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Abstract. We investigate diverse separation properties of two convex polyhedral sets for
the case when there are parameters in one row of the constraint matrix. In particular, we
deal with the existence, description and stability properties of the separating hyperplanes
of such convex polyhedral sets. We present several examples carried out on PC. We are
also interested in supporting separation (separating hyperplanes support both the convex
polyhedral sets at given faces) and permanent separation (a hyperplane separates the convex
polyhedral sets for all feasible parameters). Finally, we show how the developed theory is
applicable in multiobjective linear programming.
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1. Introduction

Separation of convex sets is an important mathematical tool used both in theory

and in practice. We find applications in economics (e.g. the second welfare the-

orem [12]), computer science (e.g. support vector machines [1]) and especially in

optimization (see, e.g., Nožička et al. [16], Rockafellar [18]).

In practice, input data are often known only approximately due to measurement

errors. To the best of our knowledge, combination of these two principles—separation

and uncertainty—has never been studied systematically. We broke this in Hladík [10]

and [11], where we derived the basic separation properties of the convex sets with

parameters on the right-hand side or in one column of the constraint matrix, respec-

tively. In the present paper we are concerned with the third case, when parameters

are situated in one row of the constraint matrix. Nevertheless, the proposed theorems
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and their proofs are not always analogous to the previous ones and other approaches

had to be used.

We aim at developing the theoretical background useful for diverse applications.

One possible application—multiobjective linear programming—is mentioned in Sec-

tion 8.

We now introduce some notation. Given a matrix M , we use Mi,· and M·,j

to denote the ith row and the jth column of M , respectively. For given vectors

a, b ∈ R
k, the expression a < b means ai < bi for all i = 1, . . . , k. For any set X

we denote by clX , intX , dimX , convX , and X⊥ the closure, the interior, the

dimension, the convex hull, and the orthogonal complement of X , respectively. For

the kth unit vector we use the symbol ek ≡ (0, . . . , 0, 1, 0, . . . , 0)T .

2. Basic definitions and theorems

First, we recall some basic definitions and theorems concerning separation. There

are several kinds of separability of convex sets (cf. Klee [14]). For the purpose of this

paper it is convenient to use the following one requiring full dimension of the sets.

Definition 1. Convex sets X ,Y ⊂ R
n are called separable if dimX = dimY = n

and there exists a hyperplane R = {x ∈ R
n : rT x = s} such that X ⊆ {x ∈

R
n : rT x 6 s} and Y ⊆ {x ∈ R

n : rT x > s}; R is called a separating hyperplane of

the sets X , Y.

We also adopt the following well-known separation theorem (see e.g.Grünbaum [4],

Kemp and Kimura [13], Nožička et al. [16], Rockafellar [18]):

Theorem 1. Convex sets X ,Y ⊂ R
n are separable if and only if dimX =

dimY = n and intX ∩ intY = ∅.

Consider a family of convex polyhedral sets

(2.1) M1(λ, µ) ≡ {x ∈ R
n : Ax 6 b, λT x 6 ν}

and a convex polyhedral set

(2.2) M2 ≡ {x ∈ R
n : Cx 6 d},

where A ∈ R
(m−1)×n, C ∈ R

l×n, b ∈ R
m−1, d ∈ R

l, m > 1, l > 0 are fixed and

λ ∈ R
n, ν ∈ R are parameters. Denote also

(2.3) M1 ≡ {x ∈ R
n | Ax 6 b}.
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Parametric convex polyhedral sets were also studied e.g. in Nožička et. al. [15],

and the particular case of row parameters in Grygarová [9] (for systems of linear

equations with non-negative variables).

In the following sections we derive diverse separation properties ofM1(λ, µ) and

M2, and particularly the set of parameters λ, µ under which the corresponding

properties are preserved. In Section 3 we derive the description of the solution set

(a set of parameters for which given convex polyhedral sets are separable) and in

Section 4 we describe all the separating hyperplanes. In Section 5 we define stability

sets, derive their description by means of linear inequalities and present examples

carried out on PC. In Section 6 we characterize the set of all parameters for which

there exists a separating hyperplane supporting given convex polyhedral sets at fixed

faces. In Section 7 we show a way how to check the existence of a permanent

separating hyperplane (a hyperplane that separates convex polyhedral sets for all

feasible parameters). Finally, in Section 8 we give an application in multiobjective

linear programming.

3. Solution set

The solution set is the most important characteristic of separability ofM1(λ, ν)

andM2, and we use it throughout the paper.

Definition 2. The solution set is the set of all (λ, ν) ∈ R
n+1 for which the

convex polyhedral setsM1(λ, ν) andM2 are separable.

From now on we suppose that dimM1 = dimM2 = n. Otherwise, the solution

set is empty.

We achieve a description of the solution set in several steps. In Theorem 2 we

characterize the set of parameters λ, ν for which M1(λ, ν) is non-empty (we will

use it in Section 6), and in Theorem 3 we do the same for the set of parameters for

which M1(λ, ν) has full dimension. The latter result together with Proposition 1

are needed to describe the solution set, which is done in Theorem 4.

Theorem 2. Denote by gk, k ∈ L, any basis of the lineality space L ≡ {x ∈

R
n : Ax = 0}, denote by xi, i ∈ V , all vertices and by hj , j ∈ H , all extremal

directions (vectors in directions of unbounded edges) of the convex polyhedral set

M1 ∩ L⊥. Then the set of all (λ, ν) ∈ R
n+1 satisfying M1(λ, ν) 6= ∅ has the

description

R
n+1 \ P ,

where

(3.1) P = {(λ, ν) ∈ R
n+1 : xT

i λ > ν ∀ i ∈ V, hT
j λ > 0 ∀ j ∈ H, gT

k λ = 0 ∀ k ∈ L}.
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P r o o f. Let (λ, ν) ∈ R
n+1 be given arbitrarily. Each point x ∈ M1 can be (see

Padberg [17, Assertions 7.2 c, 7.3 d]) expressed as

x =
∑

i∈V

αixi +
∑

j∈H

βjhj +
∑

k∈L

γkgk,

where
∑
i∈V

αi = 1, αi > 0, i ∈ V , βj > 0, j ∈ H , γk ∈ R, k ∈ L, and V 6= ∅ (from the

assumption that dimM1 = n). If (λ, ν) ∈ P , then

xT λ =
∑

i∈V

αix
T
i λ +

∑

j∈H

βjh
T
j λ +

∑

k∈L

γkgT
k λ >

∑

i∈V

αiν = ν

and M1(λ, ν) = ∅. Conversely, if (λ, ν) 6∈ P , then one of the following three sit-

uations occurs. Either xT
i λ 6 ν holds for a certain i ∈ V , and therefore xi ∈

M1(λ, ν) 6= ∅. Or hT
j λ < 0 holds for a certain j ∈ H . Consider a point xc ≡ x1+chj ,

c > 0, where x1 is any vertex of M1 ∩ L⊥. Then for an arbitrary c > max{(ν −

xT
1 λ)/hT

j λ, 0} we have xT
c λ = xT

1 λ + chT
j λ 6 ν, whence xc ∈ M1(λ, ν) 6= ∅. The

third possibility is that gT
k λ 6= 0 holds for a certain k ∈ L. We can assume without

loss of generality that gT
k λ < 0. Denote by x1 any vertex of M1 ∩ L⊥. Then the

point xc ≡ x1 + cgk belongs to M1 for all c ∈ R, and for any c > (ν − xT
1 λ)/gT

k λ

we have xc ∈ M1(λ, ν) 6= ∅. �

Theorem 3. Let (λ, ν) ∈ R
n+1 be given arbitrarily. The set of all values of

parameters (λ, ν) ∈ R
n+1 satisfying dimM1(λ, ν) = n is equal to

R
n+1 \ P ′,

where P ′ is the closure of the convex cone from (3.1) without the origin described

by

(3.2) P ′ ≡ {(λ, ν) 6= (0, 0): xT
i λ > ν ∀ i ∈ V, hT

j λ > 0 ∀ j ∈ H, gT
k λ = 0 ∀ k ∈ L}.

P r o o f. Let (λ, ν) ∈ R
n+1 be given arbitrarily. Each point x ∈ M1 can be

expressed as

x =
∑

i∈V

αixi +
∑

j∈H

βjhj +
∑

k∈L

γkgk,

where
∑
i∈V

αi = 1, αi > 0, i ∈ V , βj > 0, j ∈ H , γk ∈ R ∀ k ∈ L, and V 6= ∅ (from

the assumption dimM1 = n). If (λ, ν) ∈ P ′, then

xT λ =
∑

i∈V

αix
T
i λ +

∑

j∈H

βjh
T
j λ +

∑

k∈L

γkgT
k λ >

∑

i∈V

αiν = ν
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and according to the description (2.1) of M1(λ, ν) we have xT λ = ν. There-

fore dimM1(λ, ν) < n. Conversely, if (λ, ν) 6∈ P ′, then one of the following

three situations occurs. Either xT
i λ < ν holds for a certain i ∈ V , and there-

fore dimM1(λ, ν) = n. Or hT
j λ < 0 holds for a certain j ∈ H . Consider a point

xc ≡ x1 + chj , c > 0, where x1 is any vertex of M1 ∩ L⊥. Then for an arbitrary

c > max{(ν − xT
1 λ)/hT

j λ, 0} we have xT
c λ = xT

1 λ + chT
j λ < ν, and arbitrarily

close to this point there is an interior point ofM1(λ, ν). Hence dimM1(λ, ν) = n.

The third possibility is that gT
k λ 6= 0 holds for a certain k ∈ L. We can assume

without loss of generality that gT
k λ < 0. If x1 is any vertex ofM1 ∩ L⊥, then the

vector xc ≡ x1 + cgk belongs toM1 for all c ∈ R. For any c > (ν − xT
1 λ)/gT

k λ we

have xc ∈ M1(λ, ν), and arbitrarily close to this point there is an interior point of

M1(λ, ν). �

In order to derive a characterization of the solution set, we have to introduce the

set

(3.3) U ≡ {(λ, ν) ∈ R
n+1 : intM1(λ, ν) ∩ intM2 = ∅}.

Then according to Theorems 1 and 3 we obtain the following description of the

solution set.

Theorem 4 (Description of the solution set). The solution set is equal to U \P ′.

It remains to characterize the set U . It is done in the next proposition.

Proposition 1. Denote by gk, k ∈ L′, any basis of the lineality space L12 ≡

{x ∈ R
n : Ax = 0, Cx = 0}. Denote by xi, i ∈ V ′, all vertices and by hj , j ∈ H ′,

all extremal directions (vectors in directions of the unbounded edges) of the convex

polyhedral setM1 ∩M2 ∩ L⊥
12. If intM1 ∩ intM2 = ∅, then U = R

n+1, otherwise

U = {(λ, ν) 6= (0, 0): xT
i λ > ν ∀ i ∈ V ′, hT

j λ > 0 ∀ j ∈ H ′,(3.4)

gT
k λ = 0 ∀ k ∈ L′}.

P r o o f. If intM1 ∩ intM2 = ∅, then we have intM1(λ, ν) ∩ intM2 = ∅ for all

(λ, ν) ∈ R
n+1, and hence U = R

n+1.

Let intM1 ∩ intM2 6= ∅. This is equivalent to dim(M1 ∩M2) = n, and we can

apply Theorem 3 to the set

M1 ∩M2 = {x ∈ R
n : Ax 6 b, Cx 6 d}

with the additional inequality λT x 6 ν. �
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Notice that the description (3.4) for the set U cannot be used in the case when

0 < dim(M1 ∩M2) < n. Notice also that the inclusion P ′ ⊆ U holds, the proof of

which is an easy exercise.

4. Description of separating hyperplanes

Let us introduce

Q∗(λ, ν) ≡





(u, um, v, vl+1) ∈ R

m+l+1 : Z(λ, ν)




u

um

v

vl+1


 = z,




u

um

v

vl+1


 > 0





,

where

Z(λ, ν) ≡




AT λ CT

0

bT ν dT 1

1
T 1 1

T 0



 , z ≡




0

0

1



 .

For each (λ, ν) ∈ R
n+1, the set Q∗(λ, ν) represents a convex polyhedral set that

plays a crucial role in checking separability of M1(λ, ν) and M2. In particular, it

enables us to explicitly describe all hyperplanes that separateM1(λ, ν) andM2.

The following proposition is a direct consequence of Hladík [10, Assertion 4], which

has the origin in Grygarová [5], [6].

Proposition 2. Let (λ, ν) ∈ U \ P ′ and (u, um, v, vl+1) ∈ Q∗(λ, ν). Suppose

that uT A + umλT 6= 0
T , and η ∈ [0, vl+1] is arbitrary. Then

(4.1) R = {x ∈ R
n : (uT A + umλT )x − (uT b + umν) = η}

represents a separating hyperplane of the convex polyhedral sets M1(λ, ν), M2.

Conversely, any separating hyperplane R of the convex polyhedral sets M1(λ, ν)

and M2 can be expressed in the form (4.1) for certain (u, um, v, vl+1) ∈ Q∗(λ, ν),

uT A + umλT 6= 0
T and η ∈ [0, vl+1].

5. Stability sets

We define stability sets in a way similar to Hladík [10], [11]. That is, stability

sets consist of parameters λ, ν under which feasibility of all bases of Q∗(λ, ν) are
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preserved. This is a natural approach, as the set Q∗(λ, ν) closely relates to the sep-

arability ofM1(λ, ν) andM2. Moreover, such stability sets often have a geometric

interpretation (cf. Hladík [10]).

First recall the definition of a basis of a convex polyhedral set, and the definition

of stability sets follows.

Definition 3. A basis of a convex polyhedral set described byMx = v, x > 0

(with M ∈ R
m×n, v ∈ R

m, m 6 n) is any vector B ∈ {1, . . . , n}m for which

rank(MB) = m (where MB means the restriction of the matrix M to the basic

columns). A basis B is feasible ifM−1
B v > 0.

Definition 4. Let (r, s) ∈ U \ P ′ and denote by S the system of all feasible

bases of the convex polyhedral set Q∗(r, s). Then the stability set corresponding to

the system S is the intersection of the solution set U \ P ′ and the closure of the set

of all (λ, ν) ∈ R
n+1 for which all bases B ∈ S remain feasible also for the convex

polyhedral set Q∗(λ, ν).

Notice that we have defined stability sets as closures to simplify their description,

and one can easily extend it to non-closed sets. The additional points do not change

the properties of stability sets.

Our aim is to derive a description of stability sets. Let (r, s) ∈ U \P ′ be fixed and

let B be an arbitrary basis of the convex polyhedral set Q∗(r, s). If m 6∈ B, then

the basis B remains feasible for all (λ, ν) ∈ U \ P ′. Thus consider the case when

m ∈ B, i.e. m = Bk for a certain k ∈ {1, . . . , n + 2}. By D(λ, ν) ≡ ZB(λ, ν) denote

the restriction of the matrix Z(λ, ν) to the basic columns. For the sake of simplicity

denote also D ≡ D(r, s) and q ≡ (λT , ν, 0)T .

The following Lemma 1 characterizes (by means of inequalities) the set of pa-

rameters (λ, ν) ∈ R
n+1 for which the basis B remains feasible. Putting all these

inequalities together for all feasible bases B, we obtain the description of the stabil-

ity set, which is summarized in Theorem 5.

Lemma 1. Let B be a basis of the convex polyhedral set Q∗(r, s) such that

Bk = m for a certain k ∈ {1, . . . , n + 2}. Then B is a feasible basis of Q∗(λ, ν) for

all parameters satisfying

(D−1
·,n+2D

−1
k,· )q − D−1

k,n+2D
−1q > 0,(5.1)

D−1
k,· q + D−1

k,n+2 > 0.(5.2)

Moreover, the kth inequality of (5.1) is redundant and can be omitted.

P r o o f. The basis B remains feasible for all (λ, ν) ∈ R
n+1 satisfying

(5.3) (D(λ, ν))−1z > 0.
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Denote q̃ ≡ (λT − rT , ν − s, 0)T . Under the assumption that 1 + eT
k D−1q̃ 6= 0 we

have according to the well-known Sherman-Morrison formula

(D(λ, ν))−1 = (D + q̃eT
k )−1 = D−1 −

D−1q̃eT
k D−1

1 + eT
k D−1q̃

.

For the choice λ = r, ν = s, the denominator 1 + eT
k D−1q̃ = 1 is a positive number,

thus we consider in addition the condition

(5.4) 1 + eT
k D−1q̃ > 0.

Rearrange the expression (5.3):

D−1(λ, ν)z > 0,
(

D−1 −
D−1q̃eT

k D−1

1 + eT
k D−1q̃

)
en+2 > 0,

D−1
·,n+2 −

D−1q̃D−1
k,n+2

1 + D−1
k,· q̃

> 0.

Under the assumption (5.4) we obtain that

(5.5) D−1
·,n+2 + (D−1

k,· q̃)D−1
·,n+2 − D−1

k,n+2(D
−1q̃) > 0.

For the vector q̃ we have q̃ = q − D·,k + en+2. Thus the absolute term (value at

λ = 0, ν = 0) of the expression (5.5) is equal to

D−1
·,n+2 + (D−1

k,· (en+2 − D·,k))D−1
·,n+2 − D−1

k,n+2(D
−1(en+2 − D·,k))

= D−1
·,n+2 + D−1

k,n+2D
−1
·,n+2 − D−1

·,n+2 − D−1
k,n+2D

−1
·,n+2 + D−1

k,n+2ek

= D−1
k,n+2ek =

{
0 for any row 6= k,

D−1
k,n+2 for the row k.

The remaining terms of the expression (5.5) are

(D−1
k,· q)D−1

·,n+2 − D−1
k,n+2D

−1q;

in particular, the kth element reduces to

(D−1
k,· q)D−1

k,n+2 − D−1
k,n+2D

−1
k,· q = 0.
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Since the basis B is feasible for the convex polyhedral set Q∗(r, s), the inequality

D−1
k,n+2 > 0 holds. Therefore, the kth inequality of (5.5) is redundant and the

resulting system of inequalities is (without the kth inequality)

(D−1
k,· q)D−1

·,n+2 − D−1
k,n+2D

−1q > 0.

Now we investigate the expression (5.4). It is equivalent to

1 + eT
k D−1(q + en+2 − D·,k) > 0,

1 + D−1
k,· (q + en+2 − D·,k) > 0,

D−1
k,· q + D−1

k,n+2 > 0.

�

Theorem 5 (Description of the stability set). Let (r, s) ∈ U\P ′ and denote by S

the system of all feasible bases of the set Q∗(r, s). The stability set corresponding to

the system S is the set of all (λ, ν) ∈ U \P ′ satisfying the inequality systems (5.1) for

all feasible bases B of the convex polyhedral set Q∗(r, s) with the property m ∈ B.

P r o o f. Multiply the system (5.1) by the vector Dn+2,· > 0. We obtain

D−1
k,· q − D−1

k,n+2e
T
n+2q > 0

or

D−1
k,· q > 0.

Hence, the constraint (5.2) is redundant (since the stability set is closed by its defi-

nition). The rest simply follows from Definition 4 and Lemma 1. �

E x am p l e 1. Given convex polyhedral sets (see Fig. 1)

M1 =

{
x ∈ R

2 :

(
1 0

0 1

)
x 6

(
0

0

)}
,

M2 =




x ∈ R
2 :




1 0

0 1

−1 −1


x 6




5

3

1









and the family of convex polyhedral sets

M1(λ, ν) = {x ∈ M1 : λT x 6 ν}, (λ, ν) ∈ R
3,
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we compute the solution set and all stability sets. Since intM1 ∩ intM2 6= ∅, we

proceed as follows.

x1

x2

5

3

0

M1

M2

(5,−6)

(−4, 3)

Figure 1. Illustration to Example 1.

The convex polyhedral setM1 contains only one vertex (0, 0)T , and the extremal

directions ofM1 are (−1, 0)T and (0,−1)T . The lineality space L equals {0}. Ac-

cording to (3.2), we have

P ′ = {(λ, ν) ∈ R
3 : 0 > ν, −λ1 > 0, −λ2 > 0}.

The convex polyhedral set M1 ∩ M2 contains three vertices (0, 0)T , (−1, 0)T , and

(0,−1)T , but no unbounded edge. The lineality space L12 equals {0}. Using (3.4),

we obtain that

U = {(λ, ν) ∈ R
3 : 0 > ν, −λ1 > ν, −λ2 > ν}.

Using Theorem 4, we get the description of the solution set

U \ P ′ = {(λ, ν) ∈ R
3 : 0 > ν, −λ1 > ν, −λ2 > ν}(5.6)

\ {(λ, ν) ∈ R
3 : 0 > ν, −λ1 > 0, −λ2 > 0}

= {(λ, ν) ∈ R
3 : 0 > ν, −λ1 > ν, −λ2 > ν, λ1 > 0}

∪ {(λ, ν) ∈ R
3 : 0 > ν, −λ1 > ν, −λ2 > ν, λ2 > 0}

= {(λ, ν) ∈ R
3 : −ν > λ1 > 0, −ν > λ2}

∪ {(λ, ν) ∈ R
3 : −ν > λ1, −ν > λ2 > 0}.

Now we compute the stability sets according to Theorem 5.
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(1) We choose (λ1
1, λ

1
2, ν

1) ∈ U \ P ′, for instance as (λ1
1, λ

1
2, ν

1) = (1, 2,−4). Next

we determine all feasible bases of the convex polyhedral set Q∗(λ1
1, λ

1
2, ν

1) that

contain the index m = 3, and compute the corresponding systems of inequali-

ties (5.1):

basis the corresponding system

(1, 2, 3, 6) −λ1 − ν > 0, −λ2 − ν > 0, −ν > 0

(1, 3, 4, 6) −λ2 − ν > 0, λ2 > 0, −5λ1 + 6λ2 + ν > 0

(1, 3, 5, 6) −4λ1 + 3λ2 − ν > 0, −λ2 − ν > 0, 3λ2 − ν > 0

(1, 3, 6, 7) −λ1 + λ2 > 0, −λ2 − ν > 0, λ2 > 0

Putting all these inequalities together with (5.6) and omitting the redundant

ones, we get the final system that describes the first stability set:

−λ2 − ν > 0, λ2 > 0, −5λ1 + 6λ2 + ν > 0.

(2) Choose (λ2
1, λ

2
2, ν

2) ∈ U \ P ′, but not from the first stability set. For instance,

(λ2
1, λ

2
2, ν

2) = (1, 2,−9). The stability set for (λ2
1, λ

2
2, ν

2) is described by

−λ1 + λ2 > 0, λ2 > 0, 5λ1 − 6λ2 − ν > 0.

(3) Choose (λ3
1, λ

3
2, ν

3) ∈ U \ P ′, but not from the first or second stability set. For

instance, (λ3
1, λ

3
2, ν

3) = (1,−1,−9). The stability set for (λ3
1, λ

3
2, ν

3) is described

by

λ1 − λ2 > 0, λ1 > 0, −4λ1 + 3λ2 − ν > 0.

(4) Choose (λ4
1, λ

4
2, ν

4) ∈ U \ P ′, but not from the previous stability sets. For

instance (λ4
1, λ

4
2, ν

4) = (1,−1,−2). The stability set for (λ4
1, λ

4
2, ν

4) is described

by

−λ1 − ν > 0, λ1 > 0, 4λ1 − 3λ2 + ν > 0.

The union of the above stability sets forms the whole solution set.

Tables 1–2 contain other examples. For the pseudorandomly generated input

matrices A, C, and vectors b, d the tables involve the corresponding number of

stability sets and the computing time. Our source code was written in MATLAB 6.5.

The results were carried out on PC (x86), Pentium 4, 2.6 GHz, 512 MB RAM, Gentoo

Linux.
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Matrix A vector b Matrix C vector d
number of
stab sets

computing
time







−2 5

−2 8

0 3













−1

1

−8













1 0

−7 −1

4 6













−6

4

−1






19 10 s











0 5

8 −4

9 −3

7 −4





















3

3

−3

−6





















3 7

−3 −3

8 −3

−9 1





















6

1

3

7











33 37 s











6 1

−1 −1

9 −7

0 −2





















6

7

0

−1



























8 −9

9 4

−7 −6

−5 6

7 −1

































−4

4

6

6

−1

















65 2min 39 s





















4 −2

7 −7

4 −5

3 −9

0 6

−7 3









































4

6

14

10

2

10









































0 6

−3 −2

−4 0

−6 8

−1 −2

−7 1









































10

7

−1

7

2

14





















93 17min 49 s

Table 1. Examples in R2 .
Matrix A vector b Matrix C vector d

number of
stab sets

computing
time







−3 5 1

5 1 2

−6 −1 −1













13

13

0













−7 6 −7

−6 −8 −5

7 −5 8













14

12

14






37 18 s











1 −9 −4

−8 0 −6

7 3 −9

−6 −1 −1





















10

−1

4

10





















2 7 −6

0 4 −4

2 4 8

−5 −8 7





















12

13

5

3











263 3min 28 s











4 6 −3

−4 4 −4

9 −3 −5

−7 −9 −7





















7

0

3

9



























7 −3 −6

6 −7 1

−5 2 −1

1 5 3

−1 −5 −9

































6

11

0

−3

5

















569 22min 25 s











−4 5 −1 0

7 7 −7 −1

−3 −8 3 −3

2 4 −7 6





















4

4

4

−1





















7 −2 7 −6

3 −1 −5 4

−7 6 6 −1

0 −8 −5 9





















−2

9

10

4











882 28min 13 s

Table 2. Examples in R3 and R4 .
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6. Separating supporting hyperplanes

Supporting separation is a special case of separation of two sets, where we require

that there is a hyperplane that separates the sets and simultaneously has a non-empty

intersection with both of them. Such an approach has applications, for instance, in

optimization (see e.g. Grygarová [7], [8]).

In this section we derive the description of the set of all parameters (λ, µ) ∈ R
n+1

for which there exists a separating hyperplane of convex polyhedral sets M1(λ, µ)

andM2 supporting their faces determined by given sub-bases. The notion of a sub-

basis generalizes the traditional notion of a basis and the geometric interpretation is

that a sub-basis determines a face of a convex polyhedral set. Informally, a sub-basis

is a list of row indices of some inequality system and the corresponding rows are

linearly independent. The formal definition follows.

Definition 5. A sub-basis of the convex polyhedral set described by Mx 6 v

(M ∈ R
m×n, v ∈ R

m) is any vector S ∈ {1, . . . , m}k, 1 6 k 6 m, for which

rank(MS) = k holds (where MS stands for the restriction of the matrix M to

the sub-basic rows). A sub-basis S is called feasible if {x ∈ R
n : MSx = vS ,

MNx 6 vN} 6= ∅ with N ≡ {1, . . . , m} \ S.

Denote by SB1B2 the set of parameters (λ, µ) ∈ R
n+1 for which there exists a sep-

arating hyperplane of the convex polyhedral setsM1(λ, µ) andM2 which supports

the faces ofM1(λ, µ) andM2 determined by sub-bases B1 and B2, respectively.

In order to derive a characterization of SB1B2 we have to state some preliminary

results first. We introduce SB1 as the set of (λ, µ) ∈ R
n+1 for which the sub-

basis B1 of the convex polyhedral set M1(λ, µ) is feasible. The description of the

set SB1 follows from Lemmas 2 and 3.

Lemma 2. Let B1 be a sub-basis of the convex polyhedral set M1(λ, µ) and

suppose m 6∈ B1. Denote N1 ≡ {1, . . . , m − 1} \B1. Let gk, k ∈ L, be a basis of the

lineality space L ≡ {x ∈ R
n : Ax = 0}. Denote by xi, i ∈ V , all vertices and by hj ,

j ∈ H , all extremal directions of the convex polyhedral set

{x ∈ R
n : AB1x = bB1 , AN1x 6 bN1} ∩ L⊥.

Then

SB1 = R
n+1 \ PB1 ,

where

PB1 = {(λ, µ) ∈ R
n+1 : xT

i λ > µ ∀ i ∈ V, hT
j λ > 0 ∀ j ∈ H, gT

k λ = 0 ∀ k ∈ L}.
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P r o o f. The sub-basis B1 of the convex polyhedral setM1(λ, µ) is feasible for

all (λ, µ) ∈ R
n+1 such that the set {x ∈ R

n : AB1x = bB1 , AN1x 6 bN1 , λT x 6 µ}

is non-empty. Now we just apply the statement of Theorem 2. �

Lemma 3. Let B1 be a sub-basis of the convex polyhedral set M1(λ, µ) and

suppose m 6∈ B1. Denote N1 ≡ {1, . . . , m− 1} \B1. Let gk, k ∈ L, be a basis of the

lineality space L ≡ {x ∈ R
n : Ax = 0}. Denote by xi, i ∈ V , all vertices and by hj ,

j ∈ H , all extremal directions of the convex polyhedral set

{x ∈ R
n : AB1x = bB1 , AN1x 6 bN1} ∩ L⊥.

Then

SB1∪{m} = R
n+1 \ (PB1 ∪ −PB1),

where PB1 is the convex cone from Lemma 2.

P r o o f. The sub-basis B1∪{m} of the convex polyhedral setM1(λ, µ) is feasible

for all (λ, µ) ∈ R
n+1 for which the set {x ∈ R

n : AB1x = bB1 , λT x = µ, AN1x 6

bN1} is not empty. In other words, both the sets {x ∈ R
n : AB1x = bB1 , λT x 6

µ, AN1x 6 bN1} and {x ∈ R
n : AB1x = bB1 , −λT x 6 −µ, AN1x 6 bN1} must

be simultaneously non-empty. From Lemma 2 we obtain the description of the set

SB1∪{m} as (Rn+1 \ PB1) ∩ (Rn+1 \ −PB1) = R
n+1 \ (PB1 ∪ −PB1). �

Consider the family of convex polyhedral sets

M(ξ) ≡ {(x, xn) ∈ R
n : Mx + ξxn = v, x > 0, xn > 0},

where M ∈ R
m×(n−1), v ∈ R

m are fixed and ξ is an m-dimensional vector of

parameters. The second preliminary result is stated in Proposition 3 and describes

the set SM of all parameters ξ ∈ R
m for which the setM(ξ) is non-empty.

Proposition 3. Denote by hk, k ∈ L, any basis of the lineality space L ≡ {y ∈

R
m : MT y = 0, vT y = 0}. For the convex polyhedral cone

{y ∈ R
m : MT y 6 0, vT y > 0} ∩ L⊥

denote by gi, i ∈ I1, its extremal directions with the property gT
i v > 0 and by fj ,

j ∈ I2, its extremal directions with the property fT
j v = 0. If I1 = ∅, then SM = R

m.

Otherwise

(6.1) SM = {ξ ∈ R
m : gT

i ξ > 0 ∀ i ∈ I1, fT
j ξ > 0 ∀ j ∈ I2, hT

k ξ = 0 ∀ k ∈ L}.
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P r o o f. SM is the set of all ξ ∈ R
m for whichM(ξ) 6= ∅, i.e ., the problem

min{0T x + 0xn : Mx + ξxn = v, x > 0, xn > 0}

has an optimal solution. Using the duality theorems in linear programming this is

true if and only if the problem

(6.2) max{vT y : MT y 6 0, ξT y 6 0}

has an optimal solution. Since the set of feasible solutions to the problem (6.2)

represents a convex polyhedral cone (with one vertex at the origin), we can formulate

this situation as

(6.3) {y ∈ R
m : MT y 6 0, ξT y 6 0, vT y > 0} = ∅.

If I1 = ∅, then clearly SM = R
m. Suppose that I1 6= ∅.

Let ξ0 ∈ R
m be such that gT

i ξ0 > 0 for all i ∈ I1, fT
j ξ0 > 0 for all j ∈ I2 and

hT
k ξ0 = 0 for all k ∈ L. Each point y ∈ {y ∈ R

m : MT y 6 0, vT y > 0} can be

written as a linear combination

y =
∑

i∈I1

αigi +
∑

j∈I2

βjfj +
∑

k∈L

γkhk

for certain αi, βj > 0,
∑

i∈I1

αi > 0, and γk ∈ R. Then

yT ξ0 =
∑

i∈I1

αig
T
i ξ0 +

∑

j∈I2

βjf
T
j ξ0 +

∑

k∈L

γkhT
k ξ0 > 0.

Therefore, the condition (6.3) holds.

Conversely, let ξ0 ∈ R
m be such that (6.3) holds. Then for all y ∈ {y ∈ R

m :

MT y 6 0, vT y > 0} we have yT ξ0 > 0. In particular, gT
i ξ0 > 0 for all i ∈ I1.

For any sufficiently small ε > 0 we also have that the convex combination (1 − ε)×

fT
j ξ0 + (ε/|I1|)

∑
i∈I1

gT
i ξ0 > 0 for all j ∈ I2. Hence, (1 − ε)fT

j ξ0 > 0 and therefore

fT
j ξ0 > 0 for all j ∈ I2. Analogously we can prove hT

k ξ0 = 0 for all k ∈ L. Hence ξ0

belongs to the set (6.1). �

We derive the description of the set SB1B2 . Consider the system

(6.4) Z(λ, µ)Bw = z, w > 0,

where B is a sub-basis of the convex polyhedral set Q∗(λ, µ). Define SQ
B1B2 as the

set of (λ, µ) ∈ R
n+1 for which the system (6.4) with B ≡ B1 ∪

(
B2 + m

)
is solvable.
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The description of the set SQ
B1B2 follows from Proposition 3 if for Br ≡ B1

r ∪(B2+m)

we assign

M ≡ Z(λ, µ)Br
, v ≡ z, ξ ≡ (λT , µ, 1)T .

The sense of the set SQ
B1B2 is to ensure the existence of a separating supporting

hyperplane ofM1(λ, µ) andM2 (supporting the given faces), while the sense of the

set SB1 is to preserve feasibility of the sub-basis B1 of the setM1(λ, µ).

Now we are ready to characterize the set SB1B2 ; the description is a direct conse-

quence of our definitions and lemmas.

Theorem 6 (Description of the set SB1B2).

(1) Let m 6∈ B1. If the system (6.4) with B ≡ B1 ∪ (B2 + m) has no solution, then

SB1B2 = ∅. Otherwise,

SB1B2 = SB1 ,

where SB1 is described according to Lemma 2.

(2) Let m ∈ B1, i.e. B1 = B1
r ∪ {m} for a certain sub-basis B1

r . Then

SB1B2 = SB1 ∩ SQ
B1B2 ,

where SB1 = SB1
r
∪{m} is described according to Lemma 3.

E x am p l e 2. Given convex polyhedral sets (see Fig. 2)

M1 =



x ∈ R

2 :




−1 0

0 1

1 −2



 x 6




0

5

0







 ,

M2 =



x ∈ R

2 :




0 1

−1 −1

−1 1



 x 6




2

−8

−8







 ,

a family of convex polyhedral sets

M1(λ, µ) = {x ∈ M1 : λT x 6 µ}, (λ, µ) ∈ R
3,

and bases B1 = (2, 4) and B2 = (1, 2) of the convex polyhedral sets M1(λ, µ) and

M2, respectively. We aim at calculating the description of the set SB1B2 . Since

4 ∈ B1, we proceed according to the second paragraph of Theorem 6.
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0 8

5

x1

x2

M1

M2

(10, 5)
(3, 5)

(6, 2)

Figure 2. Illustration to Example 2.

First, we deal with the set SB1 . From Lemma 3 we have SB1 = S(2,4) = R
3 \

(P(2) ∪−P(2)). The convex polyhedral set

{x ∈ R
2 : AB1x = bB1 , AN1x 6 bN1} = {x ∈ R

2 : x2 = 5, −x1 6 0, x1 − 2x2 6 0}

has two vertices x1 = (0, 5)T and x2 = (10, 5)T . Hence, we obtain

P(2) = {(λ, µ) ∈ R
3 : 5λ2 > µ, 10λ1 + 5λ2 > µ},

S(2,4) = {(λ, µ) ∈ R
3 : 5λ2 > µ, 10λ1 + 5λ2 6 µ}

∪ {(λ, µ) ∈ R
3 : 5λ2 6 µ, 10λ1 + 5λ2 > µ}.

The description of the set SQ
B1B2 follows from Proposition 3. The convex polyhe-

dral cone described as



0 1 5 1

0 1 2 1

−1 −1 −8 1


 y 6 0, ( 0 0 0 1 ) y > 0

has edges in the directions of vectors g1 = (2,−1, 0, 1)T , f1 = (6, 2,−1, 0)T , f2 =

(−3,−5, 1, 0)T , and f3 = (1, 0, 0, 0)T . Hence,

SQ
B1B2 = {(λ, µ) ∈ R

3 : 2λ1 − λ2 + 1 > 0, 6λ1 + 2λ2 − µ > 0, −3λ1 − 5λ2 + µ > 0,

λ1 > 0}

= {(λ, µ) ∈ R
3 : 6λ1 + 2λ2 − µ > 0, −3λ1 − 5λ2 + µ > 0, λ1 > 0}.

Finally, we obtain

SB1B2 = SB1 ∩ SQ
B1B2

= {(λ, µ) ∈ R
3 : 10λ1 + 5λ2 − µ > 0, 6λ1 + 2λ2 − µ > 0,

− 3λ1 − 5λ2 + µ > 0}.
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7. A permanent separating hyperplane

ConsiderM1(λ, µ) from (2.1) with the property (λ, µ) ∈ Z, where Z ⊂ R
n+1 is a

convex polytope. Assume that Z ∩P ′ = ∅. The question that we ask in this section

is whether there exists a separating hyperplane R = {x ∈ R
n : rT x = s} such that

M1(λ, µ) ⊆ {x ∈ R
n : rT x 6 s} ∀ (λ, µ) ∈ Z, M2 ⊆ {x ∈ R

n : rT x > s}.

Such a separating hyperplane R is called permanent. We check the existence of a

permanent separating hyperplane in the following manner: We compute the con-

vex hull conv
( ⋃

(λ,µ)∈Z

M1(λ, µ)
)
and check separability of this convex hull and the

setM2. Proposition 4 says how to compute
⋃

(λ,µ)∈Z

M1(λ, µ). This set represents a

polyhedral set, but not convex in general; see Example 3.

Proposition 4. Let (ri, si), i ∈ V , be all vertices of the convex polytope Z.

Then ⋃

(λ,µ)∈Z

M1(λ, µ) =
⋃

i∈V

M1(ri, si).

P r o o f. Let (λ1, µ1), (λ2, µ2) ∈ Z. It is sufficient to prove that for a convex

combination (λc, µc) ≡ q(λ1, µ1) + (1 − q)(λ2, µ2), q ∈ (0, 1), the inclusion

M1(λc, µc) ⊆ (M1(λ1, µ1) ∪M1(λ2, µ2))

holds. To prove this inclusion it is sufficient to prove the relation

{x ∈ R
n : λT

c x 6 µc} ⊆ ({x ∈ R
n : λT

1 x 6 µ1} ∪ {x ∈ R
n : λT

2 x 6 µ2}).

We prove this relation by contradiction. Suppose that for a certain point x0 ∈ R
n

λT
1 x0 > µ1, λT

2 x0 > µ2, and λT
c x0 6 µc

hold. Multiplying the first inequality by a number q > 0 and the second inequality

by a number 1 − q > 0, we obtain

qλT
1 x0 + (1 − q)λT

2 x0 > qµ1 + (1 − q)µ,

i.e. λT
c x0 > µc, which contradicts our assumption. �
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E x am p l e 3. Given

A =




0 −1

−5 2

−1 6



 , b =




0

0

28



 ,

Z = {(λ, µ) ∈ R
3 : λ1 = 1, |λ2| 6 1, µ = 2λ2 + 4},

we compute the set conv
( ⋃

(λ,µ)∈Z

M1(λ, µ)
)
by the proposed method; see Fig. 3. The

convex polytope Z contains two vertices (r1, s1) = (1, 1, 6) and (r2, s2) = (1,−1, 2).

2 4 6 8 10

2

4

6

−2

x1

x2

0

x1 − x2 = 2

(2, 5)

(8, 6)

x1 + x2 = 6

M1

⋃
(λ,µ)∈Z

M1(λ, µ)

Figure 3. Illustration to Example 3.

Hence, the convex hull conv
( ⋃

(λ,µ)∈Z

M1(λ, µ)
)
is equal to conv(M1(r1, s1) ∪

M1(r2, s2)) (for an explicit description of the convex hull see Grygarová [6]),

which represents the convex polytope with vertices (0, 0), (6, 0), (8, 6), (2, 5) and is

described by the system of inequalities




0 −1

−5 2

−1 6

3 −1


 x 6




0

0

28

18


 .
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8. Application in multiobjective linear programming

Now, we show how the proposed theory can be applied in multiobjective linear

programming the problems of which involve parameters. Consider a multiobjective

linear program

max{Cx : x ∈ M},

whereM ≡ {x ∈ R
n : Ax 6 b}, A ∈ R

m×n, C ∈ R
l×n, and b ∈ R

m. Let x0 ∈ M be

a weakly efficient solution, i.e., there is no x ∈ M with Cx > Cx0. Alternatively,

weak efficiency of x0 can be characterized as separability by a hyperplane of two

convex polyhedral sets,

(8.1) M and {x ∈ R
n : Cx > Cx0},

or, after translation,

(8.2) {x ∈ R
n : Ax 6 b − Ax0} and {x ∈ R

n : Cx > 0}.

Provided there are certain uncertainties in one row of the cost matrix coefficients,

they can be modelled by row parameters and the theory derived in the previous

sections is applicable to the pair of convex polyhedral sets (8.2). The pair of sets (8.1)

can be used in the case that parameters appear in one row of the constraint matrixA.

In this example, the solution set contains only such values of parameters for which

x0 remains a weakly efficient solution. Due to the condition of full dimensionality in

the definition of separation (Definition 1) we do not cover all weakly efficient points,

however, the remaining ones have usually zero measure. Stability sets represent well

defined convex subsets of the solution set.
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