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SOME REMARKS ON FUNCTIONS WITH VALUES 
IN PROBABILISTIC NORMED SPACES 

lOAN GOLEX 

(Communicated by Gejza Wimmer) 

A B S T R A C T . In this paper we consider an enlargement of the notion of the 
probabilistic normed space. For this new class of probabilistic normed spaces 
we give some topological properties. By using properties of the probabilistic 
norm we prove some differential and integral properties of functions with values 
into probabilistic normed spaces. As special cases, results for deterministic and 
random functions can be obtained . 
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1. Introduction 

In [16] A. N. S h e r s t n e v endowed a set having an algebraic structure of 
linear space with a probabilistic norm. He used the K. M e n g e r ' s idea from 
[12], where the probabilistic concept of distance was proposed. The number 
d(p,q), the distance between two points p, r/, was replaced by a probabilistic 
distribution function FPiq. These ideas led to a large development of probabilis
tic analysis. Applications to systems having hysteresis, mixture processes, the 
measuring error were also given. For an extensive view of this subject we refer 
[3] [4], [7]-[8] and [15]. 

In [1] C. A l s i n a , B. S c h w e i z e r and A. S k l a r gave a new defini
tion of probabilistic normed spaces which is based on a characterization of 
normed spaces by means of a betweenness relation and includes the definition 
of A .N. S h e r s t n e v as a special case. Another results in relating with these 
spaces were obtained in [5], [9]. In the second section of this paper we introduce 
a new class of probabilistic normed spaces which also includes the probabilistic 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 54E70, 46S50. 
K e y w o r d s : probabilistic normed space, random function. 
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normed spaces defined by A. N. S h e r s t n e v as a special case. We have gen
eralized the axiom which give a connection between the distribution functions 
of a vector and its product by a real number. 

The third section is devoted 1 o the study of functions with values into such 
8 probabilistic normed space. By using the properties of the probabilistic norm 
we analyze some differential and integral properties of such functions. 

Let R denote the set of real numbers, R+ {x E M. : x > 0} and I 0,1], 
the closed unit interval. A mapping F: R —> I is called a distribut on function if 
it is non-decreasing, left continuous with inf F = 0 and sup F 1. D + denotes 
the set of all distribution functions for which F(0) = 0. Let F , G be in D + . 
then we write F < G if F(t) < G(t) for all t E R . If a E R+, then Ha will be 
the element of D+ defined by Ha(t) = 0 if t < a and Ha(t) 1 if t > a. It is 
obvious that H0 > F , for all F E D+. The et D+ will be endowed with the 
natural topology defined by the modified Levy metric dh ([15]). 

A t-norm T is a two place function T : / x I —> 7 which is associative, commu
tative, non decreasing in each place and such that T(a, 1) = a, for all a £ [0,1]. 

A triangle function r is a binary operation on D+ which is commutathe, 
associative, non decreasing in each place and for which Ho is the identity, t h i t 
is, r ( F , Ho) — F for every F £ D + . T-norms and triangle functions have been 
^ery important in writing the appropriate probabilistic triangle inequality. 

2. On probabilistic normed spaces 

Let </?bea function defined on the real field R into itself, with the followii g 
properties: 

(a) (p(-t) = (p(t) for every t £ R; 

(b) p(l) = 1; 

(c) ip is strictly increasing and continuous on [0, oo), 
cp(0) — 0 and lim <p(a) — oo. 

Examples of such functions aie: p(a) \a\; p(a) \a\p, p £ (0, oc ; 

P(a) £ n £ N + . 

DEFINITION 1. Let L be a linear space, r a triangle function and let T be a 
mapping from L into D+. If the following conditions are satisfied: 

(1) Fx Ho, if and only if x 6; 

(2) Fax(t) - Fx(^) for eveiy t > 0, a £ R and x £ L; 

(3) Fa:+?/ > r(FXlFy), whenever x,H £ L; 
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then T is called a probabilistic (p-norm on L and the triple (L,.?7, T) is called 
a probabilistic (p-normed space (of Sherstnev type). The pair (L^J7) is said to 
be probabilistic (p-seminormed space if the mapping T\ L —> D + satisfies the 
conditions (1) and (2). We have made the conventions: Fx(^) = 1, for t > 0, 
F x(§) = 0 and .F(x) is denoted by T x . 

If (1) (2) are satisfied and the probabilistic triangle inequality (3) is formu
lated under a t-norm T: 

(4) Fx+y(tx +t2) > T(Fx(h),Fy(t2)) for all x,y e L and tut2 G R+, 

then (L, .F, T) is called a Menger (p-normed space. 

PROPOS ITION 1. IfT is a left continuous t-norm andTr is the triangle function 
defined by TT(F,G)(t) = sup T(F(t1),G(t2)), t > 0, then (L,JF,TT) is a 

ti+t2<t 

probabilistic (p-normed space if, and only if, (L,.?7, T) is a Menger (p-normed 
space. 

If we define TTn(x^y) = Fx_y, then a probabilistic (p-normed space (L,.?7, T) 
becomes a probabilistic metric space (L^J7171^) under the same triangle func
tion T. In what follows we will consider probabilistic (p-normed spaces under a 
continuous triangle function r ^ TTm, where Trn(a, b) = Max{a + 6—1,0}. This 
condition ensures the existence of a linear topology on L. 

By a (p-normed space we mean a pair (L, || • ||), where L is a linear space, 
|| • || is a real valued mapping defined on L such that the following conditions are 
satisfied: 

(5) ||x|| ^ 0 for all x e i , \\X\\ = 0 if and only if x = 0; 

(6) \\a • x\\ = (p(a)\\x\\, whenever x G L, a G R and ip is a function with the 
above properties; 

(7) ||x + 2/|| < \\x\\ + \\y\\ for all x,y e L. 

Remark 1. For ip(cx) = |cY|p, 0 < p < 1, one obtains a p-normed space 
([11], [2]), for (p(a) = \a\ one obtains an ordinary normed space. 

Example 1. Let (L, || • ||) be a p-normed space. It is easy to check that it 
can be, in a natural way, made a probabilistic (^-normed space (L,JF, T) , by 
setting Fx(t) = H0(t - \\x\\) for every x G L, t G M+, (p(a) = \a\p and T = Min. 
Moreover, we have Fax(t) = H^^\\x\ )(£) and (L, T*, T), is a probabilistic normed 
space if, and only if, p = 1. This example shows us that probabilistic (^-normed 
spaces include, in a natural way, (p-normed spaces (p-normed spaces). This fact 
is not possible in the case of probabilistic normed spaces. 
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Example 2. We will show that, by starting from a (/?-normed space, for particular 
dilatation or contraction functions up and for different distribution functions G, 
different probabilistic (^-normed spaces can be obtained. Let G G D+ be different 
from Ho, let (L, || • ||) be a p-normed space. We define T": L —> D+ by F$ — Ho 
and if x 7̂  0 by 

F ~ W - G ( p - ) («eM+). 
The triple (L,T, TT) becomes a probabili tic </?-normed space under the t-norm 
T — Min and <p(a) — \a\p, p G (0,oo). This is called a simple probabilis
tic ip-normed space generated by the distribution function G and the p-normed 
space (F, || • ||). This example shows us that probabilistic (/?-normed spaces have 
a large statistical disposal. So, different processes of measurement for vectorial 
amounts can be set in a statistical framework by using an appropriate proba
bilistic (^-normed space. 

Example 3. Now, we consider an example of probabilistic (/9-normed space hav
ing, as a base space, a set of random variables with values in a p normed space, 
p e ( o , i ] . 

Let (X, || • ||) be a p-normed space. We suppose that (fi,/C, P) is a complete 
probability measure space and (X,B) is the measurable space, where B is the 
<r-algebra of Borel subsets of the p-normed space (X, \\ • ||). We denote by L a 
linear subspace of random variables defined on (fi,/C, P) with values in (X,B) 
and we will identify the random variables which are equal with the probability 
one. For all x G L, t G M, and t > 0 we define 

Fx(t) = P({UJ e n : \\x(u)\ <t}). 

The triple (T,JF ,Tm), where Tx(t) = Fx(t), is a probabilistic <p normed space 
with (f>(a) = |a |p . We verify only the conditions (2) and (3) of the Definition 1, 
the condition (1) is obviously satisfied. Fax(t) = P({u) G ft : | ax(u)\ < t}) 
P{{u G fi : \a\*\\x(u)\\ < t}) = P{{u> G fi : \\x(co)\\ < ^ } ) Fx{-^). For 
X, y G L, and £1,7,2 G M+ — {0} we define the sets: 

A- - {LÜ Є ÍŽ : ЦsMИ Һ} 
B -- {ш Є íž : І І У Н I I < Í 2 } 

C- - { ш Є Í Ì : \\[X(LÜ)+У(UJ < t l + t 2 } . 

The tiiangle inequality of a p-normed space implies that A Pi B C C By the 
properties of the probability measure P we have 

P(C) > P(A n B) > P(A) + P(B) - P(A n B) > P(A) + P(B) - 1. 

Taking into account that P(A) = Fx(t{), P(B) = Fy(ti) and P ( C ) - Fx+y(ti +t2), 
it follows that the inequality (4) is satisfied for T = T m . By the Proposition 1 
the condition (4) is equivalent with (3). 
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The following theorem give a topological structure of a probabilistic (£>-normed 
space. 

THEOREM 1. Let (L,F,T) be a Menger (p-normed space under a continuous 
t-norm T such that T > T m . then: 

(a) V = {V(e,\) : e > 0, A G (0,1)}, V(e,\) = {x G L : Fx(e) > 1 - A} 
is a complete system of neighbourhoods of null vector for a linear topology 
on L generated by the p-norm T. 

(b) The family of subsets of L: U = {U(e, A) : e > 0, A G (0,1)}. 

U(e, A) = {(*, y)eLxL: Fx-y(e) > 1 - A} 

is a complete system of neighbourhoods for a uniformity on L. 

P r o o f . We will prove only the point (a), the proof of (b) is similar to that of 
(a) and we will omit it. 

Let V(ek, Afc), k = 1, 2 be in V, consider e = min{£:i, £2} and A = min{Ai, A2}, 
then V(e, A) C V(eu A1) n V(e2, A2). 

Let a G R such that 0 < |a | < 1 and x G aV(s,A), then x = ay, where 
y G V(e, A) and we have 

Fx(e) = Fay(e) = Fy{^) > Fy(e) > 1 - A. 

This shows us that x G V(£, A), hence aV(e,\) C V(e,\). 
Let us show that, for every V C V and x G L there exists a G 1 , a / 0, such 

that ax eV. If V G V, then there exist e > 0, A G (0,1) such that V = V(e, A). 
Let x be arbitrarily fixed in L and a G M, a ^ 0, then Fax(£) = -fx(^fcy)-
Since, lim Fx(—f-y) = 1 it follows that, there exists a G R such that Fax(e) = 

F*(^(a)) > X _ A ' h e n C e a X e V ' 

Let us prove that, for every V G V there exists V0 £ V such that Vo + Vo C V. 
I f ] / = V^e, A) and x G V(£, A), then there exists r\ > 0 such that Fx(e:) > 1 — r\ > 
1 — A. If Vo = V"(|, | ) and x, y G Vo, by the triangle inequality (4) we have 

Fx+y(e) > T (Fx ( I ) , Fy ( I ) ) > Tm (l - | , 1 - | ) > 1 - r, > 1 - A. 

The above inequalities show us that Vo + Vo C V. 
Now, we show that V G V and a G M, a 7̂  0, imply aV G V. Let us 

remark that aV = aV(e, A) = {ax : Fx(e) > 1 — A} and Fx(e) > 1 — A <=> 
F* {^Sf) = FcLxAvi<*)e) > ! - A. This shows us that aV = V((p(a)e,\,A), 
hence aV G V. 

The above statements show us that V is a base for a system of neighborhoods 
of the null vector in the linear space L. It is easy to see that the uniformity 
generated by U and the topology generated by V are compatible. D 
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P R O P O S I T I O N 2. Let {xn}neN be a sequence in L and let (L,T,T) be a Menger 
cp-normed space under a continuous t-norm T, then: 

(a) {xn} converges to x in the topology generated by the probabilistic (p-norm 
T on L if, and only if, FXn_x(t), converges to Ho(t) for every t > 0; 

(b) {xn} is a Cauchy sequence in the uniformity generated by the probabilistic 
(p-norm T on L if, and only if, FXn-Xm(t) converges to Ho(t) for all t > 0. 

3. Functions with values in probabilistic normed spaces 

Let (fi,/C, P) be a complete probability measure space, i.e., ft is a nonempty 
set, /C is a cr-algebra on ft and P is a complete probability measure on /C. Let 
(X,B) be a measurable space, where (X, || • ||) is a separable Banach space and 
B is the cr-algebra of the Borel subsets of (X, || • ||). 

A mapping x: ft —> X is said to be a random variable with values in X if 
x~x(B) £ K for all B e B ([2], [14]). Let X be the set of all random variables 
(equal in probability) and let T be the probabilistic norm on X defined by 

Fx(t) = P({LO € fi : \\x(u)\\<t}). 

It is known that (X, T, TT^) is a complete probabilistic normed space of Sher-
stnev type. Furthermore, the (e, A)-topology on X induced by the probabilistic 
norm T is equivalent to the topology of the convergence in probability on X. 

A mapping / is said to be a random function defined on the subset A of real 
line with values in a separable Banach space X if, for every t ~ A the mapping 
/(£, •): ft —» X is a X-valued random variable. Two X-valued random functions 
/ and g are said to be equivalent if f(t,u) and g(t,u) are equal almost surely 
for every t ~ A. 

Random functions have had a special importance in the probability theory 
as well as in its applications. Regarding time series as random functions their 
predictability have increased and random functions have given important new 
tools in solving economics and engineering problems. Now, let / be a X-valued 
random function defined on A C M, then one can define the mapping f on A 
with values in the random normed space (X^T^T^) by A 3 t i—>• /(£), where 
[f(t)](u) = f(t,u). Conversely, for every function f: A —> (X,T,Tm) one can 
define the X-valued random function on A by f(t,u) = [f(t)](u), for every t G A 
and u E ft. Furthermore the correspondence / i-» / is one to one and onto. By 
this correspondence results obtained for functions with values in a probabilistic 
(^-normed space can be applied to the study of random functions with values in 
a separable Banach space. 
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These considerations have determined us to approach the study of functions 
with values into a probabilistic (^-normed space. 

PROPOSITION 3. Let f be a function and let (fn)neN be a sequence of functions 
defined on a non-empty subset A of real line with values in a Menger (p-normed 
spaces (L,T,T). Then we have: 

(a) The function f is continuous in t0 E A, if and only if, for every £ > 0 and 
A E (0,1) there is S(e, A) > 0 such that for all t E A with \t — t0\ < 5(s, A) 

Ff(t)-f(to)(z) > 1 - A . 

(b) The sequence {/n}neN converges on the set A to the function f if and only 
if for every e > 0. A E (0,1) and t E A there is an integer N(e, \,t) such 
that, for all n > N(e, A, t) we have 

Ffn(t)-f(t)(£) > 1 - A . 

The above statements are valid because the family {Vx(e,\) : Vx(e,\) = 
{y E L : Fx-y(e) > 1 — A}, e > 0, A E (0,1)} is a complete system of 
neighbourhoods for the point x in the topology generated by the Menger (p-norm 
T of(L,T,T). 

D E F I N I T I O N 2. A sequence {fn}neN of functions defined on a set A C R with 
values in a Menger (^-normed space (L,T,T) is called a Cauchy sequence if 
for every e > 0 and A E (0,1) there is an integer N(e,\) > 0 such that 
Ffn(t)-fm(t)(e) > 1 _ A for all* E A and n , ra > N(e,\). 

THEOREM 2. A sequence {/n}neN of functions defined on the set A C R with 
values in a complete Menger (p-normed space (L,T,T) is uniformly convergent 
on A if and only if {fn}neN is a Chauchy sequence on A. 

In what follows we will use the probabilistic (p-norm to introduce the funda
mental concepts of differential and integral calculus for functions with values in 
a probabilistic (p-normed space. 

Some particular results show us that these concepts assure a natural frame 
for the study of random functions. 

DEFINITION 3. Let / be a function defined on a set A C R with values in 
a probabilistic (/?-normed space (L,T,T) and let t0 E I C A, where / is an 
open interval. The function / is said to be differentiable in the point t0 if there 
exists an element xn E L such that, for every e > 0 and A E (0,1) there exists 
5(e, A) > 0 such that 

V/(t)-/(t0) ^.(g) > 1 - A 
t-tn 

for all t E / , t ^ t0, with \t - t0\ < 6(e,\). The element x0 E L is called the 
derivative of / in the point t0 and it is denoted by f'(t0). If the function / is 
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differentiable in each point t G _4, then the function / is said to be differentiate 
on the set A. 

PROPOS ITION 4. If the function / : A —> (L,T,T) is differentiable in to G A. 
t/ien £/ie derivative / ' ( to) is unique. 

P r o o f . Let us consider e > 0, A G (0,1) and x0, yo £ L such that / ' ( to) = x0 

and / ' ( t 0 ) = 2/o- By Definition 3 it results that there exists 5(e,\) > 0 and 
77 G (0,1) such that 

T- / £ \ V -. A F * ^ - 4 _ ) > 1 - 2 > 1 - 2 
and 

F * ^ - , o ( _ ) > 1 - _ > 1 - _ 

for every t G A, t 7̂  to, and \t — to\ < 5(e, A). Then we have : 

FXo-yo(s) > T ^F_^^___xo (l),F__±ga_yQ ( | ) 

> T m ( l - ^ , l - ^ ) > l - 7 7 > l - A . 

If A —> 0, it results that FXo,yo(s) = 1 for every e > 0. Hence FXo_yo = H0 and 

xo = yo- • 

PROPOS ITION 5. If the function f: A —• (L,T,T) is differentiable in to G A, 
t/zen it is continuous in the point to-

Now, let f be a function defined on a interval [a, b] and let A be a division 
of the interval [a, b] given by a = to < U < • • • < t n = b. Let us denote, by 
z/(A) = max (t_+i — t_). the norm of the division A and let u = (ix_)o<i<n-i, 

0<i<n—1 

^i G [£*, £_+_]. 

Now, we define: 
n - l 

O"A(./» = X^^+ 1 -U)f(ui). 
i=0 

DEF IN ITION 4. A function / : [a, 6] —> (L, ^ r, T) is said to be Riemann integrable 
on [a, 6] if there exist ^0 G L such that for every e > 0 and A G (0,1) there exists 
5(£, A) > 0 such that, if z/(A) < _»(£, A), then we have 

F*±(f,u)-x0(z) > 1 - A 

for every u = (ui)o<i<n-i- The element xo G L is called the Riemann integral 
b 

of the function / on the interval [a, 6] and it is denoted by XQ = f f(t) dt. 
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P R O P O S I T I O N 6. If the function f: [a, b] —> (L,F,T) is integrable on [a, b], then 
b 

J f(t)dt is unique. 
a 

The proof is similar to that of Proposition 4 and we omitted it. One can 
similarly prove that the other known properties of integrals are valid. 

The following theorem assures us that a large class of functions defined on 
a interval [a, b] C 1R, with values in a Menger (p-novmed space (L,:F, T) are 
integrable. 

We say that a continuous t-norm T is of Hadzic type if the family {Tn}n GN. 
where Tl(t) = t, T2(t) = T(t,t) and T n + 1 ( t ) = T(Tn(t),t), is equicontinuous at 
t = 1. 

T H E O R E M 3. Let (L^J7, T) be a complete Menger (p-normed space under a con
tinuous t-norm T of Hadzic type. If f is a continuous function defined on [a, b] 
with values in (L,^ 7, T) . then f is Riemann integrable on [a, 6]. 

P r o o f . Let A' : a = t'0 < t[ < • • • < tn = b and A " : a = t^ < t[ < ... 
• • • < tn = b be two divisions of [a, b]. We will show that, for every e > 0 and 
A G (0,1) there exists 6(e,X) > 0 such that, if max{.v(A/), z/(A")} < (J(e,A), 
then 

^7 A ,(/,n)-a A „(/ ,n)(^) > 1 - A. 

If the t-norm T is continuous and of Hadzic type, then for every A G (0,1) there 
exists r\ G (0,1) such that T n ( l — r\) > 1 — A for all n > 1. Since / is continuous 
on [a, 6], it results that, for every e > 0 and rj > 0 previously considered, there 
exists 51(e, A) > 0 and 771 G (0,1) such that 

/(*')-/(*") тг^: > 1 - »я > 1 -»/ 

for every t7, t" G [a, b] with \t' —1"\ < 51(e, A). Let us consider 5(e, X) = \61(e1 X) 
and the division A of [a, 6] given by the union of the divisions A ' and A". We 
assume that A : ao = t\ < t2 < — - < tp = b, u^ € [%, t'i+1] for 0 < i < n — 1 and 
u" G [tj,tj+1] for 0 < j < m - i. Let us denote Uk = u'{ for [tk,tk+\] C [^,^+1] 
and Uk = u" for [tk, tk+i] C [£", t"+1] for any 0 < i < n — 1, 0 < j < m — 1 and 
0 < fc < p - 1. 
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Then we have 

FaA,(t,u')-<тd„(f,u")(є) 

= Fn-1 тn-1 (Є) 

£ (*í+i-*í)/(uí)- E ( * í + i - ^ ) / Ю 
i = 0 j=0 

P - I 

_ E1 

PE(*fc+i-*fc)(/K)-/(űfc)) L - -- k=0 

- Г ( T ( • • • T ( Ff(uo)-fЫ) (ь= ï ) > Ff(ui)-f(йi) (ь^) 

E (tk+l — tk) 

(p— l )£zraes 

. . . , F / ( U p _ l ) _ / ( S p _ l ) ( ^ ) ) . . . ) > ^ - 1 ( l - r ? 1 ) > T ^ 1 ( l - T,) > 1 - A 

for every two divisions A r, A" of the interval [a, b] with max{.v(d/), v(d")} < 
5(e,X) and for every choice of points Ui £ [ti,t'i+1] and u" E [£",£"+1], where 
0 < z < n - 1 and 0 < j < m - 1. 

Now, let {A n } n >i be a sequence of divisions of the interval [a, b] such that 
lim z/(An) — 0. Then, for any 5\ > 0 there exists no G N such that, for 

n—>oo 

n 7 , ^ > no, max{z/(An/),i/(A^)} < 5. If we choose this o\ such that 5i <o"(£, A), 
then we have 

F<XA , (/,<)-trA ; ( / ,<)00 > 1 - A. 
n n 

This show us that the sequence {o_ n ( / ^ )} n €N is a Cauchy sequence in the 
RN-space (L,T,T). This being complete, it results that there exists x0 = 

b 

lim oAn (/, u) — / /(£) dt. This completes the proof of the theorem. • 

Remark 2. We know that every continuous function defined on [0,1] with values 
in a complete metric linear space (_, d) is Riemann integrable if and only if (L, d) 
is a locally convex topological linear space ([14]). We remark that, if the t-norm 
T is not of Hadzic type, then there exists a Menger (^-normed spaces (L,T,T) 
which, endowed with the (e, A)-topology generated by the Menger (^-norm T, is 
not locally convex. These shows us that the above theorem offers the largest class 
of Menger (/?-normed spaces (_, T, T) which have the property: every continuous 
function / : [a, b] —> (L,T,T) is Riemann integrable. 

Remark 3. The condition as the t-norm T to be of Hadzic type is also a 
necessary condition of the Theorem 3 ([8], [14]). 

268 



ON FUNCTIONS WITH VALUES IN PROBABILISTIC NORMED SPACES 

Remark 4. If (L, J7, T) is a random normed space under a t-norm T which 
is not of Hadzic type, there are continuous functions which are not integrable. 
So, an open problem is to find which classes of functions are integrable in which 
classes of probabilistic normed spaces, especially, for Tm and product t-norm Tp, 
which are not of Hadzic type. 
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