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Discrete limit laws for additive functions on the
symmetric group

Eugenijus Manstavičius

Abstract. Inspired by probabilistic number theory, we establish necessary and

sufficient conditions under which the numbers of cycles with lengths in arbi-
trary sets posses an asymptotic limit law. The approach can be extended to
deal with the counts of components with the size constraints for other random
combinatorial structures.

1. Introduction and Results

Many combinatorial and algorithmic problems involve permutations with the cycle
length constraints. Assume that these constraints change when the order of the
symmetric group increases. Then the following natural question arises: what is
the asymptotic behavior of the number of such permutations? If a permutation is
taken at random, this can be reformulated as the problem on the asymptotic value
distribution of sequences of linear statistics defined in terms of the cycle structure
vector. So far (see, for instance, [1] or [6]), numerous results were published on
the number of all or different length cycles, short cycles, long cycles, cycles in a
fortiori given interval et cet. We now discuss a general case and establish conditions
when arbitrary sequences of the cycle count functions possesses an asymptotic dis-
tribution. Until now, the results on the necessity of the conditions are pretty rare,
nevertheless some progress has been achieved in the functional limit theorems (see
[3] and [10]).

Let Sn be the symmetric group and σ ∈ Sn be a permutation having kj(σ) ≥ 0
cycles of length j, 1 ≤ j ≤ n. The structure vector is defined as
k̄(σ) :=

(
k1(σ), . . . , kn(σ)

)
. It satisfies the relation

1k1(σ) + · · · + nkn(σ) = n. (1)
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Set νn(. . . ) = (n!)−1#{σ ∈ Sn : . . . } for the probability measure on Sn and Enf(σ)
for the mean-value of a function f(σ) on Sn with respect to this frequency. If ξj ,
j ≥ 1 are independent Poisson random variables (r.vs) given on some probability
space {Ω,F , P} with the parameter Eξj = 1/j, then (see [1], formula (1.15))

νn

(
k̄(σ) = k̄

)
=
∏

j≤n

1

jkjkj !
= P

(
(ξ1, . . . , ξn) = k̄

∣∣ ∑

j≤n

jξj = n

)
, (2)

where k̄ ∈ Z+n

, and
(
k1(σ), . . . kn(σ), 0, . . .

)
νn

⇒
(
ξ1, . . . , ξn, ξn+1, . . .

)
in the sense of

convergence of the finite dimensional distributions. Here and in what follows we
assume that n→ ∞. Despite to that, dealing with the asymptotic value distribution
of the linear combinations

hn(σ) := an1k1(σ) + · · · + annkn(σ), anj ∈ R (3)

we face a lot of obstacles. The main reason is dependence of the summands arising
from relation (1). The first case of (3) with anj = 1/ logn describing the normalized
number of cycles of σ was examined in the paper [5]. Using an analytic method,
the author of the present remark established the central limit theorem under the
Lindeberg type condition and some more general limit theorems (see [8]). Section
8.5 of the recent book [1] exposes a general probabilistic approach similar to that
cultivated in probabilistic number theory (see [7]). Comparing the results obtained
for functions hn(σ) on permutations with that achieved for the additive number
theoretical functions (see [4]) we see that, on this path, probabilistic number theory
is far ahead from combinatorics.

For permutations, the general problem can be formulated as follows:
Under what conditions the frequencies Vn(x;hn, α) := νn

(
hn(σ) − α(n) < x

)

with some α(n) ∈ R weakly converge to a limit distribution law?
Only in the case of degenerated limit law we have (see [12]) the final answer.

To formulate this result, we set x∗ = min{1, |x|} signx.

Theorem 1.1 ([12]). Let hn(σ) be defined in (3). The frequencies Vn(x;hn, α)
weakly converge to the degenerated at the point x = 0 distribution function if and
only if

Un(h, λ) :=
∑

j≤n

(anj − λj)∗
2

j
= o(1)

and

α(n) = nλ+
∑

j≤n

(anj − λj)∗

j
+ o(1) (4)

for some sequence λ = λn ∈ R.

In general, the formulated problem, especially its necessity part, seems to be
difficult. Proving sufficiency, one can first apply the total variation estimate

1

2

∑

k1,...,kr≥0

∣∣νn

(
k1(σ) = k1, . . . , kr(σ) = kr

)
− P (ξ1 = k1, . . . , ξr = kr

)∣∣ = o(1)
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established in [1] for r = o(n). In the next step, to show that an,[εn]k[εn](σ) + · · ·+
annkn(σ) tends to zero in probability νn for each 0 < ε < 1, one can use author’s
inequality (see [9])

νn (|hn(σ) − x| ≥ y) ≤ 32e2P (|an1ξ1 + · · · + annξn − x| ≥ y/3) , (5)

valid for arbitrary anj , x ∈ R and y ≥ 0. This has proved to be useful (see [2] or
[3]). The analytic approach exposed in paper [8] goes even further, nevertheless it
requires some regularity of anj for large j.

The present remark is based upon a few ideas originated in probabilistic num-
ber theory, especially upon those proposed by J. Šiaulys in [13]. For brevity, we
now examine the case when anj ∈ {0, 1}. Then hn(σ) just counts the cycles in
sequences of subsets Jn : = {j ≤ n : anj = 1}. The first attempt [12] to investi-
gate the case when the Poisson limit law Πµ(x) with parameter µ > 0 appears for
Vn(x) := Vn(x;hn, 0) gave an unexpected phenomenon. In what follows we add the
star over the sums to replace the condition anj = 1.

Theorem 1.2 ([12]). Let hn(σ) be defined in (3) with anj ∈ {0, 1}. The frequencies
Vn(x) weakly converge to Πµ(x) if and only if

∗∑

j≤n

1

j
= µ+ o(1) (6)

and
∗∑

εn<j≤n

1

j
= o(1) (7)

for each fixed 0 < ε < 1.

The necessary condition (7) implies that counting the cycles with lengths in
[εn, n] we can not obtain the Poisson law. By virtue of anj ∈ {0, 1}, the sum
an1ξ1 + · · ·+annξn is also the Poisson random variable. It converges in distribution
to Πµ(x) if and only if condition (6) holds. So, condition (7) is the price we are
paying for dependence of the random variables kj(σ), j ≤ n. On the other hand (see
[10]), the Poisson law can be the limit for a sequence hn(σ) defined via unbounded
sequence anj if j runs only the integers of the interval (n/2, n]. Such possibility is
contained in Theorem 1.4 below.

If anj ∈ {0, 1}, the linear statistics hn(σ) posses rather simple expressions for
the factorial moments Enhn(σ)(s), where x(s) := x(x− 1) · · · (x− s+ 1). The next
result is based on their analysis. Denote

γns =
∗∑

j1≤n

1

j1

∗∑

j2≤n

1

j2
· · ·

∗∑

js≤n

1

js
1{j1 + j2 + · · · + js ≤ n}.

Theorem 1.3. Let hn(σ) be defined in (3) with anj ∈ {0, 1}. The frequencies Vn(x)
weakly converge to a limit law if and only if there exist finite limits

lim
n→∞

γns = γs (8)
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for each s ∈ N. Moreover, if (8) is satisfied, the characteristic function of the limit
distribution is

1 +

∞∑

s=1

γs

s!
(eit − 1)s, t ∈ R.

The next problem would be to describe the class of the limit laws appearing
in Theorem 1.3. We just observe that it contains the degenerated at zero and
arbitrary Poisson law. Moreover, the factorial moments of each limit law satisfy
the inequalities

γs ≤ γrγs−r (9)

for each 1 ≤ r ≤ s− 1 and s ≥ 2. Recall that the Poisson law can be reckoned by
the relation γs = γs

1 for each s ≥ 1. What are the conditions for the convergence of
Vn(x) to a law V (x) which factorial moment γs satisfies the last formula only for
some s = m ≥ 2?

Corollary 1. The weak convergence of Vn(x) to a law V (x) with the property γm =
γm
1 for some m ≥ 2 occurs if and only if condition (6) of Theorem 1.2 with γ1 = µ

and
∗∑

n/m<j≤n

1

j
= o(1) (10)

are satisfied and there exist finite limits

lim
n→∞

∗∑

j1≤n/m

1

j1

∗∑

j2≤n/m

1

j2
· · ·

∗∑

js≤n/m

1

jl
1{j1 + j2 + · · · + js ≤ n} = γs

for each s = m+ 1,m+ 2, . . .

The corollary generalizes Theorem 1.2. Condition (10) shows that, in the case
of limit law satisfying γm = γm

1 for some m ≥ 2, the main role is played only by the
cycles with lengths not exceeding n/m. Going along this path, we can characterize
the case of limit distribution with a finite support.

Corollary 2. Assume that V (x) is a distribution function of a r.v. taking values
0, 1, . . . ,m− 1. Then Vn(x) weakly converges to V (x) if and only if

∗∑

j≤n/m

1

j
= o(1) (11)

and the finite limits

lim
n→∞

∗∑

n/m<j1≤n

1

j1

∗∑

n/m<j2≤n

1

j2
· · ·

∗∑

n/m<js≤n

1

js
1{j1 + j2 + · · · + js ≤ n} = γs (12)

exist for each fixed s ∈ N.

Now, the short cycles are negligible by virtue of condition (11). Finally, to give
some impression what happens in the case of hn(σ) defined in (3) with unbounded
anj ∈ Z, without proof we include the next result.
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Set

anj
(m) =






anj if 0 ≤ anj ≤ m,

m if anj > m,

0 if anj < 0

and hm
n (σ) := a

(m)
n1 k1(σ) + · · · + a

(m)
nj kn(σ).

Theorem 1.4. The distribution functions Vn(x) weakly converge to the Poisson
limit law Πµ(x) if and only if

∑

j≤n
anj≤−1

1

j
= o(1), lim

m→∞
lim sup

n→∞

∑

j≤n
anj≥m

1

j
= 0,

and

lim
m→∞

lim sup
n→∞

Enh
m
n (σ)(s) = lim

m→∞
lim inf
n→∞

Enh
m
n (σ)(s) = µs (13)

for each fixed s ∈ N.

Now the expressions of the factorial moments in (13) become fairly compli-
cated, nevertheless their analysis is not hopeless.

2. Auxiliary Lemmas

Lemma 1 ([1]). For arbitrary natural numbers j1 < · · · < jm and l1, . . . , lm, we
have

En

(
kj1(σ)(l1) · · ·kjm

(σ)(lm)

)
= 1{j1l1 + · · · + jmlm ≤ n}E

(
ξj1 (l1)

· · · ξjm (lm)

)
.

For brevity, we use � as an analog of O(·).

Lemma 2. Let h(σ) := hn(σ) be as in (3) with aj := anj ∈ {0, 1}, γnl be defined
before Theorem 1.3, and s ∈ N. Then

Enh(σ)(s) = γns ≤ γs
n1. (14)

Proof. Let z ∈ C, |z| ≤ 2, and `m(k̄) := 1k1 + · · · + mkm, where k̄ =
(k1, . . . , km) ∈ Z+m

and 0 ≤ m ≤ n. Grouping the permutations with the same
cycle structure and using (3) together with (2), we have

Enz
h(σ) =

1

n!

∑

σ∈Sn

zh(σ) =
∑

`n(k̄)=n

n∏

j=1

zajkjνn

(
k̄(σ) = k̄)

=
∑

`n(k̄)=n

n∏

j=1

(
zaj

j

)kj 1

kj !
,

where the summation is extended over k̄ ∈ Z+n

with the property `n(k̄) = n. Set

gm(z) =
∑

`m(k̄)=m

m∏

j=1

(
zaj

j

)kj 1

kj !
,
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where g0(z) ≡ 1 and 0 ≤ m ≤ n. If w ∈ C, |w| ≤ 1/2 is another variable, then

exp

{∑

j≥1

zaj

j
wj

}
=

∏

j≥1

∑

k≥0

(
zaj

j

)k
1

k!
wjk

=
∑

m≥0

( ∑

`m(k̄)=m

m∏

j=1

(
zaj

j

)kj 1

kj !

)
wm =

∑

m≥0

gm(z)wm.

These series as well as the series involving the derivative with respect to z are
uniformly convergent if |z| ≤ 2 and |w| ≤ 1/2 therefore

∑

j≥1

aj

j
zaj−1wj

∑

m≥0

gm(z)wm =
∑

n≥0

g′n(z)wn.

Hence

g′n(z) =
∑

j≤n

aj

j
zaj−1 gn−j(z) =

∗∑

j≤n

1

j
gn−j(z)

and

g(s)
n (z) =

∗∑

j≤n

1

j
g
(s−1)
n−j (z) (15)

for each s ≥ 1. Using this equality and the agreement γm0 := 1 for each m ≥ 0, by
induction we derive the following formula

g(s)
m (1) = γms, (16)

where 0 ≤ m ≤ n and s ≥ 0. For the induction parameter, we take r = m+ s ≥ 0.
The well known Cauchy’s identity gives the value gm(1) = 1 for each m ≥ 0. Hence

g
(0)
m (1) = gm(1) = γm0, confirming the first step of induction.

If g
(s−1)
n−j (1) = γn−j,s−1, where 1 ≤ j ≤ n and s ≥ 1, is already established,

then by (15)

g(s)
n (1) =

∗∑

j≤n

1

j
γn−j,s−1

=

∗∑

j≤n

1

j

∗∑

j1≤n−j

1

j1
· · ·

∗∑

js−1≤n−j

1

js−1
1{j1 + · · · + js−1 ≤ n− j}.

This is the equality in (16) for n = m. By the definitions g
(s)
n (1) = Enh(σ)(s),

consequently, the equality in (14) is proved. Observe that γns ≤ γnrγn,s−r for each
1 ≤ r ≤ s − 1 and s ≥ 2. Hence we obtain the inequality in (14). The lemma is
proved.

The main analytic ingredient is an estimate for the concentration function. For
the function h(σ) defined via aj , 1 ≤ j ≤ n, we denote

Qn(u) = sup
x∈R

νn(|h(σ) − x| < u), u ≥ 0,

and aj(λ) = aj − jλ. Set

Dn(u;λ) =
∑

j≤n

min{u2, aj(λ)
2}

j
, Dn(u) = min

λ∈R

Dn(u;λ).
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Lemma 3 ([11]). We have

Qn(u) � uDn(u)−1/2 (17)

with an absolute constant in �.

3. Proofs

Proof of Theorem 1.3. Sufficiency. Condition (8) of Theorem 1.3 implies

γn1 =

∗∑

j≤n

1

j
→ γ1 <∞.

Hence by (14) the factorial moments γns ≤ Cs
1 for some constant C1 > γ1 if n is

sufficiently large. Further we use (8) and the expansion

Ene
ithn(σ) = 1 +

L∑

s=1

γns

s!
(eit − 1)s +O

(
γn,L+1

(L+ 1)!
|eit − 1|L+1

)

= 1 +

L∑

l=1

γl

l!
(eit − 1)l +O

(
(2C1)

L

(L+ 1)!

)
+ oL(1),

where either of the estimates is uniform in t ∈ R and the second one depends on
L ≥ 1. Taking now n→ ∞ and later L→ ∞, we complete the proof of convergence
of Vn(x) and obtain the formula of the characteristic function of the limit law.

Necessity. Let Vn(x) weakly converge to a limit distribution V (x) = P (ξ < x),
where ξ is a random variable taking values in the set Z+. Hence for the concentra-
tion function, we obtain

Qn(1) � max
m∈Z+

P (ξ = m) ≥ c > 0,

where the constant c depends at most on ξ. In what follows we disregard such
dependence. Thus, by (17), we have Dn(1;λ) � 1 with some λ = λn ∈ R. By
virtue of anj ∈ {0, 1}, this leads to

1 �
∑

j≤n

(|λ|j − 1)∗
2

j
�

∑

2/|λ|≤j≤n

1

j
� log(n|λ|) − 1

if λ 6= 0. Hence |λ| ≤ C/n with some C > 0. Using this and (x+ y)2 ≤ 2(x2 + y2),
we obtain

γn1 = Dn(1; 0) � Dn(1;λ) +
∑

j≤n

(λj)∗
2

j
� 1 +

∑

j≤n

(Cj/n)∗
2

j

� 1 +
C2

n2

∑

j≤n/C

j +
∑

n/C<j≤n

1

j
≤ C2 <∞.

As in the previous part, using (14), we see that supn Enhn(σ)(s) ≤ Cs
2 for each

s ≥ 1. Consequently, from the weak convergence of Vn(x) we obtain convergence of
the factorial moments. Applying (14), we complete the proof of (8). Theorem 1.3
is proved.
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Proof of Corollary 1. Under its conditions by virtue of (9) we also have γs =
γs
1 = µs for each s ≤ m. Thus, they imply (8), hence the sufficiency part follows

from Theorem 1.3.
If the limit distribution V (x) exists, then condition (8) is satisfied. Observe

that

γm
n1 − γnm =




∗∑

j≤n

1

j




m

−
∗∑

j1≤n

1

j1
· · ·

∗∑

jm≤n

1

jm
1{j1 + · · · + jm ≤ n}

≥




∗∑

n/m<j≤n

1

j




m

.

Now the property of the limit law implies (10). Combining it with (8), we complete
the proof of the corollary.

Proof of Corollary 2. If the limit law V (x) exists and is concentrated in the set
{0, 1, . . . ,m− 1}, its factorial moment γm = 0. Consequently, from (8) we obtain

o(1) = γnm ≥




∗∑

j≤n/m

1

j




m

.

This is condition (11). Further using it, we reduce (8) to the form (12).
The sufficiency is trivial. The corollary is proved.
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[2] R. Arratia and S. Tavaré, Limit theorems for combinatorial structures via discrete process
approximations, Random Structures and Algorithms 3(1992), 3, 321–345.
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