(t) - -^y'(t) - e(l - } - |-)y(t - 1) = 0 (2.16) 

for t > 4. The associated second order equation 
32. (f)' Í 3 

-*; = () 

admits a solution u(£) = t4 satisfying (2.5). Clearly, f0(t) = 1, fx(t) = ^ J = 
00 

f3(t) and f2(t) = 144£5. Thus / rx(t) dt < 00 and hence (2.11) is satisfied. One 
4 

may calculate r0(t) = ^ , rx(t) = 24, r2(t) = 6£4 and r3(t) = ^ 2 • Thus (2.16) 
may be written in the canonical form as 

2u2(w(^{24ty{t))')')'-4e(j ~W~ f ) y ( f - 1} = ° (2-17) 

for t > 4 . Since 

c**(t) = -et3( l 

Xt + l)z (t + 1)4 (* + l ) 5 , 
then all the conditions of Theorem 2.10 hold. From Theorem 2.11 it follows 
that (2.17) has property (B ;) . In particular, y(t) = e* is a positive solution of 
(2.17) with L0y(i) > 0, Lxy(t) > 0, L2y(t) > 0 and L3y(t) > 0 . Further, by 
Corollary 2.13, (2.16) has property (B) . In particular, y(t) = e* is a positive 
solution of (2.16) with y'(t) > 0, y"(t) > 0 and y"'(t) > 0 . 
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THEOREM 2.14. Suppose that (2.10) holds and 0 < lim rJt). If (2.2c) has 
t—>-oo 

property (B;) with L3y as in (2.7). then (1.1) has property (B). 
P r o o f . Let y(t) be a nonoscillatory solution of (1.1). Hence y(t) is a so

lution of (1.2). We may assume that y(t) > 0 and y(g(t)) > 0 for t > t0 > a. 
Since y(t) is a solution of (2.2c), then L0y(t) > 0, L±y(t) > 0, L2y(t) > 0 and 
L3y(t) > 0 for t > t1 > t0, where L3y is given by (2.7). Thus lim Lry(t) = oo. 

t—>-oo 

Further, Lxy(t) > 0 implies that y'(t) > 0. From (1.2) it follows that y"(t) > 0 
or < 0 for large t. If y"(t) < 0 for large t, then 0 < lim y'(t) < oo. How-

t-±oo 
ever, y'(£) = f,(t)L,y(t) implies that lim y'(t) = oo. Hence y"(t) > 0 for 

t—>-oo 

t>t2>tx. Consequently, y'"(t) > 0 for t > t2 due to (1.1). Thus (1.1) has 
property (B) and hence the theorem is proved. • 
COROLLARY 2.15. Let the conditions of Theorem 2.6 hold. If (2,10) holds 
and 0 < lim fAt) < oo, then (1.1) /ms property (B). Further, lim |t/(£)| = 

t—>oo t—>oo 
lim |y'(*)| = oo and lim |y"(*)| = lim \y'"(t)\ = oo if lim c(t) ^ 0. 

t—>-oo t->oo £—>-oo t—>oo 

This follows from Theorems 2.8 and 2.14. 

THEOREM 2.16. If g is monotonic increasing, (2.10) holds and oo 

/ • 
c(£)exp I / a(s) ds \ dt = - o o . 

then (1.1) has property (B). 

P r o o f . Let y(t) be a nonoscillatory solution of (1.1). We may assume that 
y(t) > 0 and y(g(t)) > 0 for t > t0 > a. Clearly, y(t) satisfies (1.2) and (2.2c), 
where L3y is given by (2.7). Since L0y(t) = y(i)/f0(t) = y(t) > 0, t > t0, it 
follows from Lemma 2.3 that Lxy(t) > 0, that is, y'(t) > 0 for t > tx > t0. 
Integrating (1.2) from tx to t (t > tx) we obtain 

t t 

r(t)y"(t) = ritjy"^) - j q(s)y'(s) ds - jp(s)y(g(s)) ds 

t 

>r(t1)y"(t1)-y(g(tl)) Jp(s) ds . 

h 

Thus y"(t) > 0 for large t, say, for t > t2 > tx. From (1.1) it follows that 
y"'(t) > 0 for t > t2. Hence (1.1) has property (B). This completes the proof 
of the theorem. D 
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EXAMPLE 3. Consider 

y"'(t)-ei'2y(t/2)=0, t > l . (2.18) 

The associated second order equation v" = 0 has a solution v(t) = t satisfying 
(2.5). In this case, r0(t) = rx(t) = r2(t) = r3(t) = 1 . Thus (2.10) holds. Since 
c*(t) = — 2e*, then all the conditions of Corollary 2.15 are satisfied and hence 
(2.18) has property (B). In particular, y(t) = e* is a positive solution of (2.18) 
with y'(t) > 0, y"(t) > 0 and y'"(t) > 0. 

This example also illustrates Theorem 2.16 as p(t) = — e*/2. 

Remark. Example 1 illustrates Theorem 2.16. We may note that y(t) = e* is 
a positive solution of the equation with y'(t) > 0, y"(t) > 0 and y'"(t) > 0. 
However, Corollary 2.15 cannot be applied to this example as lim r- (t) = 0 . 

t—>oo 

In this section, we show, using a delay-differential inequality, that (1.1) has 
property (B). 

THEOREM 3.1. Suppose that (2.11) holds and g e Cx([a, oc),R) such that 
g'(t) > 0 fort>a. If 

z'(t) + F(t)z(g(t)) > 0 (3.1) 

has no eventually negative solutions, then (2.2c) has property (B /). where L3y 
is given by (2.6) and 

F(t) = - r3( t )p(0r0(3(i))[ i?1(p(^))) -B iGKs(s(«)))) 

x'R2(g(t))-R2(g(g(t))) 

and 
t 

Ri(t) = fri(s)ds, t = 1.2. 

P r o o f . Let y(t) be a nonoscillatory solution of (2.2c), where Lzy is given 
by (2.6). We may assume that y(t) > 0 and y(g(t)) > 0 for t > t0 > a. Hence 
L{y(t) > 0 for t > t1 > t0, i = 0,1,3, in view of Lemma 2.3. We claim that 
L2y(t) > 0, t > tx. If not, L2y(t) < 0, t > tx, by Lemma 2.3. From (2.2c) we 
get, for t >t1, 

(L2y(t))' = r3(<) \p(t)\ r0(g(t))L0y(g(t)) . 
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Further, (L0y(t)) =r1(t)L1y(t) implies that 

9(t) 

J ri(s)Liy(s) ds < L0y(g(t)) < L0y(t), 

g(g(t)) 

for t >t2 > t j , that is, 

9(t) 

L0y(t) > LlУ(g(t)) I rľ(s)ds 

g(g(t)) 

>I1y(5(ť))[iž1(ý(ť))-JR1(5(5(ť)))'| 

for t >t2. Thus, for t > ts > t2, we have 

(L2y(t))' > r3(ť) \p(t)\r0(g(t))Liy(g(g(t))) k(í?(<7<j))) - Rl(9(9(9^)))) 

On the other hand, (Liy(t)) = r2(t)L2y(t) implies that 

g-\t) 

-LlV(t) < Liy(g-l(t)) - LlV(t) = J r2(s)L2y(s) ds 

(3.2) 

<L. 

9~Чt) 

•ШЧt)) f r2(s)ds 

<L2y(g-1(t))[R2(g-1(t))-R2(t)} 

for t >t1, that is, 

LlV(g(t)) > -L2V(t)[R2(t) - R2(g(t))] 

for t > t4 > t3. Thus, for t > t5 > t4, we have 

Liy(g(g(t))) > -L2V(g(t)) [R2(g(t)) - R2(g(g(t)))] . (3.3) 

Hence (3.2) and (3.3) yield 

(L2y(t))' > -r3(t) \p(t)\r0(g(t))L2y(g(t)) [i2. ((/(»(<))) - R1(g(g(g(t)))) 

R2(g(t))-R2(g(g(t))) 

Consequently, L2y(t) < 0 is a solution of (3.1), a contradiction which completes 
the proof of the theorem. • 
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oo 
COROLLARY 3.2. Let the conditions of Theorem 3.1 hold. If f p(t) dt = - c o , 

a 

where pit) — c(t) expf f a(s) ds), then (1.1) has property (B). 
a 

This follows from Theorems 2.12 and 3.1. 

Remark. It is well known (see [5; p. 46]) that if g(t) < t and 

t 

liminf / F(s) ds > -, 
t->oo J e 

9(t) 

then (3.1) has no eventually negative solutions. 

THEOREM 3.3. Suppose that (2.10) holds and g e C 1 ^ , oo),R) such that 
g'(t) >0fort>a.lf 

z'(t) + F(t)z(g(t))>0 

does not admit eventually negative solutions, that (2.2c) has property (B'), where 
L3y is given by (2.7) and 

(3.4) 
F(t) = -r3(<)p(*)r0(.?(0)pi(ff(fl(0)) -RMs(9(t)))) 

x'R2(g(t))-R2(g(g(t))) 

and 
t 

R{(t) = f r{(s) ds , 2 = 1,2. 

The proof is similar to that of Theorem 3.1 and hence is omitted. 

COROLLARY 3.4. Let (2.10) hold, 0 < lim fx(t) and g e Cl([a, oo),R) such 
t—>oo 

that g'(t) > 0 and g(t) <t. If 
t 

liminf / F(s) ds > 1/e. 
ť->oo J 

g(t) 

where F is given by (3.4); then (1.1) has property (B). 

This follows from Theorems 2.14 and 3.3. 
In [2], D z u r i n a obtained the following results. 

329 



N. PARHI — SESHADEV PADHI 

THEOREM 3.5. (see [2; Corollary 1]) Let r G C([er,oo),M) such that r(t) > t 
and w(t) = g{r(t)) <t. If either 

t 

liminf / Q(s) ds > 1/e. 
í-»oo J w(t) 

or 
t 

limsup / Q(s) ds > 1, 
t—>00 J 

w(t) 

then (2.2c) has property (B'), where 

T(t) 

Q(t) = -r2(t) f rs(s)p(s)r0(g(s))(R1(g(s)) - R^t,)) ds 

t 

for sufficiently large t with g(t) > tx. 

THEOREM 3.6. (see [2; Corollary 3]) Let T G C([<T, OO),R) such that r(t) > t 
and w(t) = g(T(t)) <t. If either 

w(t) 
OГ 

t 

г 

liminf / Q(s) ds > 1/e, 
ť—юo J 

limsup / Q(s) ds > 1, 
t->oo J 

w(t) 

then (2.2c) has property (B'), where 

r(t) 

QH) = - r 2 ( í ) j r3{s)p{s)r0{g{s))RMs)) <-* • 

Remark. We note that in above theorems g(t) < w(t) < t. Further, D zu r i-
na ' s theorems cannot be applied to the following example whereas Corollary 3.4 
can be applied. 

EXAMPLE 4. Consider 

y'"(t) - 128-Ј- (í/2) = 0, t > 1. (3.5) 
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Here the associated second order equation is given by v" = 0 and r0(t) = 
rx(t) = r2(t) = rs(t) = 1. Further, g(t) = t/2 implies that g(g(t)) = t/4 
and g(g(g(t))) = t/8. Thus R^t) = R2(t) = t - 1, F(t) = \/t and hence 

t 
liminf f F(s) ds = 4log2 > 1/e. From Corollary 3.4 it follows that (3.5) has 

i->oo t/2 

property (B). However, neither Theorem 3.5 nor Theorem 3.6 can be applied to 
(3.5) because choosing r(t) = t + 1, we notice that w(t) = ^ < t, 

ť+i t + i t-ł-l t-г-

Q(t) = 128 j ^ ( | - l ) ds - 128.Ä1(Í1) j 
8° 

t 

and 

Hence 

t + i 

Q(t) = 128 I £(Ş-l)_s . 

t 

t t lim / Q(s) ds = 0 and lim / Q(s) ds = 0. 
t-*oo J t-»oc J 

(*+l)/2 (*+l)/2 

We may note that the canonical form of (3.5) is (3.5) itself. 

D z u r i n a ' s theorems and our Corollary 3.2 apply to the following example: 

EXAMPLE 5. Consider 

y'"(t) - y'(t) - 6 e* y(t/2) = 0, t > 0. (3.6) 

The equation v" - v = 0 admits a solution v(t) = e1 satisfying (2.5). In this 
case f1 (t) := I e

_ t and hence 

00 

Iřг(t) dí = | < 00. 

Further, rQ(f) = Ie-t = r ^ an^ r j(f) = 2e* = r2(t). Clearly, g(t) = t/2 
implies that g(g(t)) = t/4 and g(g(g(t))) = t/8. Hence R1(g(g(t))) -
RMMt)))) = 2(e t /4- e*/ 8 ) , R2(g(t)) - R2(g(g(t))) = 2(e'/2-e*/4) and 
F(t) = 6(e*/4 + e-t/s _ x _ et/»). T h u s 

t 

J F(s) ds = 6e'/8(4e4 /8 -12 - | * e - " 8 ) - 6(8 e"^8 - S e " ' / 1 6 ) . 
t/2 
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Consequently, 

t 

liminf / F(s) ds > 1/e . 
t-»oo J 

t/2 

Since all the conditions of Corollary 3.2 are satisfied, then (3.6) has property (B). 
It is easy to see that all the conditions of Theorems 3.5 and 3.6 are satisfied. 
Clearly, y(t) = e2t is a solution of (3.6) with y'(t) > 0, y"(t) > 0 and y"'(t) > 0. 
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