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ON THE MODULUS OF THE RIEMANN 
ZETA FUNCTION IN THE CRITICAL STRIP 

F l L I P SAIDAK — P E T E R ZVENGROWSKI 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. For the Riemann zeta function C( s ) , defined for complex s = cr+it , 
we write a = ^ + A , and we study the horizontal behaviour of |C(S)| in the critical 

strip |A| < 1 We prove 

C Q - Д + І * ) | > | C Q + A + І Í ) 

for 0 < A < T-, 27T + 1 < t; and we give accurate but simple asymptotic esti
mates for the quotient a (A ,2 ) of these two quantities. Inequalities and numerical 
tables are presented which show just how accurate these estimates are. Several 
conjectures related to the Riemann Hypothesis are discussed as well. 

1. Introduction 

1.1. In 1838, P. G. L. D i r i c h l e t [8] defined, for real numbers s > 1, the 
function ((s) as 

- 1 

(i) 
n > l 

where the product representation is due to E u 1 e r [11] in 1737, and is extended 
over all primes. This "Euler product" relates the zeta function to primes, and 
during the past three centuries hundreds of papers have been written about this 
remarkable connection. To fully appreciate the link, one must consider C(«s) for 
complex values of s = a + i t . 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 11M06, 11M26, 11M99. 
K e y w o r d s : Riemann zeta function, modulus of C(s)> functional equation, Stirling's series, 
horizontal behaviour of C(s)-
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For o — Re(s) > 1, the Euler product (1) converges and defines ((s) as a 
holomorphic function of 5. For o > 0, the function ((s) is meromorphic with a 
single pole of first order at s = 1 (with residue 1), and has the representation 

oo 

1 

where [x] denotes the integer part of x (for more detail, see [14]). If we let n(x) 
be the number of primes < x, then for all 5 with cr > 1, it is not difficult to 
show 

"*«'> = •/Ä'"-
Also, the celebrated prime number theorem1 concerning the function 7r(x), 

which is equivalent to the statement ((1 + it) ^ 0 for all t G -R\{0} (for a simple 
proof of this, see M e r t e n s [23]), can then be obtained by inverting the above 
relation. 

1.2. Furthermore, as E u l e r [12] conjectured in 1748, and R i e m a n n [29] 
proved in 1859, the zeta function ((s) satisfies the important functional equation 
(cf. [9], [17], [18], [19], or [34]): 

((s) = 2 5 TT 5 - 1 C(1 - s)T(l - s) sin f - . (3) 

Taking (2) and (3) together extends ((s) to a meromorphic function on the 
entire complex plane with a single pole at 5 = 1, and having obvious zeros 
(i.e. "trivial zeros") at s = - 2 , —4, - 6 , . . . . All other zeros, the so called "non-
trivial" zeros, must lie in the "critical strip" 0 < a < 1, since clearly ((s) / 0 
for cr > 1, by the convergence of the Euler product in (1). 

In [29], one also finds the notorious Riemann Hypothesis: 

( 0 < G T < I & C(<j + ii) = 0) ==> ^ = TT> (RH) 

x The prime number theorem, proved independently by H a d a m a r d [15] and d e l a 
V a l l e e - P o u s s i n [35] in 1896, states 

7 r ( , ) ~ . i ( , ) : = l i m ( / + / ) i ^ 

\ O 1+e / 

as x —> oo . 
/ log* 

l+e 

For simpler, more recent analytic proofs of this fundamental theorem, see D . J . N e w m a n 
[26], or D. Z a g i e r [38]. 
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or, in terms of the prime counting2 function 7r(x), (RH) is equivalent to 

7r(x) =- li(x) + 0[\/x logx) . 

The Riemann Hypothesis is generally considered to be the most important 
unsolved problem of mathematics today, mainly because of its many very deep 
implications. It has been verified for £(o + '\t) for large ranges of t, and we know 
(see [4], [21], [27], [28], etc.) that the first 1010 zeros of C(a + it) all lie on the 
line a = \ . 

1.3. The functional equation plays a central role in the zeta function theory, 
however, as G r o s s w a l d writes ([14; p. 137]): " . . . the functional equation — 
probably our most powerful tool, so far — does not give us much information 
on what happens for 0 < a < 1, in the so called critical strip." The purpose of 
this paper is to explore the intriguing observation that |C(o~ + \t)\ behaves very 
nicely with respect to a, as contrasted to its incredibly complicated behaviour 
with respect to t (see Figures 1, 2 in §2.4). In our present investigations we show 
that, contrary to G r o s s w a l d ' s claim, one can apply certain sharp estimates of 
the Euler-MacLaurin type, together with the functional equation (3), in order to 
obtain proofs of some interesting new results concerning the horizontal behaviour 
of \((s)\ in the critical strip. 

2. S t a t e m e n t of t h e o r e m s 

2.1. The precise statements of our main results are as follows: 

THEOREM 1. Let s = \ + A + it. For 0 < A < \, and t > 2n + 1. we have 

| c ( | - A + i , ) | > | c ( | + A + i t ) | . (*) 

Note 1. If the inequality (*) in our Theorem 1 could be strengthened to show 
that, for 0 < A < \ , one has 

| C ( Ì - Д + І Í ) | > | C ( ! + Д + І Í ) | , (**) 

then the Riemann Hypothesis would follow. This is because an easy consequence 
of the functional equation (3) is that the non-trivial zeros (i.e. the zeros in the 

2The best unconditional result for 7r(x) is given by a theorem of W a l f i s z [36]: 

7r(x) = li(x) + O{xexp[-A(logx)3/5(loglogx)_1/5]} , where A G R + . 
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critical strip) either occur on a = ^ , or in pairs s = \ ± A + it, with | > A > 0 
(and their complex conjugates). 

N o t e 2. The number 2TT + 1 defining the vertical range in all our results is 
simply a convenience, in fact, our proofs are all valid for t > 7. However, the 
theorems are false if t < 2K . 

2.2. In the following theorem and thereafter, the symbol ~ means asymptotic 
as t -> oo. We have: 

THEOREM 2 (First and Second Approximations). Again write s in the 
form s — \ + A + it, and define (also see Remark in 4.1) the function a (A, t) 
as 

| C ( i - A + i*)| 
a(A,t):= 

|c(è + д + i-)ľ 
For 0<A<^, as t—> oo, we have: 

•<-•'»-ilîf)4~(śГ- m 

Remark 1. With this notation our Theorem 1 shows that a(A,t) > 1 for all 
t > 2TT + 1. 

Remark 2. In Section 9 below (Theorem 4 in particular) we explain why the 
second approximation (the one on the far right of ( | ) ) is always better than the 
first approximation. 

Let us now state two other results we shall prove — Theorem 3 and The
orem 4. Theorem 3 gives a still closer approximation to the function a ( A , t ) , 
while Theorem 4 proves a result that orders all of our estimations. We have: 

THEOREM 3 (Third Approximation). For s = a + it=^+A + it, where 
0 < A < \, we have 

| 5 | \ A / 4cr 3 -(7 
a ( Д , í ) ~ / ? ( Д , - ) : = ( £ l 1 - - Ï 2 - Г - ) . ( t t ) 

THEOREM 4. In the usual notation, if 0 < A < | . and 2n + 1 < t, then we 
have 

t \ . ( \s\\ 
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2.3. In the remaining sections of this paper, we shall prove the estimates (f) of 
Theorem 2 first, and then improve it to (ft). Theorem 1 will then be proved, 
followed by Theorem 4. 

We should also note that (t/2n)A , i.e. the second estimate of (f) in our The
orem 2, appears in T i t c h m a r s h ' s classic text [34; Sect. 4.12, p. 78, Sect. 5.1, 
p. 95]. He rewrites the functional equation (3) as 

((s) = x(sK(l-s), (3') 

where 

X(s) = r-1^sec(^f)T(Sr1. 

For s = a + it, in any fixed strip A < a < B, as t —» oo, we have 

lo g r (a + it) = (a + it - | ) log(it) - it + | log(27r) + O( j ) , 

and therefore 

T(a + it) = tfH-"-l/- e-*./2-i.+«r(tT-l/2)/2 ^ ( l + 0 ( j ) ) . 

Hence 

*)=(i)^^(lto(i)). 
From this it is clear that, as t -» oo, for a < \ we have 

I xWI - (£ ) * " • (T> 
This is all T i t c h m a r s h proves3 in [34], and he notes that it implies 

|((5)| = 0(t1/2~a) for a < -6 < 0 , 

and 

|C(5) | -0(t3 /2 + < 5) for a>-5. 

In the book he uses these bounds as a motivation for the study of the Lindelof 
Hypothesis (equivalent to the statement |C(s)| = 0(t£) for all e > 0), and as 
a starting point for the methods of Vinogradov and Weyl-Hardy-Littlewood 
(see [34; Chapt. 5]). 

It is important to note that the above technique suffices to get estimates 
such as those in our Theorem 2, but is not nearly delicate enough to prove the 
inequalities in our Theorem 1 and Theorem 4. 

3 K a r a t s u b a &: V o r o n i n [18; p. 84], in their chapter on the approximate functional 
equation, are also content with a similarly weak estimate. 
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Remark. Some idea of the accuracy of our estimates can be obtained from the 
fact that for 0 < A < \ and t > 2n + 1, our (|s|/27r) is accurate to within 
the factor 1.0051; (t/2ir)A to within 1.00016, and (ft) to within 1.000064. 
For t > 50 these factors are, respectively, 1.00010, 1.000032, and 1.00000028 
(cf. the Appendix). For example, if A = 0.2 and t =- 70, then the numbers in 
Theorem 4, to ten decimal places, are 

where 

1.6195076868 < a(0.2,70) < 1.6195100013 < 1.6195261956, 

a(0.2, 70) = 1.6195076876 . 

2.4. Motivation behind our research comes from various observations concerning 
the simplicity of the horizontal behaviour of \((s)\ in the critical strip. 

In order to give the reader a better idea of how much simpler (than the 
behaviour of the modulus on the vertical lines) the horizontal behaviour of 
|C(0~ + it)\ really is, we fix t = t0, and in the Figure 1 below we illustrate 
three prototypical cases (i.e. for t0 "far" from a zero, "near" a zero, and "at" 
a zero of C(5)> respectively) of the behaviour of |C(0" + it0)\ for 0 < <r < 1, 
while the more familiar Figure 2 shows the much more complicated behaviour 
of |C(j + i*)l for 0 < t < 100. 

0.2 0.4 0.6 0.8 

1.3 

1.2 

1.1 

1 

\ 
\ 

\ 
0.9 

\ 
0.8 

\ 
0 . 7 

"Ч 
0 6 

O 0.2 0.4 0.6 

1 

\ 
0 . 8 \ 

\ 
\ 0 . 6 \ 
\ 

0.4 \ / 

0 . 2 / 
/ 

\ 
/ 

0.8 —ì o-l 0 .2 0 .4 0 .6 0.8 1 

FIGURE 1. \C(a + it0)\ for t0 = 17, 24.5 and 25.011, with 0 < a < 1. 

Note. The vertical scale varies for the graphs in Figure 1, and we also remark 
that the graphs in Figure 1, if plotted for a larger range of cr, are essentially no 
more complicated than in the range 0 < a < 1 depicted (of course, we always 
have |C(o" + it0)\ -> 1, as a —> oo). 
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20 40 -c 60 80 

FIGURE 2. |C(cr + it)\ for a = \ , and 0 < t < 100. 

2.5. In the light of this "evidence" it is now plausible to conjecture: 

CONJECTURE 1. For any fixed t > 2TT + 1, and 0 < a < \, we have 

d\C(s)\ 
дa 

< 0 . 

100 

(4) 

Equivalently, \C(s)\ is strictly monotone decreasing in this range. 

Just like (**), Conjecture 1 implies the Riemann Hypothesis. 

3. Sharp Stirling series 

3.1. The proofs of our main results are based on considerations involving 
the functional equation (3) for £(s), as well as certain series related to the 
T-function4. Let us start by recalling some definitions and a couple of standard 
lemmas we shall require in our proofs. 

For complex s with a > 0, we have the following useful formulae (they are 
due to E u l e r [13] for real s): T(s + 1) = sT(s), 

oo oo 

„, x f ts dt -.-,, x > / x f ts dt 

and 
Г(в)Г(-a) 

— 7Г 

SSІП(7ГS) ' 

4Some of our techniques extend those of L i n d e l o f [20], who was able (among other 
things) to give a very short proof of the following theorem of M e 11 i n [22]: |£(1 + it) | < log t, 
as t —> oo. 
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i.e. the functional equation of T(s), implied by the general formula 

TT/2 

r(s)r(z) = 2r(s + z) f (cose)2*-1 (sine)2*-1 do. 

We also note that T(s) = T(s) and ((s) = ((s). 

3.2. Now, define Bernoulli polynomials bk(x) as the unique solutions of b0(x) 
1 

= 1, and the recursive condition b'k(x) = kbk_1(x) with J bk(t) dt = 0. If we 
o 

let Bk(x), the Bernoulli functions, be the periodic functions (of period 1) that 
coincide with bk(x) on [0,1), then the Euler-MacLaurin Summation Formula 
states (see [5], [9], [25]): 

LEMMA 1. For any real a < b, and a (m + 1)-times differentiate function 
f(t) on the interval [a,b], in the above notation, we have 

£ / ( » ) = //(*) d* + E ( "| f^ + 1 (/<*>(6) - /<*>(a)) + Em , 
a<n<b a k=0 

where 

E = ( - 1 ) m 

(m + 1) í / - 5 m + i ( - ) / ( * + 1 , ( - ) d í -

a 

3.3. The error term in Lemma 1 is due to T. J. S t i e l t j e s [31], who in 1889 
also proved that, if s = rel° and \s\ -> oo with \0\ = |arg(s) | < ~ — z (for 
e > 0), then the well-known 1730 series of J. S t i r l i n g [32] has the following 
sharp error: 

l o g r ( s ) = (s - \ ) log5 - S + | l0g(27T) + cf>(s) (5) 

with 

and 
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Here, and in Lemma 1, Bk denotes the /jth Bernoulli number (first time 
appearing in J a k o b B e r n o u l l i ' s Ars Conjectandi [3] of 1713), defined5 for 
all k > 0 via the Taylor series expansion for \x\ < 2ir, 

£f \ X def * 1 , &o 2 4 4 , ^6 6 

Exponentiating the above series (5) for logica) immediately gives us (see6 [6], 
for example) the following result, where the function ip(s) below is defined as 
ip(s) = exp(0(s)) . 

LEMMA 2. For all complex s with | arg(s)| < TT — e, we háve 

r(s) = s°e-°JŽÍLiP(s), (6) 

with 
1 1 _ 139 571 _5 

n s ) ~ + 125 + 288á2 5184053 2488320*4 + {S ' ' 

This lemma is one of the key formulae we shall need to apply in our proofs 
of Theorem 2 and Theorem 3. Clearly from (5) and (6), both (j){s) and ip(s) are 
holomorphic in our domain 0 < c r < l , £ > 2 7 r + l . 

4. The functional equation 

4 . 1 . Let us now return to the functional equation (3). We rewrite it as follows 

c 

C(a) = (27r)T(l-a)C(l-«)-

thus 

C ( i - A + Í i) = 

,sin(f) 

= {2.y'^{2.fr( \ + A + it) Mfd-A + iO)^l + A + ^ 

5 We háve B0 = 1, Bx = — | , and Bn = 0 for all odd n > 1. Recursively one can compute 

R — 1 R — 1 c ? _ l R _ 1 R _ 5 R _ 691 
2 ~ 6 ' 4 " 30 ' 6 ~ 42 ' 8 ~ 30 ' 10~~ 66 ' 1 2 " 2730 

In terms of Bernoulli functions Bk (x), we háve Bk = Bk (0) for all k. 
6 T h e formula (6) is taken from [6], but one should notě tha t , in [6; p . 8], the series for 

logT(s) is given incorrectly. It uses an old ( W h i t t a k e r &: W a t s o n [37]) definition of 
Bernoulli numbers (cf. [5]). 
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and therefore 

| < ( i - A + i t ) 

( 2 7 Г ) 1 ! 2 - * r(I + A + it)| |sin(|(i-A + u)) | |c( | + A + u) 
whence 

a ( A > < ) = ( 2 ^ / 2 " A | r ( | + A + i t ) | | s i n ( f ( l - A + i t ) ) | . (7) 

This formula will be the starting point of all our proofs. 

Remark. Strictly speaking, the original definition of the function a( A, t) in our 
Theorem 2 (see Section 2.1) makes no sense when C(^ + A + it) = 0 . However, 
the above equation (7) shows that such points are removable singularities, and 
that the function a(A,t) is in fact the modulus of the holomorphic function 

A(A, t), defined as A(A, t) = &££^T(\ + A + it) sin(f (\ - A + it)). Since 
this function has no zeros for t > 0, our a(A:t) is a real analytic function 
in A,t. 

5. Three technical lemmas 

5.1. In order to prove (f) of Theorem 2, we shall need the following lemmas 
(everywhere below, exp(s) = e5 will be used interchangeably): 

LEMMA 3. Fbr all complex s ; write s = a + it = ( | + A) + it = r el0 . Then 
we have 

[2IT \s\A 

^W'-VTSiP+Aj- (8) 

P r o o f . By the well-known S t i r 1 i n g 's formula (see (6), or [9]) we know: 

T(s) ~ ss~^ e~s V2~ = \ /27rexpM s - •=•! logs - sj , 

where 
(s - | ) logs - s = (A + i*)(logr + i0) - i - A - it 

= (Alogr-tO- i - A ) +i(tlogr + A6-t). 

Thus 

|r(s)| - \ / 2 ^ e x p ( A l o g r - ^ - ± - A ) 
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5.2. In addition to this lemma, we have: 

L E M M A 4. For 0 < A < \, 

| s i n ( f - f A + i f ) | ~ i e x p ( f ) . (9) 

P r o o f . For any complex number s = a + it, one has 

sin(Or + it) = sin(O-) cosh(£) + icos(O-) sinh(£), 

whence 

I sin(s)|2 = sin2(a) cosh2(£) + cos2(O-) sinh2(£) = sin2(O") + sinh2(£). 

This immediately implies 

Ki-fA+'?)|a=-'(f--.f)+---"(^). 
where the second term can be estimated as 

sinh2 

while for the first term one has 

( Ş ) = í " ) ~ exp(тrř), as í - + o o : 

s i " 2 (f- i r)4 
Taking square roots proves the result. • 

5.3. For 5 = a + it, in the same range, the third result we shall need is the 
following estimate, with 6 as in Lemma 3: 

LEMMA 5. For 0 < A < \, and all t > 2ir + 1, we have 

* = f - ^ + o(f)- "°> 
P r o o f . Notice that if s = r e 1 0 , then tan(0) = £ = r f^ is large positive 

i - + A 
for t > 2n + 1 and 0 < A < \ , and so 5 = cot(6) = JL--—• is small in that range. 
Hence 

9 = arccot(<j) = f~ arctan((j) = | - - S + - y - - y + •• • . 

• 
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6. Proof of Theorem 2 

6.1. It is now easy to complete the proof of our first main result. 

THEOREM 2. For 0 < A < \ we have 

P r o o f . Recall (7), i.e. 

a{A,t)=(M^\T(l + A + u)\\sin(^-A + it)) 

and apply Lemma 3, Lemma 4 and Lemma 5, respectively, to get 

, * ,, vl2íř 1 V^ \s\A l /TTA 
a ( A ' í } ~ -V' (27F ' "vT' i ^ T A ) • 2 e x p lTj 

M ) A
e x p ( f _ í , _ A _ l ) 

Mì A 

Є 
0 

This proves the first estimate. Since \s\ ~ t, the second one follows. • 

7. Proof of Theorem 3 

7.1. We are now ready to prove a more refined estimate of a(A, t): 

THEOREM 3. For 0 < A < \ we have 

«-,.)~«-.o=-(g)4(i-^). m) 
P r o o f . The argument we present below closely follows the one given in the 

proof of Theorem 2, except here we take account of all terms of order 0(t~2) in 

the ratio a(A,£)/( |s | /27r) . Three asymptotic estimates must be analyzed. 

7.2. The first approximation is in Lemma 4: 

.(f-fA + i f ) | ~ I e x p ( f ) . (11) S1П 
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We have already seen (proof of Lemma 4) 

Sm(|-|A + if)| = ^ ( f - | A ) + s i „ ť ( f ) 

= sinh(f)v/ÍT ,̂ 

where 

т = 
. вinfé - f A) 

sinh(f) 

Since r is small positive, the binomial theorem applies, and it allows us to 
write 

l ( e p W _ . - V . ) ( 1 + l ^ _ l r i + ^ _ . . . ) 

. . ^ ( 1 _ ^ ) ( 1 + l _ _ _ ^ i _ i _ i + _ ( _ l r ) ) 

_i,,2(1____l^+0(j_)). 

This approximation is correct up to 0(e~nt) and is negligible in comparison 
with 0(t~n) for any n > 1. 

7.3. For the second approximation we consider the exact Stirling formula (6). 
In order to approximate ip(s) to 0(F~2), since \s\ ~ £, it suffices to consider 

-, , _J_ , 1 (f) ~ 1 + 12 F + 288^ + H~f + 12l) 
^ 1 2 * 288s2 ( | ) 2 

I.Є. 

1 + ^ + x 

12s 288s2 

V ( ( * ) * + 12 £ + 288_2 ) + ( í + 12_) 

! + f 
since | ( | ) | = J|i- = 1 + £-. Expanding the numerator, and then using the 

binomial series again, and also using the fact that ( l + f_r) = 1 — f_r + 75- , 
it is routine to determine that 

1 + 4 -+ x 
12в 288s2 i + ï ^ + 0(O-

We omit the details. 

157 



FILIP SAIDAK — PETER ZVENGROWSKI 

7.4. Finally, to make the correction to our third approximation is the easiest; 

one simply takes 9 ~ ~ — ~ + £-r (instead of just taking | — j as was done in 

Theorem 2). Then ^ - t6 - A - \ = ?£ - t6 - a ~ -§^, accurate to 0(t~4). 
Proceeding exactly as in Theorem 2, but with these refinements, gives 

a ( / V ) ~ ( S ) exp (-£-£*-A-i)hK0| 

Є X P - í - 9 U + _ì 
2ҡ) ^ V ЗťV V ' 12í2 

Ы \ A Л a 3 

l - - т - U + 
2nJ V 3 í 2 j V l2^2 

H \ A L ia3-a 
2ҡ V 12í2 

D 

Remark 1. All approximations in the above proof are clearly up to 0(t~A) 
or better, except possibly the approximation for IVK5)!- However, since ip(s) = 
* + 127 + 288^ ~ 5184o33 H and since 0 = arg(s) ~ | , the first few terms of 
this series decrease rapidly in modulus while having arguments approximately 
0, — |-, 7r, | , 0 , . . . . This means that the term a3s~s only affects \ip(s)\ UP to 
0 ( | s |~ 4 ) (a consequence of the Pythagoras theorem), since it is nearly parallel 
to the i-axis. Thus, our estimate \ip(s)\ ~ | l + JT- + —^pr| is actually valid up 
t o O ( r 4 ) . 

Remark 2. The heuristic argument in Remark 1 is easy to carry out analyti
cally. 

Remark 3. Clearly, further refinements of this type, up to 0(t~6), 0(t~8), 
e t c can be derived in the same way. 

8. Proof of Theorem 1 

8.1 . We begin by proving an important lemma: 

LEMMA 6. Let s = \ + A + it, where 0 < A < \ , and t > 2~ + 1. Then 
•ft(<^(s)) is an increasing function of A (see (5) and (5') for definition of </>(s))-

P r o o f . It suffices to show ^((f)'(s)) > 0, since R(<£'(s)) = ^ # ( 0 0 0 ) . 
From (5') we have 

i ' / e \ _ _ V ^ ~^2k 1 D ' _ _ _ _ _ _ __J_ _ _ ~^2n , p ! 
^ W " £.2ks™+K2n~ 2s2 4sA '" 2ns2- + ^ 2 " ' 

k=l 
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Here we again have an upper bound for the error term due to Stieltjes (given 
for n = 0 in E d w a r d s ' [9; p. 114]): 

ÄĽ< l 

2n - c o s 2 n + 3 ( 0 / 2 ) 

Thus <f>'(s) - - y ^ +R'2, where 

^2n+2 
(2n + 2)s2n+2 

4 ' 
I T ? ' I 1 J_ _J_ _J_ 
' 2' " ( v W " 30 ' 4W? < W*\ 

since 
—-L_ = ( ^ ) 5

 = % / 3 2 < 6 , and 0 < ? < ^ . 
(V2/2)5 K J - 2 4 

Hence, we also have |3£(.R2)| < \R'2\ < 2o(<ri+ti)i • Now, evidently 

1 o2-2\at-t2 _ . / 1 ^ t2-a2 

01 

l 12*0 12s2 12(<r2 + i2)2 V 1-*V 12(a2 + t 2 ) 2 ' 
,2__ 2 i 

and clearly, since we have the simple inequality i2{a2+t2)2 > 2o((r2+t2)2 ^or a ^ a 

and t in our range, ^((f)'(s)) > 0 as desired. • 

Note. Let us mention that (although not needed in the above proof), following 
[9; p. 113], in the notation U(s) = T(s + 1) we have 

™-m-**-*• (12) 

i.e. (j)'(s) is closely related to the logarithmic derivative of T(s). 

8.2. Now we are ready to prove (an equivalent form of) our main result: 

THEOREM 1. Fbr 0 < A < \ and t > 2n + 1, we have 

a(A,t) > 1. (*) 

P r o o f . Since a(0,£) = 1, (*) is evidently implied by the stronger state
ment that a(A,t) is strictly monotone increasing, equivalently that loga(A,£) is 
strictly monotone increasing, and again equivalently ^ l o g a ( A , £ ) > 0. Start
ing, as usual, from (7), we apply Lemma 2 (the exact Stirling formula) and 
Lemma 3, and have 

a(A,t) = 
A 

= 2(M) e X p ( - M - Д - i ) и S ) | ^ ( î ( i - A ) ) + s ^ ( f ) . 
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Thus, taking logarithms yields 

logcY(A, t) = log2 + A log f j g J - t6 - | - A + log \^(s)\ + \ logw , 

where (in this proof and hereafter) 

W = U,(A,i) = s i n 2 ( | ( l - A ) ) + s i n h 2 ( f ) . 

Since log|z| = 3?(logz) for any complex number z, we have 

loga(A, i) - log2 + A log (^\ - tO - \ - A + R(0(s)) + ± loguv. (13) 

Using Lemma 6, and also the evident fact A • ^ 1°&( _7) > 0, we see 

A l o g a ( A , ( ) > l o g (M) .^ ( w + i + A ) + I^ l o g„. 

Therefore, it remains to show that for all t > 2TT + 1 one has 

**$)>-ttu*~+&<»+')- < i 4 ) 

On one hand, we have 

^ e + a) = l(t{l-arct^))+(r)=T^ + l 

_ _ 2 _ _ _ ^ _ ^ _ = _ ^ 

~ *2 *4 + t6 '"~ t2+ ' 

where the error R satisfies |B | < (u/t)4. 
On the other hand, from the definition of w(A, t) it follows that 

-i A logw = _ii_ = -S i n(f-A) (_?n 
2 9 A 2 w ^ / s i n 2 ( | ( I - A ) ) + s i n h 2 ( f ) V ^ ' 

and so 
1 Ә logгlj < f (2e-!2) < ( f ) 4 . 
2 <9A 

However, as one can easily verify, for |s| > 27re 0 0 2 1 2 4 1 1 = 6.418... , we have 
l o S ( 2^) > f-~ + ^ r > a n ( * hence, in this range, (14) holds. D 

Remark. As mentioned in the above proof, we have actually proved the 
stronger statement that the function a(A, t) is strictly montone increasing. The 
weaker version of Theorem 1, as stated above, was also obtained by R. Spira 
[Duke Math. J., 32 (1965), 247-250]. This came to the authors' attention after 
the present paper went to press. 
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9. Proof of Theorem 4 

9.1 . Finally, let us prove one other, deeper result concerning the quality of 
approximations of the important function a(A,t), a result that is obtained by 
pushing our techniques to their limits. The claim of the above Theorem 2 is that, 
for 0 < A < i , and 2TT + 1 < t, we have a (A , i ) ~ (|s | /27r)A . This is clearly 
exactly true for A = 0, and in general the approximation (f) is indeed very good. 
However, the following, asymptotically equivalent formula (cf. Theorem 2) 

«<*•'>-(£)* w 
works even better (see Table 1 in Appendix). In spite of its simplicity, (t/2ir)A is 

nearly as good as /?(A, t) from Theorem 3. Furthermore, it also always happens 

to lie between (|s|/27r) and a(A,t). We have: 

THEOREM 4. For 0 < A < \ and t>2ir + l, we have the inequality 

P(A,t)<a(A,t)<(±y<^)A. (#) 

9.2. A couple of preliminary remarks are in order. For A = \ , let us now show 

how good the approximation (^-) from (15) really is. First, note that from 
the formula in §3.1 for r ( s ) r (—s) , we have 

|Г(iť) | 2 = Г(ií)Г(ií) = Г ( i í )Г ( i í ) = Г ( i í ) Г ( - i i ) 

(i£) sin(i7r£) £sinh(7r£) ' 

and therefore, directly from the definition of a(A,t), we get 

a ( | , t ) = I | r ( l + i«)||sin(i§)|, 

a\\,t) = i | r ( l + ii)|2sinh2(f) = ± \itr(it)fsinh*(f) 

= 4—^-^(coshOri) - 1) = f ^ f " 1 , 
7r2tsinh(7r<)2v v ' ' 2ir sinh(Tri) ' 

fl .\ ( t \1/2 /cosh(Trž) - 1 / t \ 1 / 2 

aU'V = U ř J V sinh(-rt) ~ t-SFJ ' аs t —> oo . 

Even for small values of t in our range, this relatively simple approximation 
is extremely good. For example, if t = 10, then 

COSh(TTt) — 1 „ ^ n ^ „ ^ 14 
\ — . - / x = 1-2.271 x 10~ 1 4 . 
V smh(7r£) 
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R e m a r k . Since cosh(7r£) — 1 < sinh(7r£), also a(\,t) < (t/2n)1/2. 

9.3. In this section we shall prove P(A,t) < a(A,t), and in §9.4 we prove 
a(A,t) < (t/2n)A. Since (t/2n)A < (|s|/27r)A trivially, this will complete the 
proof of Theorem 4. We start with a useful technical lemma of little intrinsic 
interest. 

LEMMA 7. For \ < a < 1 and t > \ , 

*, x 1 2 ^ 2 - 1 a2 a2-t2 

""•""•g-^^-tf-W-1' <16) 

P r o o f . With some algebraic work one finds 

t2 [(12a2 - l)(12a + 4O-2 - 1) - 24a] 
/ ( a ' t)~G 12(12*2-4O-3 + O-)|s|4 

O-3 [(12O-2 - 1)(12O- + 4O-2 - 1) + 8O-2 - 2] 
+ 12(12*2-4O-3 + O-)|s|4 ' 

In the given range we have 12O-2 - 1 > 2, 4O-2 - 1 > 0, and 12t2 - 4<r3 + a > 0. 

It follows that / (O - , t )>a- l2{it^Sll)\s\^ > 0. • 

To prove the inequalities in (# ) it will be more convenient to compare the 
logarithms of the functions involved, which will be done by using the derivative 
of their difference. 

P r o o f o f p(A,t) <a(A,t). Consider h(A,t) := loga(A, t) - log/?(A,t) . 
The inequality is equivalent to h(A,t) > 0. Since h(0,t) = 0, it will suffice to 
show that dh/dA > 0 (in the usual range 0 < A < ± , 2 T T + 1 < 0 - From (13), 
and the definition of /3(A, t), we have 

h(A,t) = t(f-в)-a + Җф(s)) + \ logw - log ( 
Y2Ѓ -4a2+a 

ӮJt2 

where here we will take (j)(s) -= j \ ^ — 3 6 Q S 3 + R4. Since n/2 — 9 = arctan(O-/£), 
and since dh/dA = dh/da, clearly 

s_ -' r w • i"'"« (is?)+ K (m?)+ *w 

12a2 - 1 
+ 12t2 - 4a3 + a + 3 ' 

where 
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Thus, 

dh 1 2 a 2 - l a2 a*-? ( 1 \ 
dA ~ 12i2 _ 4 a 3 + - |S |2 U\s\* + * \l20s*) + K{K4) + 3 

^(vk*)+uw+E*> 
using Lemma 7. It is easily seen that 

af * ] - n ( ° 4 ) = a4-6aH2 + t4-^ 1 ----1 
Vl20s4j V H 8 / 120|5|8 120|s|4 15|s |8" 

Then 

dZ-mšř+Ei + E*+E*' 
where 

_ _ iV 2 . _ a2 t2 1 1 
~ i ~ " l 5 ~ ~ W t h ' - 1 ' ~ 15 " " F ' ~ ~ < I ~ ~ 

_;2 = K(i?;) with |£2 | < - _ - ! - - . l . - i - - < 
(7- /2 )7 42 6|_|6 21|_|«' 

by [9; p. 114], and E3 is defined as in (17), whence |J5731 < 100o<.i<s • 
Hence 

\E1+E2+E3\<\E1\ + \E2\ + \E3\<^. 

But in our range 120
1. ,4 > ^4-- (indeed |s|2 > 15 suffices), and so dh/dA > 0 

is proved. • 

Remark. We have actually proved a somewhat stronger result, that a(A, t) — 
P(A,t) > 0 and is strictly monotone increasing for 0 < A < \. The same is 

true for (|s|/27r) — a(A,t) and easier to prove, however, we omit a proof of 
this result since the next (stronger) inequality suffices to complete the proof of 
Theorem 4. 

9.4. P r o o f of a(A, t) < (t/2?r)A. Since this proof has many similarities to 
the previous one, we simply sketch it and explain the features that differ from 
§9.3. Let h(A,t) = Alog(^r) - loga(A,t), where we know h(0,t) = 0 and 
h(\,t) >0 (cf. §9.2. Remark). 

We must prove /i(A, t) > 0 for 0 < A < \. As in §9.3, we obtain 

/l(A,^-flog(l^)-t(|-.)+.-^TL) 

-$l(R2)-\\ogw. 
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Using the well-known expansion 

!°g ( ^ ) = l o S (1 + 
s\2\ , / a2\ a2 aA a6 

+ , t2 ) b \ t2 J t2 2£4 3i6 

then differentiating, and simplifying, gives us 

dh -6a2 + 6 ( 7 - 1 

ð Д 12|s | 2 + E, 

where E = E1+E2 + E3+E4 and the error terms are 0 ( | s | 4 ) . More precisely, 
noting that in our range we always have 

| s | 2 50 
^^7- < — and 
t 2 - 49 

„ < 
ť4 - 24 

(18) 

it is possible to give accurate estimates for the above error terms. We have 

*=ł 2ť4 Зťe 

Similarly, 

+ 

+ ^ 2 2 |s | 2* 2 ' 6 |s | 4 

where for the numerator here we have 

and so |£7X | < 

l - З ^ a 2

 2 
• az , 

4ť4 (19) 

| й | 2 9 
< 1 - 3 - 1 

6|s | 4 

50 

by (18). Hence 

\ 2\ ^ n n л , м < 

49 

101<72 

101 

49 

294|s | 4 " 294t4 ' 

We already know that (see §8.1) 

E3 = -$(R'2), so \E3\< 
1 

3 1 ^ 20|s | 4 

Finally, the last error term can be bounded as follows 

Ae _ 7 r t cos(7rA) 
тp _ 

4 " 1 - 2 sin(тгД) e-** + e~2ҡt ' 
so \E4\ < 

10000|s|4 ' 

since in our range we have \E4\ < e~vt, and nt > log 10000 + 2 log | s | 2 . 
Thus, combining (19), (20), (21) and (22), we get 

|JE?| < \E,\ + \E2\ + \E3\ + \E.\ < i (__ + ___! + 1 + -J—) 
1 2 3 4 I t4 \ 4 294 20 10000/ 
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At this point the proof departs from the previous one, because one has — 6cr2 + 

6 a - l > 0 i o i \ < a < \ + ^ = 0.78867... , and -6a2 + 6O- - 1 < 0 for 

\ + f <<7<1. 

However, our estimations are strong enough7 to show that 

§ > 0 for § < , < § , 

•(10 
by intégration, 

and finally 

17/20 

/ 
3/4 

dh J 

Taáa 

> 

< 

0.00601 

500í2 (or even — - - — ) 

3 , 0.00221. 
(or even <2 ) 1000Í2 

дh n 

дK<0 for Ц- < a < 1 
20 ~ -

Combining all this with the already known facts about h(0,t) and h(\,t) 
shows that h(A,t) increases from 0 to a positive value > -r-̂ ---- in the interval 
0 < A < \, remains positive for \ < A < ^ , and decreases over -^ < A < \ 
to the positive value / i ( | , t). Thus /z(A, t) > 0 for 0 < A < | , as required. D 

10. Remarks about (t/27r)A 

10.1. We make a couple of additional comments concerning the approximation 
(t/27r)A here. First, two elementary lemmas are given. The proof of the first one 
requires nothing beyond simple algebra, and is therefore omitted. The second 
lemma is proved below. We have: 

7 Proofs of these four results are technical, but straight-forward. Just to i l lustrate what 
happens, we take the last one as an example. For ~ < a < 1, 

1 / 1 101 J _ 1 \ 
1 ' ~ í 4 V4 + 294 + 20 + 10000y ' 

and so 
дh 1 0.6437 ^ 

+ -—-— < - -
49 

dA ~ 52 | s | 2 t 4 ~ 5 0 - 5 2 t 2 

-è(-
for ail t in our range, as claimed. 

+ • 
0.6437 

*4 

n fínf. 0 .6437\ 0.005713 
.01885 + — J = ^ " < 0 
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LEMMA 8. For \ < a < 1, one has 

0 < бo-3 - 3(т2 < 4_ 3 - a, (23a) 

8 4aó — a 

LEMMA 9. We have 

• ( _ • ) ) • 

(Д_|Wl____I_І + 0 ( J r ) ) . (24) 

P r o o f . The proof of (24) is a routine application of power series, arranged 
so that the convergence is assured in all cases. First, write 

i _ i - A __.-, _.__.__.__. ______ 
t ~ V ť2 ~ 2 t2 8 ř4 + 16 i6 

2 „.3 

using the binomial theorem. Next, using log(l + r) = r — Y + ^ > w e ^n(^ 

l og(l_A = ^ _ _ _ + i__.... 
g\ t 2t2 4i4 + 6.6 ' 

and hence 

(R) -(¥)—(---(¥ 
_ . __ . ___ /"2A + A 2 \ ^ 

V 2 J í2 + V 8 J í 4 

SA + Ď A ^ A 3 ^ 
48 / Ѓ 

л 2aъ-o2 _ / 1 = 1—ӣr-+0Ь 

10.2. Rewriting Lemma 9 as 
A /i i\ A 

(£) - (S )>^" ( . ) ) -
and using Lemma 8, it is now clear that in the inequality (#) of Theorem 4, 

in particular in (3(A,t) < (t/2n)A < (|s|/2_r) , the approximation (t/2n)A 

is much closer to /?(A,t) than it is to (|S|/2TT) (roughly speaking, at least 
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7/8 closer). Since fi(A,t) is a higher order approximation, this clarifies why 
(t/2n)A is a better approximation than (|s|/27r) . The fact that (3(A,t) < 
a(A,t) < (^/2TT)A, proved in Section 9, is then an additional bonus; it implies 
that very sharp estimations, both below and above a(A, t), have been obtained. 

Remark. If instead of the critical strip one considers the behaviour of the 
quotient a(A,t) in wider intervals, for example8 in [-4,J5], where A < 0 < 
1 < B, then one could apply the methods of this paper to obtain asymptotic 
estimates similar to Theorem 2 and Theorem 3. 

11. Open problems 

11.1. In addition to (**) from §2.1 and Conjecture 1 from §2.4, both of which 
imply the Riemann Hypothesis, there are several intriguing, but seemingly quite 
difficult, open questions related to the main theorems we have proved in the 
previous sections of this paper. 

Here we state a few of the more interesting ones, especially those describing 
ideas potentially open to further research. 

PROBLEM 2. For any t > 2ir + 1 and 0 < A < \ , define 

Q(a + it) - | C ( i - A + i . ) | - | C ( § + A + it) | f 2 5 ) 
0 ( ' + , ' ) - |C(i.)|-|C(i + W)l • ( 2 5 ) 

Is there a simple way to approximate 6(5)? In particular, can we measure the 
difference 2a - S(a + i£)? 

The numerical evidence (as in Figure 3) suggests the following: 

CONJECTURE 3. For all t > 2n + 1, the function Q(a + i£), defined in (25), 
is monotone increasing in the interval 0 < A < \ . 

8If we had s = a + it with A < a < B, then the range for t would change to t > C, but 
all approximations could be established analogously However, in a wider domain, Theorem 1 
and Theorem 4 would no longer be true. 
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0.1 0.2 0.3 0.4 0.5 ° 

/ 

0.1 0.2 0.3 0.4 0.5 0 

/ 

0.1 0.2 0.3 0.4 0.5 

FIGURE 3. 0(cr + it) for t = 10, 25 and 100, with 0 < A < \ . 

11.2. Similarly, one can ask about the behaviour of the second power analogue 
of 0(er + i t ) : 

PROBLEM 4. For any t > 2n + 1 and 0 < A < \ define 

2(a + iť):= |C( |-Д + ií)Г-|C(è + A + ií)Г 
|C(ii) |2-|C(l + il)l2 

Is there a way to closely approximate the function © 2 (s)? 

(25') 

It is not clear to us how hard Problem 2 and Problem 4 really are. Even their 
special cases seem to be quite difficult. Just like in Conjecture 3, here again it 
seems plausible to conjecture the following interesting property of 0 2 ( s ) . 

CONJECTURE 5. For all t > 27T + 1, the function 02(o- + i t ) , defined in (25'), 
is monotone increasing in the interval 0 < A < | . 

N o t e . Both Conjecture 3 and Conjecture 5 imply the Riemann Hypothesis. 

11.3. In connection with the above Theorem 4, in particular the behaviour of 
the function /i(A, t) in the interval [0, | ] , we cannot prove, but have reasons to 
believe, that the following assertion is true: 

CONJECTURE 6. The function /i(A,t), defined in §9.3, has just one extreme 
in the interval (0, | ) . For all t > 2n + 1 , the only value of A , for which ^ = 0, 

i s A = i + ^ . 

11.4. The purpose of this paper was to show that one can apply sharp results 
concerning Stirling-type series related to F(s) and the functional equation of 
C(s) in order to obtain new information about the behaviour of the modulus of 
((s) in the critical strip. 
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It is clear that the methods we have used throughout the paper can be applied 
in more general settings. This obviously includes only situations where one has a 
functional equation. But conversely, it appears that the existence of a functional 
equation is a sufficient condition for our methods to work. (In fact, in most of 
those general cases, the above Gamma function related Lemma 2 and Lemma 3, 
for example, stay unchanged, while other lemmas we have used should need only 
minor modifications.) This line of research seems well worth pursuing. 

It is possible to prove Dirichlet L-functions analogues of our theorems. Let x 
be a Dirichlet character modulo q. Then, for complex numbers s with Ji(s) > 1, 
the Dirichlet L-function L(s,x) associated with x 1S defined via the equation 
(see [7] or [33]): 

-<«.ri=E^-n( i-#)". (») 
n = l P 

where, similarly to the case of ((8), L(s1 x) c a n be analytically continued to the 
entire complex plane. If x 1s a primitive character mod q with x(—1) = 1, then 
the functional equation of L(s,x) is given simply as 

VL,-*„*. 
-(xY 

where r(x) is the Gaussian sum defined as (see [7]) 

r(x) = ^X(i)eq(i),
 a n d Kx)l = VQ-

^ í ^ r f - f j l í l -s,x) = -^ir-igtr(f )L(s,x), (27) 

ѓ=l 

For s = 1, it is known that 1,(1, x) ^ 0 for all nonprincipal characters x-> 
and it is believed that if L(a + it, x) = 0 for 0 < a < 1, then a = \ (this is the 
well-known L-function analogue of Riemann's famous statement, given in §1.2). 

We have proved the following weaker result: 

THEOREM 5. For 0 < A < \ and t>2ir + l, we have 

| L ( l - A + i t , x ) | > | I : ( ^ + A + i t , x ) | . (28) 

Proof of (28), together with proofs of several of its extensions to Dedekind 
C -functions and Artin L -functions will appear elsewhere. 

12. Appendix 

12.1. Finally, let us present some of the favourable numerical evidence under
lying, and in retrospect confirming, our main results. 
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We shall compare the three approximations (|s|/27r) , (t/2ir)A and /3(A,t) 
from our paper with the actual values of a(A,t) for A = 0.1, 0.2, 0.3, 0.4, 
and 0.5 (for A = 0 all the approximations are exact) and increasing values 
of t, showing how all of the estimates improve as t grows. For each fixed t, 
the three rows in the Table 1 listed next to t correspond to the differences 
( |s |/27r)A-a(A,t), (t/2ir)A-a(A,t) and a(A,t)-(3(A,t), respectively (blank 
spaces indicate that the given value is < 10~50). 

ť Д = 0.1 Д = 0.2 Д = 0.3 Д = 0.4 Д = 0.5 

7 
4.5 x 1 0 - 4 

8.2 x 10-5 
1.2 x 1 0 - 6 

1.1 x 1 0 - 3 

1.4 x 1 0 - 4 

5.1 x 1 0 - 6 

2.1 x 1 0 - 3 

1.6 x 1 0 - 4 

1.4 x 1 0 - 5 

3.4 x 1 0 - 3 

1.2 x 1 0 - 4 

3.2 x 1 0 - 5 

5.1 x 1 0 - 3 

2.8 x 1 0 - 1 0 

6.4 x 1 0 - 5 

20 
5.5 x Ю - 5 

1.0 x 1 0 - 5 

1.7 x 1 0 - 8 

1.4 x 1 0 - 4 

1.8 x 1 0 - 5 

7.8 x 1 0 - 8 

2.6 x 1 0 - 4 

2.0 x 1 0 - 5 

2.2 x 1 0 - 7 

4.2 x 1 0 - 4 

1.5 x 1 0 - 5 

4.9 x 1 0 - 7 

6.2 x 1 0 - 4 

5.2 x 1 0 - 2 8 

9.7 x 1 0 - 7 

50 
8.8 x 1 0 - 6 

1.6 x 1 0 - 6 

4.5 x 1 0 - 1 0 

2.2 x 1 0 - 5 

2.8 x 1 0 - 6 

2.0 x 1 0 - 9 

4.2 x 1 0 - 5 

3.2 x 1 0 - 6 

5.6 x 1 0 - 9 

6.7 x 1 0 - 5 

2.4 x 1 0 - 6 

1.3 x 1 0 - 8 

1.0 x 1 0 - 4 

2.5 x 1 0 - 8 

Ю2 

2.2 x 1 0 - 6 

4.0 x 1 0 - 7 

2.8 x 1 0 - 1 1 

5.6 x 1 0 - 6 

7.0 x 1 0 - 7 

1.2 x 1 0 - 1 0 

1.0 x Ю - 5 

8.0 x 1 0 - 7 

3.5 x 1 0 - 1 0 

1.7 x 1 0 - 5 

6.0 x 1 0 - 7 

7.9 x 1 0 - 1 0 

2.5 x 1 0 - 5 

1.6 x 1 0 - 9 

Ю3 

2.2 x 1 0 - 8 

4.0 x 1 0 - 9 

2.8 x 1 0 - 1 5 

5.6 x 1 0 - 8 

7.0 x 1 0 - 9 

1.2 x 1 0 - 1 4 

1.0 x 1 0 - 7 

8.0 x 1 0 - 9 

3.5 x 1 0 - 1 4 

1.7 x 1 0 - 7 

6.0 x 1 0 - 9 

7.9 x П Г 1 3 

2.5 x 1 0 - 7 

1.6 x 1 0 - 1 3 
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