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Quasigroup automorphisms

and symmetric group characters

Brent Kerby, Jonathan D.H. Smith

Abstract. The automorphisms of a quasigroup or Latin square are permutations
of the set of entries of the square, and thus belong to conjugacy classes in sym-
metric groups. These conjugacy classes may be recognized as being annihilated
by symmetric group class functions that belong to a λ-ideal of the special λ-ring

of symmetric group class functions.
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Classification: 05B15, 19A22, 20N05

1. Introduction

For a given n ≥ 0, the set of automorphisms of n-element quasigroups or Latin
squares is a union of conjugacy classes in the symmetric group Sn. The main
result of this note (Theorem 4.5) shows that the class functions annihilating these
automorphisms form a λ-ideal AKn in the special λ-ring R(Sn) of class functions
on Sn. Further study of this structure may prove to be of assistance in working
towards a fuller specification of quasigroup automorphisms.

A preliminary section lists some known facts about quasigroup automorphisms,
while Section 3 recalls the definition of a λ-ring. Section 4 then presents annihila-
tors of automorphisms, and the way they fit in to the λ-ring structure of R(Sn).
For concepts and conventions that are not otherwise explained here, see [8], [9].

2. Quasigroup automorphisms

This section assembles some well-known and elementary observations about
automorphisms of quasigroups or Latin squares. Readers are also referred to [2],
[4], [5], [7] for further discussion (which may involve general quasigroup autotopies,
and not just automorphisms).

Lemma 2.1. Let k ≥ 0. If θ is an automorphism of a quasigroup Q, then so is

the power θk.

A class C of quasigroups is said to be abstract if each quasigroup isomorphic
to a member of C also lies in C.
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Lemma 2.2. Let C be an abstract class of quasigroups. Let n ≥ 0. Suppose

that a permutation θ is an automorphism of an n-element quasigroup (Q, ·) from

the class C. Then for each element π of the symmetric group Sn, the conjugate

π−1θπ is also an automorphism of an n-element C-quasigroup.

Proof: Define a product ◦ on Q by

(2.1) x ◦ y = (xπ−1 · yπ−1)π

for x, y ∈ Q. Since π : Q → Q is bijective, it follows that (Q, ◦) is a quasigroup.
Indeed, (2.1) shows that π : (Q, ·) → (Q, ◦) is a quasigroup isomorphism. Thus
the composite π−1θπ : (Q, ◦) → (Q, ◦) is an automorphism. Moreover, since
(Q, ◦) is isomorphic (via π) to the C-quasigroup (Q, ·), it itself lies in C. �

Lemma 2.3. For i ∈ {1, 2}, suppose that θi is an automorphism of a quasi-

group Qi. Then

θ1 × θ2 : Q1 ×Q2 → Q1 ×Q2; (x1, x2) 7→ (x1θ1, x2θ2)

is an automorphism of Q1 ×Q2.

Lemma 2.4 (Fixpoint Condition). A nontrivial automorphism of a finite quasi-

group Q cannot fix more than |Q|/2 elements of Q.

Proof: The set of fixed points of an automorphism of Q forms a subquasigroup
of Q. No proper subquasigroup of Q can have more than |Q|/2 elements. �

Lemma 2.5. Let q be a prime power. Then there is a quasigroup automorphism

of cycle type (q − 1)111.

Proof: Let e be a primitive element of the field GF(q). Then right multiplication
by e in GF(q) gives an automorphism of the group (GF(q),+). �

Remark 2.6. The hypothesis that q be a prime power may be dropped. See [10,
Theorem 6], or [2, Theorem 2.3, f = 1].

Lemma 2.7. Let n be a positive integer.

(a) If n is even, there is no quasigroup automorphism of cycle type n1.

(b) If n is odd, there is a quasigroup automorphism of cycle type n1.

Proof: (a) Compare the discussion of [10, Theorem 6].
(b) For odd n, the translation x 7→ x+1 is an automorphism of the arithmetic

mean quasigroup x ◦ y = (x+ y)/2 on the set of integers modulo n. �

For small values of n, Table 1 lists the cycle types of automorphisms of n-
element quasigroups, determined by an exhaustive computer calculation (compare
[4]). The results discussed in this section serve to specify many of these types,
and eliminate types that do not appear. However, these results do not account
for the absence of the cycle types 23 and 4121 from the list for n = 6, for example.
This absence is addressed in Remark 4.6.
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n Cycle types of n-element quasigroup automorphisms

1 11

2 12

3 13, 2111, 31

4 14, 2112, 22, 3111

5 15, 2211, 3112, 4111, 51

6 16, 2212, 3113, 32, 4112, 5111

7 17, 2213, 2311, 3211, 4113, 412111, 5112, 6111, 71

8 18, 2214, 2312, 24, 3212, 4114, 412112, 4122, 42, 5113, 6112, 7111

9 19, 2313, 2411, 3213, 33, 4211, 5114, 6113, 612111, 6131, 7112, 8111, 91

Table 1. Cycle types of quasigroup automorphisms

3. λ-rings

A λ-ring A [1, §1], [3, §3.1] 1 is a commutative, unital ring equipped with unary
λ-operations λn for each n ≥ 0, such that the identities

λ0(x) = 1, λ1(x) = x,

and

(3.1) λn(x + y) =
n

∑

k=0

λk(x)λn−k(y)

are satisfied. Defining the generating function

λt(x) =

∞
∑

n=0

λn(x)tn

for each element x of A, with indeterminate t, the identity (3.1) may be rewritten
in the form λt(x+ y) = λt(x)λt(y).

Example 3.1. The ring Z of integers becomes a λ-ring with λt(x) = (1 + t)x,
the identity λt(x+ y) = λt(x)λt(y) being clearly satisfied.

Definition 3.2. A subset I of a λ-ring A is said to be a λ-ideal if

(a) I is an ideal of A;

1Some authors say pre-λ-ring , reserving the term λ-ring for the special λ-rings of Defini-
tion 3.3 — compare [6, pp. 7, 13].
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(b) for each element x of I, one has λk(x) ∈ I for k > 0.

Now let ξ1, . . . , ξq, η1, . . . , ηr be indeterminates. Use

∞
∑

i=0

sit
i =

q
∏

k=1

(1 + ξkt) and

∞
∑

i=0

σit
i =

r
∏

k=1

(1 + ηkt)

to define the elementary symmetric functions

si(ξ1, . . . , ξq), σi(η1, . . . , ηr).

Then define Pn(s1, . . . , sn;σ1, . . . , σn) to be the coefficient of tn in

q
∏

i=1

r
∏

j=1

(1 + ξiηjt) .

Define Pn,d(s1, . . . , snd) to be the coefficient of tn in

∏

1≤i1<...<id≤q

(1 + ξi1 . . . ξid
t) .

Definition 3.3. A λ-ring is said to be special if it satisfies the identities

λn(xy) = Pn

(

λ1(x), . . . , λn(x);λ1(y), . . . , λn(y)
)

and

(3.2) λm (λn(x)) = Pm,n

(

λ1(x), . . . , λmn(x)
)

for all m,n ≥ 0.

Remark 3.4. Setting n = 0 in (3.2) yields λt(1) = 1 + t. Thus the λ-ring
structure of Example 3.1 is the unique special λ-ring structure on the ring Z of
integers.

Theorem 3.5 ([6, p. 54]). The ring R(G) of complex class functions on a finite

group G forms a special λ-ring.

4. Automorphism annihilators

In order to make relations like (4.2) below as clear as possible, the value of
a symmetric group class function χ at a permutation π will be written with a
“pairing” notation as 〈π, χ〉. For a partition τ of a positive integer n, there are
two class functions on Sn associated with τ . We will write χτ for the charac-
teristic function of the set of permutations of cycle type τ , while χτ will denote
the irreducible character of Sn determined by τ (according to the procedure of
[6, §III.4], for example). Let C be an abstract class of quasigroups. In particular,
let Q be the class of all quasigroups.
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Definition 4.1. A class function α on the symmetric group Sn is a C-automor-

phism annihilator if 〈θ, α〉 = 0 for each automorphism θ of a C-quasigroup of
order n.

For each n ≥ 0, define the automorphism kernel AKn(C) to be the complex
vector space that consists of all the C-automorphism annihilators on Sn.

Example 4.2. (a) The space AK2(Q) is spanned by χ2
1

−χ1
2

or the characteristic
function χ21 of the set consisting of the permutation of cycle type 21.

(b) The space AK3(Q) is trivial.
(c) The space AK4(Q) is spanned by the character

χ4
1

− χ3
1
1
1

+ χ2
1
1
2

− χ1
4

— or by the characteristic function χ41 of the set of permutations of cycle type 41.

The following proposition shows how automorphism annihilators are used to
identify quasigroup automorphisms.

Proposition 4.3. For a n ≥ 0, let π be an element of Sn. Then π is an auto-

morphism of an n-element C-quasigroup if and only if

(4.1) ∀ α ∈ AKn(C), 〈π, α〉 = 0.

Proof: The “only if” direction is immediate from Definition 4.1. For the con-
verse, suppose that a permutation π satisfies (4.1). Let N be the subset of
Sn consisting of permutations which are not C-quasigroup automorphisms. By
Lemma 2.2, the characteristic function χN is a class function on Sn. It is cer-
tainly a C-automorphism annihilator. By (4.1), χN takes the value zero on π.
Thus π is identified as a C-quasigroup automorphism. �

Remark 4.4. To verify that (4.1) holds for a permutation π, it suffices to check
the condition 〈π, α〉 = 0 for α from a basis of the automorphism kernel AKn(C).

Theorem 4.5. For each n ≥ 0, the automorphism kernel AKn(C) forms a λ-ideal

in the special λ-ring R(Sn) of symmetric group class functions.

Proof: Let θ be a C-quasigroup automorphism. Suppose that α is a C-automor-
phism annihilator. Then for each character χ of Sn,

〈θ, αχ〉 = 〈θ, α〉〈θ, χ〉 = 0.

Thus the space AKn(C) is an ideal of the ring R(Sn).
Now consider a positive integer k. The Adams operation ψk is defined on

R(Sn) by

(4.2) 〈π, ψk(χ)〉 = 〈πk, χ〉

for each character χ [6, p. 54]. For each C-quasigroup automorphism θ, one has

〈θ, ψk(α)〉 = 〈θk, α〉 = 0
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by (4.2) and Lemma 2.1. Thus the space AKn(C) is closed under the various
Adams operations ψk for positive integers k. The corresponding λ-operations are
given by

λk =
1

k!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1 1 0 . . . . . . 0
ψ2 ψ1 2 0 . . . 0

. . .

. . .

ψk ψk−1 . . . ψ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[6, p. 54]. Since each term of the determinant’s Laplace expansion down the first
column involves at least one Adams operation with positive index, the set AKn(C)
is closed under the λ-operations λk for positive integers k. �

Remark 4.6. The ideal AK6(Q) contains the character

χ6 − χ5
1
1
1

+ χ4
1
2
1

− χ3
2

which takes nonzero values on the problematic conjugacy classes of cycle types 23

and 4121, as well as on 61.

Corollary 4.7. For each n ≥ 0, the quotient R(Sn)/AKn(C) is a special λ-ring

whose dimension is equal to the number of conjugacy classes of C-quasigroup

automorphisms in Sn.

Definition 4.8. For a n ≥ 0 and abstract class C of quasigroups, we call the
special λ-ring

ATRn(C) = R(Sn)/AKn(C)

the automorphism type ring for C of order n.

Let P (n) be the number of partitions of n. Corollary 4.7 gives the following
Duality Principle.

Proposition 4.9. Let n be a positive integer. Let A be a set of cycle types

of automorphisms of n-element C-quasigroups. Let L be a linearly independent

subset of the automorphism kernel AKn(C). Then

(4.3) |A| + |L| ≤ P (n).

Equality holds in (4.3) if and only if L spans AKn(C) and A contains all C-

automorphism cycle types.

We will illustrate the Duality Principle for Q in the case n = 5, aiming at the
middle row of Table 1. Certainly the trivial 15 is an automorphism type. By
Lemma 2.7(b), 51 is an automorphism type. By Lemma 2.5, 4111 is an automor-
phism type. By Lemma 2.1, it follows that 2211 is an automorphism type. This
gives the set

(4.4) A = {15, 2211, 4111, 51}
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of automorphism types. On the other hand, the Fixpoint Condition (Lemma 2.4)
shows that the characteristic function χ2113 is an automorphism annihilator. By
Theorem 4.5, it follows that

ψ3 (χ2113) = χ2113 + χ3121

also lies in AK5(Q), and we obtain the linearly independent subset

L = {χ2113 , ψ3 (χ2113)}

of AK5(Q).
At this stage, there is a single issue still to be resolved: Is 3112 a Q-automor-

phism type? The Duality Principle alone is insufficient to show that it is. Indeed,
if 3112 were not a Q-automorphism type, then the characteristic function χ3112

would be in AK5(Q), as would ψ2(χ3112). However, there is a relation

ψ3 (χ2113) − χ2113 = χ3121 = ψ2 (χ3112) − χ3112 ,

so the set

L′′ = {χ2113 , ψ3 (χ2113) , χ3112 , ψ2 (χ3112)}

prunes to the linearly independent subset

L′ = {χ2113 , ψ3 (χ2113) , χ3112}

of AK4(Q), and then the relation

(4.5) |A| + |L′| = 7 = P (5)

is still consistent with the Duality Principle. In fact, quasigroups with an auto-
morphism of cycle type 3112 do exist [2, Theorem 2.3, f = 2]; for example, the
quasigroup with the following Cayley table has (123) as an automorphism:

1 2 3 4 5
1 1 4 5 2 3
2 5 2 4 3 1
3 4 5 3 1 2
4 2 3 1 4 5
5 3 1 2 5 4

Remark 4.10. The set A of (4.4) presents the full set of cycle types of automor-
phisms of 5-element entropic quasigroups (i.e., those satisfying xy · zt = xz · yt),
including the abelian group (GF(5),+) of Lemma 2.5 and the arithmetic mean
quasigroup of Lemma 2.7(b). For this reason, the sets A and L′ combine to give
the complete equality (4.5) for n = 5, in accordance with the Duality Principle
for the class E of entropic quasigroups.
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