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THE WEAK SUBALGEBRA LATTICE 
OF A UNARY PARTIAL ALGEBRA 

OF A GIVEN INFINITE UNARY TYPE 

KONRÁD P l Ó R O 

(Communicated by Pavol Zlatoš) 

ABSTRACT. In the present paper we characterize the weak subalgebra lattice 
of a unary partial algebra of a given infinite unary type. This lattice satisfies 
the conditions from [BARTOL, W.: Weak subalgebra lattices, Comment . Math. 
Univ. Carolin. 3 1 (1990), 405-410] and moreover, there exists an algebraic closure 
operator on the set of all a toms of this lattice which satisfies one special condition 
concerning its join-irreducible elements. Such characterization for finite unary 
types was given in the previous part [PIORO, K.: The weak subalgebra lattice of 
a unary partial algebra of a given finite unary type, Acta Sci. Math. 65 (1999), 
439-460]. 

In [PIORO, K.: On some non-obvious connections between graphs and unary 
partial algebras, Czechoslovak Math. J. 50(125) (2000), 295-320] we reduced 
our algebraic problem for infinite unary types to a graph question: Let G be a 
graph (which may have infinite sets of vertices and edges) and let n be an infinite 
cardinal number: when can edges of G be directed so tha t at most n directed 
edges start from every vertex? In this paper we first solve this graph problem 
and hence we easily obtain a solution of our algebraic problem for infinite unary 
types. 

Universal algebra is quite rich in papers which investigate connections be
tween a (total) algebra and its lattice of (also total) subalgebras (see e.g. [Jon] 
or [Gra]). For example, the full characterization of the subalgebra lattice of a 
(total) algebra is in [BiFr]. Moreover, [JoSe] (see also [Jon]) contains a charac
terization of the subalgebra lattice of a unary (total) algebra of a given unary 
type. Recall that such a characterization for arbitrary algebras (not only unary) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 08A30, 08A55, 08A60; Secondary 
05C20, 05C90, 06D05. 
K e y w o r d s : weak subalgebra, weak subalgebra lattice, unary algebra, partial algebra, graph. 

25 



KONRAD PIORO 

of a given type is an important problem of universal algebra (see [Jon]), which 
is not completely solved yet. 

In the theory of partial algebras a few different lattices of subalgebras can 
be considered for an arbitrary algebra and of course investigations of subalgebra 
lattices are also its important part (see e.g. [BRR] or [Bur]). For example, [Bar] 
contains a complete characterization of the weak subalgebra lattice of a partial 
algebra (in particular also of a unary partial algebra). In the present paper and 
in the previous part [Pi62] we characterize the weak subalgebra lattice of a unary 
partial algebra of a given unary type. In other words, for a given unary type we 
describe all lattices L for which there exists a unary partial algebra of this unary 
type such that its weak subalgebra lattice is isomorphic to L. Recall that we 
reduced in [Piol] this algebraic problem to the following graph question: Let 
G be a graph and let 77 be a cardinal number. When (necessary and sufficient 
conditions) is there a directed graph D of type 77 (i.e. at most r) directed edges 
start from every vertex of D ) such that the graph obtained from D by omitting 
the orientation of all edges is isomorphic to G ? 

The above graph problem for finite types of directed graphs (i.e. 77 is a natural 
number) was solved in the previous part [Pi62]. Hence we obtained the solution 
of our algebraic problem for finite unary types. 

In the present paper we solve this graph problem for infinite types of directed 
graphs (i.e. 77 is an infinite cardinal number) and in this way we obtain the 
solution of our algebraic problem for infinite unary types. More precisely, we 
prove that for a graph G and an infinite cardinal number 77 the desired directed 
graph exists if and only if there exists an algebraic closure operator on the set 
of all vertices of G which satisfies one special condition concerning its edges. 
From this result we obtain that a lattice L is isomorphic to the weak subalgebra 
lattice of a unary partial algebra of a given infinite unary type K if and only 
if L satisfies the conditions from [Bar] and moreover, there exists an algebraic 
closure operator on the set of all atoms of L which satisfies one special condition 
concerning its join-irreducible elements. 

We assume knowledge of basic concepts and facts from the theory of partial 
and total algebras, and also from lattice theory (see e.g. [Bur], [BRR], [Gra] and 
[Jon]). In the whole paper the cardinality of a set A is denoted by \A\, N is the 
set of all non-negative integers and N0 is the infinite countable cardinal num
ber, i.e. K0 = |N|. Further, ~ denotes simultaneously isomorphism of algebras, 
lattices, graphs, etc. Moreover, -f and • denote, in general, the addition and the 
multiplication of arbitrary (not only finite) cardinal numbers. 

For an arbitrary cardinal number 77 and n £ N, 770 := 77 and 77n+1 is the 
least cardinal number greater that r\n. 

Recall that a type of an algebra is a pair (if, K) , where if is a set (its elements 
will be called operation symbols) and K is a map of K into N (called the arity 
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function). A type (K,K) is unary if and only if n(K) C {1}. Observe that a 
unary type (K, K) can be identified with the set K. We say that a unary type 
K is finite (infinite) if and only if i f is a finite (infinite) set. 

A unary partial algebra of a unary type K is an algebra A = (A, (kA)keK) 
such that for all k G K, kA is a partial function from A to A. Let A and B 
be unary partial algebras of the same unary type A". Recall that B is a weak 
subalgebra of A ( B <w A ) if and only if B C A and kB C kA for each k G K. 
The set SW(A) of all weak subalgebras of the algebra A with the relation <w 

forms a complete, and also algebraic, lattice S l u(A) = (Sw(A), <w). 

In this paper we will use some connections between graphs and unary partial 
algebras from [Piol]. Recall (see e.g. [Ber]) that an (undirected) graph G = 
(VG,EG.IG) is a triplet such that VG and EG are sets of vertices and edges 
respectively, and IG is a function of EG into the set {{L\ w} : v, w G VG} of all 

undirected pairs. A digraph (directed graph) G = (VG , EG, IG) is a triplet such 
that VG and EG are sets of vertices and edges respectively, and IG = (IG,IG) 
is a function of EG into the product VG x VG. Note that we admit loops and 
multiple edges, similarly as in [Ber]. On the other hand, only finite graphs (i.e. 
with finitely many vertices and edges) are considered in [Ber], but in the present 
paper we need infinite graphs and digraphs, and therefore we do not restrict the 
cardinality of vertex and edge sets. 

Observe that with any digraph G we can associate the graph G* by omitting 
the orientation of all edges, i.e. 

VG* := VG , EG* := EG and JG* (e) := {IG(e), IG(e)} for all e G EG . 

Let G and H be digraphs (graphs). Then H is a weak subdigraph (subgraph) 
of G ( H <w G ) if and only if VH C VG, EH C EG, IH C IG. H is a 
relative subdigraph (subgraph) of G ( H < r G ) if and only if H < w G and 
for every e G EG, if IG(e) G VH x VH (IG(e) C VH), then e G EH. We 
proved in [Piol] that for every digraph (graph) G , the set SW(G) of all weak 
subdigraphs (subgraphs) of G with the relation < ^ forms an algebraic lattice 
S„(6)-(5B(G),<J. 

Let G be a digraph. Then for every v G VG we define the set of edges: 
EG(v) := {e G EG : v = IG(e)}, and the cardinal number: sG(v) := \EG(v)\. 

Let G be a digraph and let rj be a cardinal number. We say that G is of 
type 77 if and only if sG(v) < rj for all v G VG. 

Let L = (L, <L) be an arbitrary lattice, recall (see e.g. [CrDi] or [Jon]) that 
an element / G L is join-irreducible if and only if for every &-_, k2 G L, / = kx Vk2 

implies I = kr or / = k2. We will use the notation: At(L) is the set of all atoms 
of L, Ir(L) is the set of all non-zero and non-atomic join-irreducible elements 
of L and for every i G L, At(i) := {a G At(L) : a <L i}. 
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Recall that a complete characterization of the weak subalgebra lattice of a 
unary partial algebra is given in [Bar]. More precisely, the following result was 
proved in [Bar] ((a) «=[> (c)) and [Piol] ((a) <=» (b)): 

THEOREM 1.1. Let L = (L,<L) be an arbitrary lattice. Then the following 
conditions are equivalent: 

(a) There is a unary partial algebra A such that S^(A) ~ L . 
(b) There is a digraph G such that S^(G) ~ L . 
(c) L satisfies the following four conditions: 

(c.l) L is algebraic and distributive, 
(c.2) every element is a join of join-irreducible elements, 
(c.3) for every i e I r(L). 1 < | At(i)| < 2, 
(c.4) Ir(L) is an antichain with respect to the lattice ordering <L . 

Recall (see [Piol]) that with every lattice L which satisfies (c . l ) -(c .4) of 
Theorem 1.1 we can associate the graph G(L) as follows: 

yG(L) ._ A t ( L ) ^ EG(L) ._ j r ( L ) a n d /G (L ) ( e ) .- A t ( e ) for a l l g e EG(L) 

Moreover, the following result, which is a basis to investigate our algebraic prob
lem, was proved in [Piol]: 

THEOREM 1.2. Let a lattice L satisfy (c.l) -(c.4) of Theorem 1.1 and let K 
be a unary type. Then there is a unary partial algebra A of type K such that 
SW(A) ~ L if and only if there is a digraph D of type \K\ such that D* ~ G ( L ) . 

The above theorem reduces our algebraic problem for infinite unary types to 
the following graph question: Let G be a graph and let rj be an infinite cardinal 
number. When (necessary and sufficient conditions) is there a digraph D of the 
infinite type rj such that D* ~ G ? 

In the sequel we will use the following definition from [Pi62] to simplify for
mulations and proofs of the results in this paper. 

DEFINITION 1.3. Let G be a graph and let rj be a cardinal number. We say 
that G can be directed in the type rj if and only if there exists a digraph D of 
type r) such that D* = G . 

It is easy to verify (see [Pi62]) that the following fact holds: 

PROPOSITION 1.4. Let rj be a cardinal number and let G be a graph which 
can be directed in the type rj. Then every weak subgraph H <u G can be also 
directed in the type rj. 

It is not difficult to see that for a given cardinal number rj there are graphs 
which cannot be directed in the type rj. For example, let G be a graph with 
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exactly one vertex and more than rj loops. Then it is trivial that G cannot be 
directed in the type rj. 

It easily follows from the above example that for a unary type K there are 
lattices L which satisfy ( c l ) - (c.4) of Theorem 1.1, but there is no unary partial 
algebra of type K such that its weak subalgebra lattice is isomorphic to L . For 
instance, let L := {0} U {C C B U {b} : b G C}, where 5 is a set such that 
\B\ > \K\ and b £ B. It is trivial that L with set-inclusion C forms a complete 
lattice L which is a complete sublattice of the lattice of all subsets of B U {b}. 
Obviously At(L) = {{b}} and Ir(L) = {{b,c} : c G B}. These facts imply 
first that L satisfies ( c l ) - ( c . 4 ) of Theorem 1.1, and secondly, G(L) contains 
exactly one vertex and |Ir(L)| ( = |F?| > \K\) loops. Thus G(L) cannot be 
directed in the type |7^|. Hence and by Theorem 1.2, there is no unary partial 
algebra A of type K such that SW(A) ~ L. 

In the previous section we have reduced our algebraic problem for infinite 
unary types to the following graph question: Let G be a graph and let 77 be 
an infinite cardinal number (i.e. 77 > N0). When (necessary and sufficient condi
tions) can G be directed in the infinite type 77? 

In this section we first show that if G contains at most r\x vertices and 
between every two vertices there are at most 77 edges, then G can be directed 
in the infinite type 77. 

Next we translate this result into the lattice language to obtain an analogous 
result for arbitrary lattices and infinite unary types. More formally, for every 
infinite unary type K and a lattice L, if L satisfies ( c l ) - ( c . 4 ) of Theorem 1.1 
and contains at most \K\X atoms and for each two atoms there are at most |i\T| 
join-irreducible elements which contain these two atoms, then L is isomorphic 
to the weak subalgebra lattice of some unary partial algebra of type K. 

In the second part of this section we prove that if a graph G can be directed 
in an infinite type 77, then there exists an algebraic closure operator on the 
vertex set VG which satisfies also one special condition concerning its edges. In 
the subsequent section we prove that this is also a necessary condition, but the 
proof of this result will be more complicated. 

At the beginning we formulate a few simple facts. We need the following 
notation: Let G be a graph and v:w G VG, then 

EG(v,w) := {eG EG : IG(e) = {v, w}} and sG(v,w) := \EG(v, w)\. 
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PROPOSITION 2 . 1 . Let rj be an infinite cardinal number and let G be a graph 
which can be directed in the infinite type rj. Then for every v, w G VG, 

sG(v,w) < rj. 

P r o o f . Let D be a graph of the type rj such that D* = G and take 
v, w G VG. Then it is easy to see that EG(v, w) = ED* (v, w) C ED(v)UED(w). 

Hence, sG(v,w) < \ED(v) U ED(w)\ < \ED(v)\ + \ED(w)\ = sD(v) + sD(w) < 
rj -f- rj = rj, because D is of type rj and rj > K0. • 

Now we show that our graph problem "when can a graph be directed in an 
infinite type?" can be reduced to simple graphs. Recall that a graph G is simple 
if and only if it does not contain loops and between every two vertices there 
is at most one edge. The set of all regular edges (loops) of a graph G will be 
denoted by EG

g (EG); recall that e G EG is a regular edge (loop) if and only 
i f | / G ( e ) | = 2 ( | / G ( e ) | = l ) . 

PROPOSITION 2.2. Let rj be an infinite cardinal number and let a graph G 
and a simple graph H satisfy the following conditions: 

(*) H <w G and VH = VG . 
(**) For every v,w G VG, sG(v,w) < rj. 

(***) For all v,w G VG with v ^ w, sH(v.w) = 0 if and only if sG(v,w) = 0. 

Then the following two conditions are equivalent: 

(a) G can be directed in the infinite type rj. 
(b) H can be directed in the infinite type rj. 

Remark. Note that by virtue of the axiom of choice for every graph G there 
is a simple graph H which satisfies (*) and (***) of Proposition 2.2. 

P r o o f . By Proposition 1.4 and (*) we have the implication (a) ==> (b). 
(b) => (a): Let M be a digraph of type rj such that M* = H . Since H 

is a simple graph, we have from (***) that for every / G EG there is exactly 
one ef G EH

g such that IG(f) = IH(ef) = IM* (ef) = {lM(ef),I
M(ef)} . 

Now we must only direct each / G EG according to ef in the digraph M , 
because every loop / G EG can be of course considered as a directed edge. 
More formally, let D be the digraph such that VD := VG, ED := EG and 
/ » ( / ) := IM(ef) for / G EG

g and {lD(/)} = {lD(/)} = IG(f) for / G EG. 
It is trivial that D* = G . so we must only show that D is of type 77. Let 

v G VD = VG. Then it is easily shown that 

E?(v) = ( J {/ G EG
g : IG(f) = IG(e)} U {/ 6 EG : IG(f) = {v}} . 

e£E**{v) 
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Moreover, by (**) 

| { / 6 EG
g : IG(f) = IG(e)}\ = sG(lG(e)) < r, for all e € EM . 

Since M is a digraph of type rj, we obtain from the above two facts that 

sD(v):=\E?(v)\ = \ ( J {feEG
g: IG(f) = IG(e)}\+sG(v,v) 

< \EM(v)\-rj + rj<rj-rj + rj = rj. 

Hence, D is of type rj. 

Thus we have shown that G can be directed in the infinite type 77, which 
completes the proof of the implication (b) => (a) . • 

PROPOSITION 2.3. Let a graph G and an infinite cardinal number rj satisfy 
the following conditions: 

\VG\ < rj and sG(v, w) < rj for every v, w G VG . 

Then G can be directed in the infinite type rj. 

P r o o f . First, the cardinality of {{v, w} : v, w G VG} is not greater than 
77, since rj > N0. Secondly, we have obviously that EG = IJ EG(v,w). Thus 

v,w£VG 

EG is the sum of at most rj sets and each of them has a cardinality not greater 
than rj. Hence, \EG\ < 77, because rj > N0. 

Now we must only take an arbitrary digraph D such that D* = G (it is 
enough to apply the axiom of choice and arbitrarily direct all edges of G ) , It is 
trivial that D is of type 77, since sD(v) < \ED\ = \EG\ < rj for v G VG. • 

Now we prove a stronger version of the above result. More precisely, it is 
enough to assume in Proposition 2.3 that \VG\ < rjx instead of |V G | < rj. At 
the end of this paper we will show that for every infinite cardinal number there 
are simple graphs which cannot be directed in this type. Thus a result stronger 
than the theorem below does not hold. 

THEOREM 2.4. Let a graph G and an infinite cardinal number rj satisfy the 
following conditions: 

(*) WGi<^-
(**) For every v,w G VG, sG(v,w) < rj. 

Then G can be directed in the infinite type rj. 

P r o o f . By virtue of Proposition 2.3 we can of course assume that \VG\ — rj1. 
Thus, applying Zermelo's Theorem and the definitions of ordinal and cardinal 
numbers, we can put all vertices of G in a transfinite and injective sequence 
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(va)a<m
 o f o r d e r tyPe Vi> i e - VG = {va : a < r]i} and va ^ v$ for all 

a < P <r]l. 
Now let us define the following sets of edges: 

Ea := ( J EG(v^va) for every £*<?/-_. 
7<« 

Take a < ^ and observe first that from (**) we have the following inequalities: 
\Ea\ < J2 sG(v , va) < \{j : 7 < a } | -77. Secondly, from the well-known results 

7<« 
of Set Theory we have |{7 : 7 < a}\ < a < r]x, so |{7 : 7 < a } | < 77 by the 
definition of r]x. These two facts imply \Ea\ < 77 • 77 = 77, because 77 > N0. Thus 
we have shown the inequality 

\Ea\<r] for each a < r]x. (1) 

Now let D be the digraph such that VD := VG = {va : a < 77-}, £ D := EG 

and for every e G 2?D , ID(e) := (va,Vp), where {^a, i;^} = IG(e) and (3 < a. 
Then it is obvious that D* = G . Moreover, it is easy to see that 

ED(va) =Eau{eeEG : IG(e) = {uQ}} for each a < r/1 , 

so 
sD(va)<\EQ\+sG(va,va). 

This and (1) and (**) imply sD(va) < r] + r] = 77 for every a < r]x, because 
77 > tt0. Hence, sD(v) < 77 for all v G V ^ . Thus the digraph D is of the type 
77, which completes our proof. • 

Now we translate the results obtained for graphs into the lattice language to 
get some results about the weak subalgebra lattice of a unary partial algebra of 
an infinite unary type. 

PROPOSITION 2.5. Let K be an infinite unary algebraic type and let a lattice 
L be isomorphic to the weak subalgebra lattice of some unary partial algebra of 
the unary type K. Then for every a,b G At(L), 

| { z G l r ( L ) : At(i) = {a: b}}\ < \K\. 

P r o o f . By Theorem 1.2, G(L) can be directed in the type \K\. Moreover. 
it is obvious that sG^(a, b) = \{i G Ir(L) : At(i) = {a, b}}\ for every a,b e 
yG(L) _ At(L). These two facts and Proposition 2.1 imply our proposition. • 

PROPOSITION 2.6. Let K be an infinite unary algebraic type and let lattices 
L x . L2 satisfy (c.l) -(c.4) of Theorem 1.1 with L2 a complete sublattice of L x . 
Moreover, let K, Lx and L2 satisfy the following conditions: 

(*) A t ( L 2 ) = A t ( L 1 ) and Ir(L2) C l r ^ ) . 
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(**) For every a, b £ At(L x ) , 

| { i € l r ( L i ) 
|{* '€lr(L 2 ) 
| { i € l r ( L 2 ) 

At(j) = {a,ò}} 

At(г) = {a,6}} 
<\K\, 

< 1, 
At(») = { a } } | = 0 . 

(***) For every a, b £ At(Lx) with a^b, 

{ i G M L J : At(i) = {a,6}} = 0 *=> {i E Ir(L2) : At(i) = {a, 6}} = 0 . 

Then the following conditions are equivalent: 

(a) There is a unary partial algebra A of type K such that SllfJ(A) ~ L x . 
(b) There is a unary partial algebra A of type K such that SW(A) ~ L2 . 

P r o o f . It is easy to see that G(L2) is a simple graph and that the graphs 
G(LX) and G(L2) satisfy (*) — (***) of Proposition 2.2. Thus G(LX) can be 
directed in the type \K\ if and only if G(L 2 ) can be directed in the type \K\. 
Hence and from Theorem 1.2 we get the desired equivalence (a) <=> (b) . • 

Now we translate Theorem 2.4 into the lattice language to obtain that for each 
infinite unary type K, if a lattice L, which satisfies (c . l ) -(c .4) of Theorem 1.1, 
has a relatively small (with respect to the cardinal number \K\) set of atoms 
At(L), then there is a unary partial algebra A of type K such that Slw(A) ~ L. 

THEOREM 2.7. Let K be an infinite unary algebraic type and let L be a lattice 
which satisfies (c.l) -(c.4) of Theorem 1.1. Moreover, let K and L satisfy the 
following conditions: 

(*) |At(L)|<|*V 
(**) For every a , b £ At(L), | { i € l r ( L ) : At(i) = {a,b}}| < \K\. 

Then there is a unary partial algebra A of type K such that S^(A) ~ L . 

P r o o f . By the definition of G(L) , G(L) and |JRT| satisfy (*) — (***) of 
Proposition 2.4. Thus G(L) can be directed in the type \K\. Hence and by 
Theorem 1.2 there is a desired unary partial algebra of type K. • 

Now we give a necessary condition for graphs which can be directed in an 
infinite type. To this purpose we first recall a few useful notations. For an ar
bitrary set A, P{A) is the family of all subsets of A. A system B C P(A) is 
a directed family of sets if and only if for each Bl,B2 E B there is Bz E B 
such that B1U B2 C B3. Recall that a function CA: P(A) —•> P(A) is a closure 
operator if and only if for all B E P (A) , B C CA(B), CA(CA(B)) = CA(B) 
and for each B^B2 E P(A), Bx C B2 implies CA(BX) C CA(B2). A closure 
operator CA is algebraic if and only if for each directed family B C P{A), 
CX({JB)=\J{CA(B): BGB}. 

Let D be a digraph and let r = (f1 , fn) be a sequence of edges. Then r 
is a chain in D if and only if I^Ud = IiD(/i+i) for i = 1 , . . . , n - 1. Further, 
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r is said to be a chain from a subset W C VD to a vertex v G VD if and only 
if ID(fx)eW and ID(fn)= v. 

DEFINITION 2.8. For each digraph D , let CD\ P(VD) -» P(VD) be the 
following function: 

CD(W) = IV U {> G VD : there is a chain from TV to v} for each IV C VD. 

PROPOSITION 2.9. Le£ D be a digraph. Then CD is a closure operator such 
that 

CD(UW) =\J{CD(W)
 : W G M for every >V C P ( V ^ ) ; 

hence, CD is an algebraic closure operator. 

P r o o f . It is trivial that CD satisfies the required equality and two con
ditions from the definition of closure operators. Thus we must only show the 
equality CD(W) = CD(CD(W)) for W C VD. The inclusion C is trivial. Now 
let v G CD(CD(W)). We can of course assume that there is a chain ( / 1 ? . . . , fn) 
from CD(W) to v, because otherwise v G CD(W). Then ID(fx) G TV or there 
is a chain ( e l 7 . . . , e m ) from TV to I^(fi), since Ii(fx) G CD(W). Hence, 
v G CD(W) (in the first case (f1,...,fn) connects TV and v, in the second 
(e1,..., em , /-_,. . . , / n ) is a chain from TV to v). Thus we have shown the inclu
sion D. D 

LEMMA 2.10. Let D be a digraph of a type n and W C VD. Then 

\CD(W)\<m^x{^^\W\}. 

P r o o f . We first show that 

CD(W)= (jXn, (1) 
nE/V 

where XQ := TV and X n + 1 := {lD(e) : e G ED , / f (e) G -Xn} for all n G N. 
C : Let v G CD(TV). We can of course assume that v £ TV. Then there is a 

chain ( / x , . . . , fm) from TV to v. By simple induction on 1 < i < m we infer 
that Ii(fi) G -Y f -1 for i = 1, . . . , r a , because I^tfi) G TV = X 0 . Hence in 

particular, / f (/m)~€ X m _ 1 , s o t ; = / f ( /m) G X m C U -V„-
ne/v 

D : By simple induction on n G N and the definition of CD we easily get 
the inclusion Xn C C^(TV) for n G N, because X 0 = TV C CD(W). Hence, 
U XnCCD(W). 

n£N 

Secondly, we prove the following inequality (where r :— max{K0,77, |TV|}): 

\Xn\<r for all n e N . (2) 
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Induction on n: If n = 0, then \X0\ = \W\<T. NOW let n > 0 and let us assume 
that \X„\ < r. Observe first that |Xn + 1 | = J{J.f (e) : e € ED , ID(e) G Xn}\ < 

\{eeED: ID(e) G X n } | = I \J ED(v)\. Secondly, \ED(v)\ = sD(v) < n < r 
' v£Xn 

for v e VD, because D is of the type rj. Hence and by induction hypothesis, 
|Xn + 1 | = U E?(v)\ < T - T = T, since r > K0. This completes the proof of 

1 veXn s ' 
the induction step. 

By (1) and (2), \CD(W)\ = I [J Xn\<K0-T = r = max{K0,V,\W\}. • 
1 n€N ' 

In the next result and also in the subsequent section we will need the following 
notation: 

DEFINITION 2.11. Let G be a graph and v e VG. Then 

VG(v) := {w eVG : (w ^ v) k (3 e G EG) (lG(e) = {v, w})} . 

LEMMA 2.11. Let rj be a cardinal number and let D be a digraph of type rj 
and let W C VD . Then 

\VDm(v)nCD(W)\<ri for all veVD\CD(W). 

P r o o f . Let v eVD\ CD(W). It is trivial that 

VD\v) = {ID(e): e e ^ g , ID(e) = v} U {lD(e) : eeED
gl I?(e) = v} 

C{lD(e): eeED(v)}u{lD(e): e e ED, I?(e) = v). 

Now let us assume that there is an / e ED such that ID(f) G CD(W) and 
ID(f) = v. Then the one-element sequence (/) is a chain from CD(W) to v. 
Hence, v G CD(CD(W)) = CD(W) by Proposition 2.9. But this is impossible, so 

{/fte): eeED , ID(e) = v} HCD(W) = 0. 

The above two facts imply 

VD'(v) nCD(W) C {lD(e) : e G ED(v)}nCD{W) . 

Hence, 

\VD'(v) nCD(W)\ < \{ID(e) : e G ED(v)}\ < \ED(v)\ = sD(v) <V, 

because D is of type 77. • 

Now we can give a necessary condition for graphs which can be directed in a 
given infinite type 77. 
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PROPOSITION 2.13. Let 77 be an infinite cardinal number and let G be a 
graph which can be directed in the infinite type 77. Then there exists a closure 
operator CG: P(VG) -> P(VG) such that 

(a) CG(U>V) = \J{CG(W) : W eW} for every family W C P(VG) 
(in particular, CG is algebraic). 

(b) For every W G P(VG), 

\CG(W)\<max{ri,\W\}, 

\VG(v)nCG(W)\<r] for all v G VG \CG(W). 

P r o o f . Let D be a digraph of type 77 such that D* = G and take the 
function CG: P(VG) -> P(VG) such that CG := CD, i.e. for each W G P(VG), 

CG(W) := W U {v G VG : there is a chain in D from W to v} . 

Then by Proposition 2.9, Lemma 2.10 and Lemma 2.12, CG is the desired closure 
operator. • 

In this section we completely characterize all graphs which can be directed in 
a given infinite type. More precisely, we prove that the necessary conditions in 
Proposition 2.13 are also sufficient, and moreover, wTe show that the condition (b) 
of Proposition 2.13 can be replaced by a weaker one. In other words, we prove 
that a graph G can be directed in an infinite type 77 if and only if there exists an 
algebraic closure operator CG on the set VG such that |CG(TV)| < m.ax{rj1, \W\} 
and \VG(v) n CG(W)\ < 77 for all W C VG and v G VG \ CG(W). 

Next we apply the obtained results on graphs and Theorem 1.2 to formulate 
an algebraic characterization of the weak subalgebra lattice of an arbitrary unary 
partial algebra of a given infinite unary type. 

The proof of our main result for graphs is divided into several steps, i.e. wre 
first prove two technical lemmas (in which we use notations from Section 1). 

LEMMA 3 .1. Let an infinite cardinal number 77. a graph G and a transfinite 
sequence (Ga)a<c of relative subgraphs of G (Of order type £) satisfy the fol
lowing conditions: 

(*) For all v,w G VG. sG(v,w) < 77. 
(**) For each a < £, 

(1) G a can be directed in the infinite type 77, 

(2) VG(v) n ( IJ VGA < 77 for every v G VGa . 
^ ^ <^ r\ ' V 7 < Q 
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(***) For every a < 0 <£, VGa D VG? = 0. 
(****) yG = U VGa . 

Q<£ 

Then G can be directed in the infinite type rj. 

P r o o f . First, by (**1) there is a transfinite sequence of digraphs (DQ)Q <£ 
(of order type £) such that for every a < £, D* = GQ and D Q is of the type rj. 

Secondly, the conditions (***) and (****) imply that for every e G EG there 
is exactly one (directed) pair (ae,/3e) such that (3e < ae < £, and one endpoint 
vertex of e belongs to VGa^ and the second endpoint vertex of e belongs to 
VG^ , i.e. IG(e) C VGa* U VG^ and IG(e) n VGa* ± 0, IG(e) n VG^ ^ 0. 

Observe that ae ^ /3e for each e G £?G \ U EGa . More precisely, let e G i? G 

Q<£ 

be an edge such that ae = 0€. Then IG(e) C VG«- , so e G F/Ga- C \J EGa , 
Q<£ 

because GQ is a relative subgraph of G . 

Thus we can introduce the following definition: for every e G EG \ \J EGa 

Q<£ 

let v\ and v\ be vertices such that IG(e) = {v\,vl}, v\ G VGa*, v | G "VG/3« 
and Pe < ae. 

Moreover, let D be the digraph such that VD := VG, ED := EG and 
ID | y £ G Q : = ( j /D« a n d jD ( e ) : = ( ^ ^ for a l ] e G £G \ ( j B G Q 

a<£ Q<£ « < 4 

Note that D is indeed a digraph (i.e. ID is a well-defined function), because 
by (***), EGa fl EG* = 0 for all a < p < £. 

Since D* = G* for all a < £, we easily obtain that 

D* = G . 

Thus we must only prove now that D is of type 77. To this purpose let us take 
an arbitrary v G VD = VG. Then by (***) and (****) there is exactly one 
7 < f such that v G VG^ . 

First, we show that 

ED(v) = EDHv)UA7(v), (1) 

where A (v) := ie G EG \ J EGa : v = v\ , v\ G U ^ G Q } • 
^ Q<£ Q<7 

By the definition of D , EG^(v) C £5
G(?;) and ^ ( v ) C EG(v). Hence, the 

inclusion D holds. 
Now let us take an arbitrary e G # f (v). If e G U ^ G Q , t n e n e e E°0 f o r 

Q<£ 

some 0 < £ . Hence, v = ID(e) = I^(e) G VDQ = V°0, so /? = 7 by (***). 
Thus e G ED^(v). If e £ U -^G" > t n e n v = r i • Hence, ae = 7 by (***), so 

Q<£ 
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v% € VGl3e C U VGa , because (3e < ae. Thus e G -4 (*;). These two cases 
a < 7 

complete the proof of the inclusion C. 
Secondlv, we prove that 

l ^ > ) l < r , . (2) 
It is easy to see that A {v) = U E?(v>w)> where B := [j VGa . By the defi-

wGB a < 7 

nition of VG(v) we have also EG(v, w) = 0 for all w <£ VG(v) U {v}. Moreover, 
by (***), B n VG^ = 0, so in particular v £ B. Thus 

A( u )= U E?(*M-
wevG(v)r\B 

This with (*) and (**2) imply 
\A^(v)\ = \VG(v) n B\ • r) = \vG(v) n({JVG°)\-r)<r)-r) = r). 

a < 7 

The above two facts (1) and (2) imply 

8D(v) = \ED(v)\ = \E^(v)UA1.(v)\<8^(v) + \Ay(v)\<r, + V = r]. 

Thus we have shown that D is a digraph of type r). This completes our proof. 

• 
LEMMA 3.2. Let an infinite cardinal number i), a graph G and a transfinite 
sequence (GQ)Q<£ of relative subgraphs of G (of order type £) satisfy the fol
lowing conditions: 

(*) For all v,w e VG, sG(v,w) < r). 
(**) For each a < £, 

(1) GQ can be directed in the infinite type r), 

(2) \vG(v) n ( U VGA\<r) for every veVG°\ [j VG~<. 
' ^ 7 < a ' ' 7 < Q 

(***) vG = u vGa. 
a<£ 

Then G can be directed in the infinite type r). 
P r o o f . For every a < f let Va := VGa \ [j VG^ (of course U VG" = 0> 

7 < a 7<0 

so V0 := VG°) and let HQ be the relative subgraph of G on VGa . 
Then VHa nVH(3 = 0 for every a < /3 < £. It is also trivial that HQ is a weak 

subgraph of GQ for each a < £. Thus by Proposition 1.4 and (**2) we obtain 
that for every a < £, HQ can be directed in the type r\. Thus the transfinite 
sequence (HQ)Q<^ of relative subgraphs of G (of order type £) satisfies (**1) 
and (***) of Lemma 3.1. 
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Now observe that (J VGa = |J VHa for all 7 < £. The inclusion D is 
a<7 a<7 

trivial, because VHa = Va C VGot for each a < 7 . On the other hand, let v E 
( j yGQ Then there is a 0 < 7 such that v £ VGao and v £ VGf3 for (3 < a0, 

a<7 
because {a : a < 7} is a wrell-ordered set. Hence, v G VGao \ | J VG^ = 

/3<a0 

K -=- V ^ o . Thus we obtain the second inclusion C. 
ao — 

By the above fact (for 7 = 0 and (***), 

(J VHa = [\vGa =VG. 
a<f a<£ 

Moreover, this fact and (**2) imply that for every a < £ and for every vertex 
v e vGa \ lj vG-* = yH«, 

7<a 

vG(v)n[(jvH-<)\ = \vG(v)n[ (JvG->)\<ri. 
7<a 7<a 

Thus we have shown that the transfinite sequence ( H Q ) a < ^ of relative subgraphs 
of G (of order type f) satisfies the conditions of Lemma 3.1, so G can be 
directed in the infinite type rj. • 

THEOREM 3.3 . Let rj be an infinite cardinal number and let G be a graph. 
Then the following conditions are equivalent: 

(a) G can be directed in the infinite type rj. 
(b) G is a graph such that: 

(b.l) For all v,w € VG, sG(v,w) < rj. 

(b.2) There exists an algebraic closure operator CG: P(VG) —> P(VG) 
such that for every W C VG: 

\CG(W)\<max{rj7\W\}, 

\VG(v)nCG(W)\<r) for each veVG\CG(W). 

(c) G is a graph such that: 

(c.l) For all v, w e VG, sG(v, w) <rj. 

(c.2) There exists an algebraic closure operator CG: P(VG) -> P(VG) 
such that for every W C VG: 

\VG(v)nCG(W)\ <r] for each v € V° \ CG(W). 
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P r o o f . 
(a) =-> (b) follows from Proposition 2.1 and Proposition 2.13, and 
(b) = > (c) is trivial. 
(c) =t> (a): Let £ := \VG\ (thus £ is an initial ordinal number). We first 

prove that there is a transfinite sequence of sets (Va)a<^ (of order type £) such 
that 

(1) For every a < £, Va C VG, and if £ > ^ , then \Va\ < £. 

(2) For every a < £ and for each veVG\ IJ V1, \vG(v) n ( IJ y \ \ < r). 
7<a ' ^7<a ' 

( 3 ) Y G = U Y « -
a<£ 

Applying Zermelo's Theorem and the definitions of ordinal and cardinal numbers 
we can put all vertices of G in a transfinite and injective sequence (va)a<c 
(of order type £), i.e. VG = {va : a < £} and va 7-= Vp for all a < 13 < £. 

Now for every a < £ let 

Ya=={V7<a} and Va:=Ca{V£. 

We now have |V^| = \{v^ : 7 < a} | = |{7 : 7 < a} | < a < £ for each a < £. 
Moreover, by (c.2), \Va\ = 1^(^)1 < m a x ^ , \Va\} for all a < £. These facts 
imply that if £ > ^ , then | ^ J < £ for each a < £. Thus we have shown (1). 

Now we show (3). Since £ is a limit ordinal number, we have by the definition 
of Va that |J Va = IJ {v : 7 < <*} = {va : a < £} = VG. Moreover, 

a<f a<f 
V£ C FQ for all a < £. Thus IJ ^a = ^ G -

a<£ 
To prove the property (2), observe first that Va C l ^ for all a < /? < £. 

Hence and by the definition of closure operators, Va C Vp for all a < (3 < £. 
Thus the family {Vr

Q}a<^ is a chain with respect to set-inclusion, in particular 
it is a directed family. Hence, since CG is an algebraic closure operator (i.e. CG 

is closed under the union of an arbitrary directed family), we obtain 

CG( U V.) =CG( U CG(K)) = U C G ( W ) ) 
^7<a ^ ^7<a ' 7<a 

= UCG(K)= U F 7 fora11 a < £ -
7<a 7<a 

Hence and from (c.2) we get (2). 
Now we apply transfinite induction on the cardinal number £ := \VG\ to 

prove the implication (c) => (a). 
Basis: if £ < 77̂ , then by (c.l) and Theorem 2.4, G can be directed in the 

type 77. 
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Induction step: Let ( > Vi a n d assume that for every graph H , if H satisfies 
(c.l), (c.2) (with insert H instead of G ) and \VH\ < £, then H can be directed 
in the type rj. 

Now take an arbitrary H <w G . It is a well-known fact that the function 
CH: P(VH) -> P(VH) such that CH(W) := CG(W) n VH for all W C VH is 
an algebraic closure operator on VH. Observe also that for every W C VH and 
veVH\ CH(W) = VH \ CG(W) we have 

\CH(W)\ = \CG(W) nVH\< \CG(W)\ < m a x j ^ , \W\} 

and 

\vH(v) n cH(W)\ = \vH(v) n cG(W) n vH\ 
<\vH(v)nCG(W)\ 
<|rG(^)ncG(Tr)|<rl, 

because VH(v) C VG(v). 
Thus we have shown that H satisfies (c.2). Since H is a weak subgraph of 

G , H satisfies (c.l). Hence and by induction hypothesis, for every H <w G , if 
\VH\ < £> then H can be directed in the type rj. 

Now for each a < £ let H a be the relative subgraph of G such that VHa = 

Va.i.e. EH« = {eeEG : IG(e)CVa}. 
Since £ > rj1, we have by (1) and the above fact that H a can be directed 

in the type 77 for each a < £. Hence and by (2) and (3), and also by (*), the 
transfinite sequence ( H a ) a < ^ satisfies (*), (**), (***) of Lemma 3.2. Thus G 
can be directed in the infinite type 77, which completes the proof of the induction 
step. This and the theorem of transfinite induction prove (c) => (a). • 

Now we show that the necessary condition of Proposition 2.1 for infinite types 
is not sufficient. In other words, for a given infinite type there are a lot of simple 
graphs which cannot be directed in this type. 

We also show that for infinite types there is no characterization as simple as 
in the case of finite types (see [Pi62]). More precisely, for each infinite type there 
is a simple graph G which cannot be directed in this type, even if each weak 
subgraph H of G with \VH\ < \VG\ can be directed in this type. 

EXAMPLE 1. Let 77 be an infinite cardinal number and let G be a clique, i.e. a 
simple graph such that between each two different vertices there is exactly one 
edge, and moreover, assume \VG\ > rj2. 

Then of course the necessary condition of Proposition 2.1 for 77 holds. Now we 
show that G cannot be directed in the type 77. Let C be an arbitrary algebraic 
closure operator on VG such that \C(U)\ < m a x ^ , \U\) for each U C VG and 
let IV C VG be a subset such that \W\ = rll. Then \C(W)\ = r]x (since W C 
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C(W)) and VG(v)HC(W)=C(W) for v e VG \C(W). Hence, VG\C(W)^$ 
and \VG(v) n C(TV)| = ^ for ?J G V G \ C(W). Thus C does not satisfy the 
second part of the condition (c.2) of Theorem 3.3, so G cannot be directed in 
the type r]. 

Applying this construction and Proposition 1.4 we can form, for every infinite 
type 77, a lot of different graphs (also simple) which cannot be directed in the type 
77. More precisely, we must only take a graph (a simple graph) which contains a 
graph as in the above example. 

E X A M P L E 2 . Let 77 be an infinite cardinal number and let G be a clique and 
\VG\ = 772. Then by Example 1, G cannot be directed in the infinite type 77. On 
the other hand, let H be an arbitrary weak subgraph of G such that \VH\ < 
\VG\. Then jV^I < ^ by the definition of 772. Hence and by Theorem 2.4, H 
can be directed in the infinite type 77. 

Finally, we apply the above results for graphs to completely characterize the 
weak subalgebra lattice of a unary partial algebra of a given infinite unary type. 
In other words, for a given infinite unary type K we describe all lattices L for 
which there exists a unary partial algebra of the unary type K such that its weak 
subalgebra lattice is isomorphic to L. In the theorem below we use notations 
from Section 1. 

THEOREM 3.4. Let K be an infinite unary algebraic type and let L be a 
lattice which satisfies ( c l ) -(c.4) of Theorem 1.1. Then the following conditions 
are equivalent: 

(a) There is a unary partial algebra A of type K such that S^(A) ~ L . 
(b) L satisfies the following conditions: 

(b.l) For all a , b e A t ( L ) , | { i € l r ( L ) : At(i) = {a,b}}\ < \K\. 
(b.2) There exists an algebraic closure operator CL on At(L) such that 

for every B C At(L), 

|CL(S) |<max{| , fY| , |J5 |}, 

\{beCL(B) : (3ieIr(L))(At(i) = {a,6})}| < \K\ 

for each a e At(L) \ CL(B). 

(c) L satisfies the following conditions: 
( c l ) Foralla.be At(L), | { i e I r ( L ) : At(i) = {a:b}}\ <\K\. 
(c.2) There exists an algebraic closure operator CL on At(L) such that 

for every B C At(L), 

|C L ( .B) |<max{ | i i r | 1 , | 5 | } , 

\{beCL(B) : ( 3 . Glr(X))(At(j) = {a,b})}\ < \K\ 

for each a e At(L) \ CL(B). 

42 



THE WEAK SUBALGEBRA LATTICE OF A UNARY PARTIAL ALGEBRA 

P r o o f . It is easily shown that L satisfies (b) ((c)) if and only if G(L) satis
fies (b) ((c)) of Theorem 3.3. Hence and by Theorem 1.2 we get the equivalences 
(a) <=> (b) <=^ (c), which completes the proof. • 

Now we show that the necessary condition of Proposition 2.5 for infinite unary 
types is not sufficient. In other words, for a given infinite unary type K there are 
a lot of lattices L which satisfy this condition and ( c l ) - ( c . 4 ) of Theorem 1.1 
and for which there is no unary partial algebra A of this unary type K such 
that its weak subalgebra lattice S^(A) is isomorphic to L. 

Moreover, we also show that for infinite unary types there is no characteri
zation as simple as in the case of finite unary types (see [Pi62]). More precisely, 
for every infinite unary type there is a lattice L which satisfies ( c l ) - ( c . 4 ) of 
Theorem 1.1 and for which there is no unary partial algebra of this unary type 
such that its weak subalgebra lattice is isomorphic to L, even if such an algebra 
exists for every complete sublattice M of L generated by >a set {0} U A U I 
(where 0 is the least element of L and A C At(L), J C Ir(L) and At(z) C A 
for all i el) such that | At(M) | < | At(L) | . 

EXAMPLE 3. Let K be an infinite unary type and let W be an arbitrary set such 
that \W\ > \K\2 and let Vw := {{w11w2}CW : wx ^ w2}. Let L = (L,<L) 
be the complete sublattice of the lattice P(W U Vw) of all subsets of W U Vw 

generated by {{w} : w E W} U {{w1,w2,{w1^w2}} : w11w2eW: wx ^ w2} . 
It is easy to see that L is just the family of all sets U G P(WUVW) such that 

for every w1:w2 G W, wx ^ w2, {w1:w2} G U implies wx,w2 G U (in particular 

0 G L). Thus At(L) := {{w} : w G W} and Ir(L) := {{wvw2,{w1,w2}} : 
wx,w2 eW, wx ^ w2}. Hence, L satisfies ( c l ) - ( c . 4 ) of Theorem 1.1 and the 
condition in Proposition 2.5. Moreover, this fact implies that G(L) is simple and 
contains \W\ vertices and between any two different vertices there is exactly one 
edge. Thus by Example 1, G(L) cannot be directed in the infinite type \K\. 
This fact and Theorem 1.2 imply that there is no unary partial algebra of type 
K such that its weak subalgebra lattice is isomorphic to L. 

Let L be a lattice which satisfies ( c l ) - ( c . 4 ) of Theorem 1.1 and let A C 
At(L), J C Ir(L) be sets such that At(i) C A for all i e I and let M be 
the complete sublattice of L generated by {0} U A U I (where 0 is the least 
element of L) . Recall that we showed in [Pi62] that A is the set of all atoms of 
M and / is the set of all non-zero and non-atomic join-irreducible elements (i.e. 
At(M) = A and Ir(M) = I). Moreover, M satisfies ( c l ) - ( c . 4 ) of Theorem 1.1. 

EXAMPLE 4. Let K be an infinite unary type and let L be the lattice of 
Example 3 for some set W such that \W\ = \K\2. Then by Example 3 there 
is no unary partial algebra of type K such that its weak subalgebra lattice 
is isomorphic to L. On the other hand, take an arbitrary complete sublattice 
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M of L such that | At(M)| < | At(L)| and generated by {0} U A U I, where 
A C At(L) and I C Ir(L) are sets such that At(z) C A for all i e I. Then 
M satisfies (cl)-(c .4) of Theorem 1.1 and At(M) = A, Ir(M) = I. From this 
and from the definition of L we infer that M satisfies (**) of Theorem 2.7. 
Moreover, by Example 3 we have | At(L)| = \{{w} : w € W}\ = \W\ = |JRT|2, 

so | At(M)| < | At(L)| implies | At(M)| < \K\2 by the definition of \K\2. Thus 
by Theorem 2.7, M is isomorphic to the weak subalgebra lattice of some unary 
partial algebra of type K. 
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