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(Communicated by Pavol Zlatos) 

ABSTRACT. Let G be a finite additive group and S a non-empty subset of G. 
S is said to be a sum-free set of G if (S + S) n S = 0. If S is a sum-free set of 
G and \Sr\ < \S\ for every other sum-free set Sf of G, then S is said to be a 
maximal sum-free set of G. In this paper it is shown that if G is the cyclic group 
Cpn where p is an odd prime congruent to 2 modulo 3 and n > 1, the maximal 
sum-free sets of G form a block design. 

1. Introduction 

Let G be a finite additive group and S a non-empty subset of G. We say 
that S is a sum-free set of G if (5 + 5) fl S = 0. If 5 is a sum-free set of G and 
|S"| < | 5 | for every other sum-free set 5 ' of G, then S is said to be a maximal 
sum-free set of G. For a given group G, we shall denote by A(G) the cardinality 
of a maximal sum-free set of G. 

We say that S is in arithmetic progression with difference d if S = {a, a + d, 
a + 2d, . . . , a + fcd} for some a,d£ G and some integer fc > 0. 

Let V be a set with v elements. A collection {BY, . . . , Bb} of subsets of 
V is called a 6/ocfc design if each of the subsets J5^ has k elements and each 
element x G V is in r of the subsets 2?^, 1 < i < b. The b subsets B1, . . . , Bb 

of V are called blocks and the number r is called the replication number of the 
design. If a block design has parameters t;, 6, r and fc, then we say that it 
is a (v, 6, r, fc) -design. In this paper we show that if G is the cyclic group C n 

where p is an odd prime congruent to 2 modulo 3 and n > 1, the maximal 
sum-free sets of G form a block design. We first look at an elementary property 
of sum-free sets in Section 2. The case where p = 2 (mod 3) will be considered 
in Section 3. 
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2. An elementary property of sum-free sets 

Let G be the cyclic group Cpn of order pn where p is a prime and n > 1. Let 
S = {a1? . . . , am} be a sum-free set of G. If 5" = { b 1 5 . . . , kam} where A: is a 
positive integer such that k =£ 0 (modp), then 5" is called the kth product set 
of S and we write Sf = kS. It is clear that \S'\ = |5 | if S" is the kth product set 
of S for some positive integer k. The proof of the following is straightforward 
and shall be omitted. 

P R O P O S I T I O N 1. Let G be the cyclic group Cpn of order pn where p is a 
prime and n > 1. If S is a sum-free set of G, so is its kth product set, where 
k is a positive integer relatively prime to p. 

3. The case p = 2 (mod 3) 

P R O P O S I T I O N 2. Let G be the cyclic group Cpn of order pn where p = 3k+ 2 
is an odd prime and n > 1. Then 

S = {(l + 3j)+pr: j = 0 , l , . . . ,k ; r = 0 ,1 , . . .,pn~x - 1} 

is a maximal sum-free set of G. 

P r o o f . Suppose that there exist j v j2 G {0 ,1 , . . . , k} and rx,r2 G {0 ,1 , . . . 
. . . , p n _ 1 - 1} such that 

((1 + 3j1)+pr1) + ((1 + 3j2) +pr2) = ((1 + 3j) +pr) (mod pn) 

for some j G {0 ,1 , . . . , k} and r G {0 ,1 , . . . , p n _ 1 - 1}. Then 

2 + 3(jx +j2) +p(rx + r2) -= (1 + 3j) +pr (mod pn). 

It follows that 1 + 3(jx + j2 - j) + p(rx + r2-r)=0 (mod pn). Note that (by 
taking ordinary addition, that is, not the "modulo addition") we have 

max{l + 3(j1+j2-j)+p(r1 + r2 - r)} = 1 + 3(2k) +p(2pn~1 - 2) 

= 2pn-3< 2pn 

and 

min{l + 3(ja +j2-j) +p(rl+r2-r)} = 1 - 3k + p [ - (p n " 1 - 1)] 
= -pn + 3 > -pn . 

Therefore 
1 + 3(Jx + j2 -j) +p(r1 + r2 - r) = 0 (1) 
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or 
1 + 3(Ji + h ~ l) +P{rx +r2-r)=pn. (2) 

If (1) occurred, then 1 + 3(jx + j 2 — j) would be divisible by p. But this is not 
possible since p = 3k+ 2 and JiJ2J G {0,1, . . . , & } . Similarly, (2) cannot occur 
since 1 + 3(j1 + j 2 — j) would be divisible by p otherwise. We thus have that 
S is a sum-free set. Since | 5 | = pn~l(k + 1) = pn~l{2Y~), it follows from [2; 
Theorem 2] or [4; Theorem 3] that S is a maximal sum-free set of G. • 

By [4; Theorem 5] we have that if S is a maximal sum-free set of the cyclic 

group C n where p = 2 (mod 3) is an odd prime, then S is a union of cosets of 

H where H is the subgroup of Cpn of order pn~~l. Since A(Cpn) = p n " ~ 1 ( £ ^ ) 

and |if | = pn~l, it is clear that 

S = (H + gx) U (H + g2) U • • • U (H + g ^ ) 

for some gx,..., g£±i G Cpn . Clearly {gx,...,gS:tl } must be sum-free. Such a 

sum-free set can be obtained by considering the maximal sum-free sets of C . 

By [3; Theorem 2], Cp has ^ - maximal sum-free sets. Since H is unique, C n 

also has ^ - maximal sum-free sets. 

P R O P O S I T I O N 3 . Let p = 3k + 2 be an odd prime. Then the sets 

St = {3j + t: j = 0 , t , 2 t , . . . , * * } , * = l , . . . , ^ i , 

are the maximal sum-free sets of C . 

P r o o f . By Proposition 2 we know that S1 is a maximal sum-free set 
of Cp. Note that St = tSY; hence it follows from Proposition 1 that St, t = 
2 , . . . , £~-, are also maximal sum-free sets. It is clear that each St is in arith
metic progression with difference 3£. Note that if Sti = St<2 for some tx,t2 G 
{ l , . . . , ^p-} , then tr = t2 + 3t2i (mod p) and t2 = t1+ 3txj (mod p) for some 
ij G { 0 , 1 , . . . , f t } . It follows that ^ = (1 + 3j + 3i + dij)^ ( m o d p ) , that 
is, 3 ^ + i + 3ij) = 0 (mod p). But since p is of the form 3fc + 2, this is not 
possible unless i = j = 0, that is, tx = t2. Therefore, <SX,..., Sj>=± must all be 
different and are the maximal sum-free sets of C . (One can easily check that 
(Et i+i)^i = (8f1- i)51 fcrj-0,1 -=-.) • 

For ease of exposition, we shall refer to the element 3j +1 of St (where St 

is as defined in Proposition 3) as the element in the (^ + l)st-tuple of St. 

PROPOSITION 4. Let p = 3fc + 2 be an odd prime. Then each i, i = 1 , . . . 
. . . ,p — 17 appears in the same number of maximal sum-free sets of C . This 
number is given by 2+^-. 
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P r o o f . Note that 

(3(i - l)t + t) + (3(fc - i + l)t + t) = (3k +2)t = pt = 0 (mod p) 

for i = 1 , . . . , k + 1. Therefore each of the sets 5 j , 5 2 , • • •»£____ is an inverse 
of itself with the inverse of the element in the ith. tuple being the element in 
the (k — i + 2)th tuple (i = 1 , . . . , k + 1). Now consider 3j + 1 for some fixed 
j G { 0 , 1 , . . . , k}. We wish to show that 

t(3j + 1) ?_ -* ' (3 j + 1) (mod p) 

for any t, t' G { l , . . . , £=-L} . Suppose on the contrary that 

t(3j + 1) = -tf(3j + 1) (mod p) 

for some t,t' G { l , . . . , 2 ^ 1 } . Then 

(3j + l)(* + t') = 0 (modp) . 

Since p is a prime number, so p \ (3j + 1) or p \ (t +1'). But max{3j + 1} = 
p — 1 < p and max{£ + t'} = p — 1 < p . We thus have a contradiction and 
therefore t(3j + 1) ^ -£ ' (3 j + 1) (mod p) for any £, t' G { l , . . . , ^ - } . It follows 
that 

{(3j + l),2(3j + l),...,(2fi)(3j + l), 

_(3i + l),-2(3i + l ) , . . . , -(- f-)(3i + l)} 

must be equal to C \ {0}. That is, the collection of all the elements in the 
(j + 1) st and (k — j + 1)st tuples of Sx, <S2 , . . . , «S___i is just C_ \ {0}. Therefore 
each i , i T«- 0, appears in the same number of maximal sum-free sets. This 
number is clearly given by \\(Cp) = £ ^ - . • 

PROPOSITION 5. Let G be the cyclic group Cpn where p = 2 (mod 3) is an 
odd prime and n > 1. Then each i ; i = l , . . . , p n - l , i ^ 0 (mod p ) ; appears in 
the same number of maximal sum-free sets of G. This number is given by £±-- . 

P r o o f . Let S be a maximal sum-free set of G. Then 

5 = ( H + g1)U-.-u(H + g_±i) 

where H = (p) is the subgroup of G of order p n _ 1 and {gx , . . . ,g_±i} = St for 

some £ = 1 , . . . , ^ - (St is as defined in Proposition 3). Since g- 7- 0 for any 

j = 1 , . . . , ^!p-, so the elements of H will never appear in any of the maximal 
sum-free sets of G. By Proposition 4 and by symmetry, we have that each i, 
i = l , . . . , p n — 1, i ^ 0 (mod p) , will appear in 1~^- of the maximal sum-free 
sets of G. • 
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T H E O R E M 6. Let G be the cyclic group C n where p = 2 (mod 3) is an odd 

prime and n > 1. Then the maximal sum-free sets of G form a (pn — pn~1
1 

E-l , ^ . p n - ^ E t i ) ) .design. 

P r o o f . First we note by Proposition 2 that the number k' of elements in 
each maximal sum-free set of G is p n _ 1 (^ip) • We also have from the discus
sion preceding Proposition 3 that the number b of maximal sum-free sets of 
G is £~^. From the proof of Proposition 5 we know that none of the elements 
p, 2 p , . . . , (pn~l — l)p will appear in the maximal sum-free sets of G. Hence, the 
number v of distinct elements of G appearing in the maximal sum-free sets of 
G is pn — p n _ 1 . By Proposition 5 we also know that each of the integers i e G, 
i ^ 0 (mod p) , appears in exactly ^~- of the maximal sum-free sets of G. We 
thus have that the maximal sum-free sets of G form the asserted block design. 

• 

4. Other cases 

We remark here that if p is a prime not congruent to 2 modulo 3 and n > 1, 
the maximal sum-free sets of the cyclic group C n also form a block design. For 
example, in the case where p = 3 , the maximal sum-free sets of C3n where n > 1 
form a symmetric (3 n - 1, 3 n - 1, 3 n _ 1 , 3n _ 1)-design. The proof for this and 
for the case where p = 1 (mod 3) use different arguments from the ones in this 
paper and are given in [1], 
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