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Abstract. Pseudo ∗-autonomous lattices are non-commutative generalizations of ∗-auton-
omous lattices. It is proved that the class of pseudo ∗-autonomous lattices is a variety of
algebras which is term equivalent to the class of dualizing residuated lattices. It is shown
that the kernels of congruences of pseudo ∗-autonomous lattices can be described as their
normal ideals.
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1. Introduction

∗-autonomous lattices (briefly ∗-lattices) were very intensively studied by F. Paoli

in [8], [9], and [10]. They are an algebraic counterpart of the propositional linear logic

without exponentials and without additive constants. The class of ∗-lattices contains

as proper subclasses many classes of algebras, e.g. the classes of commutative Girard

quantales, MV-algebras and Abelian lattice ordered groups.

In the present paper we introduce pseudo ∗-autonomous lattices (briefly pseudo

∗-lattices) which are non-commutative generalizations of ∗-lattices. As special cases

of pseudo ∗-autonomous lattices one can view not only all ∗-autonomous lattices

but also all (i.e. Abelian and non-Abelian) lattice ordered groups and pseudo MV-

algebras (i.e., non-commutative generalizations of MV-algebras [4], [11]).

We describe properties of pseudo ∗-lattices and prove that they form a variety of

algebras which is arithmetical. We compare the notion of a pseudo ∗-lattice with that
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of a residuated lattice and prove that the class of pseudo ∗-lattices is term equivalent

to the class of dualizing residuated lattices.

Furthermore, ideals and normal ideals of pseudo ∗-lattices are introduced and it is

shown that normal ideals are exactly the kernels of congruences of pseudo ∗-lattices.

2. Pseudo ∗-autonomous lattices

Definition 1. A pseudo ∗-autonomous lattice (or, briefly, a pseudo ∗-lattice) is

an algebra A = (A, +, 0,− ,∼ ,∧,∨) of type 〈2, 0, 1, 1, 2, 2〉 such that

(P1) (A, +, 0) is a monoid;

(P2) (A,∧,∨) is a lattice;

(P3) for any x, y ∈ A, x ∨ y = (x− ∧ y−)∼ = (x∼ ∧ y∼)−;

(P4) for any x, y ∈ A we have x 6 y iff 0− 6 x− + y iff 0∼ 6 y + x∼,

where “6” denotes the induced lattice order of the reduct (A,∧,∨).

Example 1. ∗-autonomous lattices were investigated by F. Paoli in [8], [9] and

[10] as algebras A = (A, +,−, 0,∧,∨) of type 〈2, 1, 0, 2, 2〉 such that (A, +, 0) is a

commutative monoid, (A,∧,∨) is an involutive lattice and for any x, y ∈ A we have

x 6 y iff −0 6 −x + y. The ∗-autonomous lattices are algebraic models of linear

logic without exponentials and without additive constants. It is easy to check that

∗-autonomous lattices are special cases of pseudo ∗-autonomous lattices where “+”

is commutative and “−” and “∼” coincide with “−”.

Example 2. GMV-algebras (or pseudo MV-algebras) were introduced and stud-

ied by the second author in [11] as well as by G. Georgescu and A. Iorgulescu in [4]

as non-commutative generalizations of MV-algebras. A GMV-algebra is an algebra

A = (A,⊕,¬,∼, 0, 1) of type 〈2, 1, 1, 0, 0〉 such that (A,⊕, 0) is a monoid and for

any x, y ∈ A,

x ⊕ 1 = 1 = 1 ⊕ x;

¬1 = 0 =∼ 1;

¬(∼ x⊕ ∼ y) =∼ (¬x ⊕ ¬y);

x ⊕ (y⊙ ∼ x) = y ⊕ (x⊙ ∼ y) = (¬y ⊙ x) ⊕ y = (¬x ⊙ y) ⊕ x;

(¬x ⊕ y) ⊙ x = y ⊙ (x⊕ ∼ y) (where x ⊙ y =∼ (¬x ⊕ ¬y));

∼ ¬x = x.

If we put x 6 y if and only if ¬x ⊕ y = 1 then “6” is an order on A. Moreover,

(A,6) is a bounded distributive lattice in which 0 is the least and 1 the greatest

element in A . Clearly, if we put x + y := x ⊕ y, x− := ¬x and x∼ :=∼ x, then

(A, +, 0,− ,∼ ,∧,∨) is a pseudo ∗-autonomous lattice.

By [7], GMV-algebras are an algebraic counterpart of the non-commutative

 Lukasiewicz propositional logic.
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Example 3. Let G = (G, +, 0,−,∧,∨) be an arbitrary ℓ-group (i.e. G need not

be commutative). Then one can easily verify that G has the properties of the pseudo

∗-autonomous lattice where “−” and “∼” coincide with “−” and −0 = 0.

Lemma 1. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice and x, y, z ∈ A.

Then the following conditions are satisfied:

(i) x−∼ = x∼− = x;

(ii) 0− = 0∼;

(iii) x 6 y + z iff z− 6 x− + y iff y∼ 6 z + x∼;

(iv) x 6 y iff y− 6 x− iff y∼ 6 x∼;

(v) (x ∨ y)− = x− ∧ y−, (x ∨ y)∼ = x∼ ∧ y∼;

(vi) (x ∧ y)− = x− ∨ y−, (x ∧ y)∼ = x∼ ∨ y∼;

(vii) x ∧ y = (x− ∨ y−)∼ = (x∼ ∨ y∼)−.

P r o o f. (i) Due to (P3) we have x = x ∨ x = (x− ∧ x−)∼ = x−∼, x = x ∨ x =

(x∼ ∧ x∼)− = x∼−.

(ii) According to (P4) and (i) we obtain 0∼ 6 0− iff 0− 6 0∼− + 0− = 0−,

i.e. 0∼ 6 0−. Analogously we can show that 0− 6 0∼; thus 0− = 0∼.

(iii) x 6 y + z iff 0− 6 x− + (y + z) = (x− + y) + z−∼ iff z− 6 x− + y. Similarly,

x 6 y + z iff 0∼ 6 (y + z) + x∼ = y∼− + (z + x∼) iff y∼ 6 z + x∼.

(iv) The assertion follows from (iii) for y = 0 and z = 0 respectively.

(v) The identities (P3) and (i) yield (x ∨ y)− = (x− ∧ y−)∼− = x− ∧ y−. Analo-

gously, (x ∨ y)∼ = x∼ ∧ y∼.

(vi) Using (i) and (P3) again we get (x∧y)− = (x−∼∧y−∼)− = x−∨y−. Similarly

we can prove the second part of the assertion.

(vii) x ∧ y = (x ∧ y)−∼ = (x− ∨ y−)∼ by (i) and (vi). �

Definition 2. We introduce the following abbreviations for the pseudo ∗-lattice

A = (A, +, 0,− ,∼ ,∧,∨):

1 := 0− = 0∼;

x → y := x− + y, x y := y + x∼;

¬1x := (x + 1)−, ¬2x := (1 + x)∼;

σ1(x, y) := ((x → y) 0) ∨ 0, σ2(x, y) := ((x y) → 0) ∨ 0;

δ1(x, y) := σ1(x, y) ∨ σ1(y, x), δ2(x, y) := σ2(x, y) ∨ σ2(y, x);

x ⊲1 y := (x− + y)∼, x ⊲2 y := (y + x∼)−.
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Lemma 2. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice and a, b, c, d ∈ A.

Then the following conditions are fulfilled:

(i) 1 6 a → a, 1 6 a a;

(ii) a 6 (a → b) b, a 6 (a b) → b;

(iii) (b → b) a 6 a, (b b) → a 6 a;

(iv) a 6 b, c 6 d ⇒ a + c 6 b + d;

(v) a + (b ∧ c) = (a + b) ∧ (a + c), (b ∧ c) + a = (b + a) ∧ (c + a);

(vi) (a + b) ∨ (a + c) 6 a + (b ∨ c), (b + a) ∨ (c + a) 6 (b ∨ c) + a;

(vii) a 6 b ⇒ ¬1b 6 ¬1a,¬2b 6 ¬2a;

(viii) ¬1(a ∧ b) = ¬1a ∨ ¬1b, ¬2(a ∧ b) = ¬2a ∨ ¬2b;

(ix) ¬1(a ∨ b) 6 ¬1a ∧ ¬1b, ¬2(a ∨ b) 6 ¬2a ∧ ¬2b;

(x) 0 6 ¬1a + a, 0 6 a + ¬2a;

(xi) ¬1¬2a 6 a, ¬2¬1a 6 a;

(xii) σ1(a, a) = σ2(a, a) = 0;

(xiii) a 6 b ⇔ σ1(a, b) = 0 ⇔ σ2(a, b) = 0;

(xiv) a = b ⇔ δ1(a, b) = δ2(a, b) = 0;

(xv) a → b = b−  a−, a b = b∼ → a∼.

P r o o f. (i) It follows from (P4) and the reflexivity of “6”.

(ii) Due to (i) we have 1 6 (a− + b)  (a− + b) = (a− + b) + (a− + b)∼ =

a− + (b + (a− + b)∼). Hence by (P4) we obtain a 6 b + (a− + b)∼ = (a → b)  b.

Analogously, a 6 (b + a∼)− + b = (a b) → b.

(iii) Using (ii) and (i) we get ((b → b)  a) → a > b → b > 1. Thus (b → b)  

a 6 a by (P4). Similarly for the second part.

(iv) Suppose that a 6 b. Then according to Lemma 1 (iv) and Lemma 2 (ii) we

have b∼ 6 a∼ 6 (a∼ → c)  c. Further, a + c 6 b + c iff b∼ 6 c + (a + c)∼ =

(a + c)  c = (a∼− + c)  c = (a∼ → c)  c. Hence a 6 b implies a + c 6 b + c.

Analogously, if c 6 d then d− 6 c− 6 (c−  b) → b and since b + c 6 b + d iff

d− 6 (b + c) → b = (c−  b) → b we get that c 6 d implies b + c 6 b + d. Using

transitivity the proof is completed.

(v) From b ∧ c 6 b, c we obtain by (iv) a + (b ∧ c) 6 (a + b) ∧ (a + c). Suppose

now that x 6 a + b, a + c, i.e. 1 6 x− + a + b, 1 6 x− + a + c. This implies

(x− + a)∼ 6 b + 1∼ = b + 0 = b, (x− + a)∼ 6 c + 1∼ = c. Thus (x− + a)∼ 6 b ∧ c,

which yields 1 6 (x− +a)+(b∧c) = x− +(a+(b∧c)) and x 6 a+(b∧c). Altogether

we get a+(b∧c) = (a+b)∧(a+c). Similarly we can prove (b∧c)+a = (b+a)∧(c+a).

(vi) b, c 6 b∨c implies a+ b, a+ c 6 a+(b∨c), hence (a+ b)∨ (a+ c) 6 a+(b∨c).

Analogously for the second inequality.

(vii) Let a 6 b. Then a+1 6 b+1 and ¬1b = (b+1)− 6 (a+1)− = ¬1a. Similarly

for the second implication.
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(viii) Using (v) and Lemma 1 (vi) we get ¬1(a ∧ b) = ((a ∧ b) + 1)− = ((a + 1) ∧

(b + 1))− = (a + 1)− ∨ (b + 1)− = ¬1a ∨ ¬1b. Analogously for “¬2”.

(ix) According to (vi) we have ¬1(a ∨ b) = ((a ∨ b) + 1)− 6 ((a + 1) ∨ (b + 1))− =

(a+1)−∧ (b+1)− = ¬1a∧¬1b. Analogously we can show that the second inequality

also holds.

(x) a + 1 6 a + 1 implies 1− 6 (a + 1)− + a, i.e. 0 6 ¬1a + a. Analogously for the

second part.

(xi) From 1 + a 6 1 + a we get 1∼ 6 a + (1 + a)∼. Thus a∼ 6 (1 + a)∼ + 1∼∼ =

(1 + a)∼ + 1 and finally ¬1¬2a = ((1 + a)∼ + 1)− 6 a∼− = a. Similarly, ¬2¬1a 6 a.

(xii) Clearly, (a− + a)∼ 6 0, hence σ1(a, a) = (a− + a)∼ ∨ 0 = 0. Analogously,

σ2(a, a) = 0.

(xiii) Let a 6 b. Then 1 6 a− + b and (a− + b)∼ 6 0, which yields σ1(a, b) =

(a− + b)∼ ∨ 0 = 0. Conversely, assume σ1(a, b) = 0. Then (a− + b)∼ 6 0, thus

1 6 a− + b and a 6 b. Similarly for σ2(a, b).

(xiv) Suppose a = b. Then σ1(a, b) = 0 and σ1(b, a) = 0 by (xiii), hence δ1(a, b) =

0 ∨ 0 = 0. Conversely, let δ1(a, b) = 0. Then σ1(a, b) ∨ σ1(b, a) = 0, which implies

σ1(a, b) 6 0, σ1(b, a) 6 0. The first inequality yields (a− + b)∼ ∨ 0 = 0, thus

(a− + b)∼ 6 0, 1 6 a− + b and a 6 b. Analogously, σ1(b, a) 6 0 implies b 6 a.

Altogether we obtain a = b. Similarly for δ2(a, b).

(xv) By Definition 2 and Lemma 1 (i) we have a → b = a− + b = a− + b−∼ =

b−  a−. Analogously, a b = b∼ → a∼. �

Lemma 3. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice and a ∈ A. Then

a∼ is the least element c ∈ A such that a + c > 1 and a− is the least element d ∈ A

such that d + a > 1.

P r o o f. Let 1 6 a+ c, i.e. (a+ c)∧ 1 = 1, that means (a+ c)∼∨ 0 = 0. Then we

get by Lemma 2 (ii) a∼ = (c + (a∼− + c)∼) ∧ a∼ = (c + (a + c)∼) ∧ a∼. By virtue of

(a+c)∼ 6 0 we have x = c+(a+c)∼ 6 c. Therefore a∼ = (c+(a+c)∼)∧a∼ = x∧a∼,

i.e. a∼ 6 x 6 c. Similarly it can be shown that a− is the least element d ∈ A such

that d + a > 1. �

Lemma 4. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice. Then A satisfies

the following conditions:

(1) (A, +, 0) is a monoid;

(2) (A,∧,∨) is a lattice;

(3) (x− + x)∼ ∨ 0 = 0, (x + x∼)− ∨ 0 = 0 for any x ∈ A;

(4) (y + (x− + y)∼) ∧ x = x, ((y + x∼)− + y) ∧ x = x for any x, y ∈ A;

(5) x ∨ y = (x− ∧ y−)∼ = (x∼ ∧ y∼)− for any x, y ∈ A;

(6) x+(y ∧ z) = (x+ y)∧ (x+ z), (y ∧ z)+x = (y +x)∧ (z +x) for any x, y, z ∈ A.
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P r o o f. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice. Then we get the

conditions (1), (2) and (5) immediately from Definition 1. The condition (3) follows

from Lemma 2 (xii), the condition (4) from Lemma 2 (ii) and (6) is an immediate

consequence of Lemma 2 (v). �

Lemma 5. Let A = (A, +, 0,− ,∼ ,∧,∨) be an algebra of type 〈2, 0, 1, 1, 2, 2〉

satisfying the conditions (1)–(6). Then in A the following assertions hold:

(i) x−∼ = x∼− = x;

(ii) (x ∨ y)− = x− ∧ y−, (x ∨ y)∼ = x∼ ∧ y∼;

(iii) (x ∧ y)− = x− ∨ y−, (x ∧ y)∼ = x∼ ∨ y∼;

(iv) x ∧ y = (x− ∨ y−)∼ = (x∼ ∨ y∼)−;

(v) x 6 y iff y− 6 x− iff y∼ 6 x∼;

(vi) a 6 b, c 6 d ⇒ a + c 6 b + d.

P r o o f. (i) Due to (5) we have x = x ∨ x = (x− ∧ x−)∼ = x−∼, x = x ∨ x =

(x∼ ∧ x∼)− = x∼−.

(ii) The identities (5) and (i) yield (x∨y)− = (x−∧y−)∼− = x−∧y−. Analogously,

(x ∨ y)∼ = x∼ ∧ y∼.

(iii) Using (i) and (5) again we get (x∧y)− = (x−∼ ∧y−∼)− = x− ∨y−. Similarly

we can prove the second part of the claim.

(iv) x ∧ y = (x ∧ y)−∼ = (x− ∨ y−)∼ by (i) and (iii).

(v) Clearly by (ii), x 6 y iff x∧ y = x iff x− ∨ y− = x− iff y− 6 x−. Analogously,

x 6 y iff y∼ 6 x∼.

(vi) Suppose a, b, u ∈ A with a 6 b. Then u + (a ∧ b) = u + a and using (6) we

obtain (u + a) ∧ (u + b) = u + a, i.e. u + a 6 u + b. Analogously, a 6 b implies

a + u 6 b + u. Now, let c, d ∈ A with c 6 d. Then a + c 6 b + c, b + c 6 b + d and

a + c 6 b + d by transitivity. �

Lemma 6. Let A = (A, +, 0,− ,∼ ,∧,∨) be an algebra of type 〈2, 0, 1, 1, 2, 2〉

satisfying the conditions (1)–(6) and a ∈ A. Then a∼ is the least element c ∈ A such

that a + c > 1 and a− is the least element d ∈ A such that d + a > 1.

P r o o f. Let 1 6 a + c, i.e. (a + c) ∧ 1 = 1, that means (a + c)∼ ∨ 0 = 0 by

Lemma 5 (iii). Then we get a∼ = (c + (a∼− + c)∼) ∧ a∼ = (c + (a + c)∼) ∧ a∼

by the identity (4) and Lemma 5 (i). By Lemma 5 (v) we have (a + c)∼ 6 0, thus

x = c+(a+c)∼ 6 c according to Lemma 5 (vi). Therefore a∼ = (c+(a+c)∼)∧a∼ =

x∧a∼, i.e. a∼ 6 x 6 c. Similarly it can be shown that a− is the least element d ∈ A

such that d + a > 1. �
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Theorem 1. Let A = (A, +, 0,− ,∼ ,∧,∨) be an algebra of type 〈2, 0, 1, 1, 2, 2〉.

Then A is a pseudo ∗-lattice if and only if it satisfies the conditions (1)–(6).

P r o o f. According to Lemma 4 it remains to prove the converse implication.

Let A satisfy (1)–(6). Clearly, it suffices to prove (P4).

Suppose x, y ∈ A, x 6 y, i.e. x = x ∧ y. Then due to (3), (6) and Lemma 5 (iii)

we obtain 0 = (x− + x)∼ ∨ 0 = (x− + (x ∧ y))∼ ∨ 0 = ((x− + x) ∧ (x− + y))∼ ∨ 0 =

((x− + x)∼ ∨ (x− + y)∼) ∨ 0 = ((x− + x)∼ ∨ 0) ∨ (x− + y)∼ = (x− + y)∼ ∨ 0. Thus

0− = (x− + y)∼− ∧ 0− by (5) and Lemma 5 (i), i.e. 0− = (x− + y)∧ 0− and we have

0− 6 x− + y. Similarly we can get 0∼ 6 y + x∼.

Conversely, let 0− 6 x−+y. Then according to (3), (6) and Lemma 5 (iii) we have

(x− + (x ∧ y))∼ ∨ 0 = 0, hence (x− + (x ∧ y)) ∧ 0− = 0−, i.e. 0− 6 x− + (x∧ y). By

Lemma 6 we know that x−∼ = x is the least element z ∈ A such that x− + z > 0−.

Thus x 6 x ∧ y, which gives x = x ∧ y and x 6 y. Analogously we can prove that

0∼ 6 y + x∼ yields x 6 y. �

Due to the previous theorem it is evident that the class of all pseudo ∗-lattices

forms a variety (we will denote it by PL ); moreover, it is possible to show that the

variety is arithmetical, i.e., it is congruence permutable and distributive [2].

Theorem 2. The variety PL is arithmetical.

P r o o f. Let d1(x, y, z) = ((x → y)  z) ∨ z, m1(x, y, z) = d1(x, y, y) ∧

d1(y, z, z) ∧ d1(z, x, x). Then m1(x, x, z) = d1(x, x, x) ∧ d1(x, z, z) ∧ d1(z, x, x) = x

because d1(z, x, x) > x, d1(x, z, z) > x by Lemma 2 (ii) and d1(x, x, x) = x

by Lemma 2 (ii), (iii). Similarly, m1(x, z, z) = d1(x, z, z)∧d1(z, z, z)∧d1(z, x, x) = z,

m1(x, z, x) = d1(x, z, z) ∧ d1(z, x, x) ∧ d1(x, x, x) = x. It means that m1(x, y, z) is a

majority term and the variety PL is distributive. Note that another majority term

of PL is m2(x, y, z) = d2(x, y, y)∧ d2(y, z, z)∧ d2(z, x, x) where d2(x, y, z) = ((x 

y) → z) ∨ z.

Further, let p1(x, y, z) = d1(x, y, z) ∧ d1(z, y, x). Then p1(x, x, z) = d1(x, x, z) ∧

d1(z, x, x) = z and p1(x, z, z) = d1(x, z, z) ∧ d1(z, z, x) = x. Thus p1(x, y, z) is

Malcev’s term and the variety is permutable. Another Malcev’s term is p2(x, y, z) =

d2(x, y, z) ∧ d2(z, y, x). �

Definition 3. A residuated lattice is an algebra L = (L, ∗,→1,→2,∧,∨, e) of

type 〈2, 2, 2, 2, 2, 0〉 such that (L,∧,∨) is a lattice, (L, ∗, e) is a monoid and the

following residuation laws are satisfied for all a, b, c ∈ L: a ∗ b 6 c iff a 6 b →2 c iff

b 6 a →1 c.

Definition 4. By a dualizing residuated lattice we mean an algebra D =

(D, ∗,→1,→2,∧,∨, e, d) of type 〈2, 2, 2, 2, 2, 0, 0〉, where (D, ∗,→1,→2,∧,∨, e) is a

731



residuated lattice and d is a dualizing element of D , i.e. (a →1 d) →2 d = a,

(a →2 d) →1 d = a holds for any a ∈ D.

Remark 1. Let us recall some well-known properties of the residuated lattices

(see e.g. [1], [3] and [6]) which will be useful for our subsequent investigation of the

pseudo ∗-lattices. For example, for any residuated lattice L = (L, ∗,→1,→2,∧,∨, e)

and a, b, c ∈ L we have

(α) (a ∗ b) →1 c = b →1 (a →1 c), (b ∗ a) →2 c = b →2 (a →2 c);

(β) a →1 (b →2 c) = b →2 (a →1 c);

(γ) (a ∨ b) →1 c = (a →1 c) ∧ (b →1 c), (a ∨ b) →2 c = (a →2 c) ∧ (b →2 c).

Lemma 7. D = (D, ∗,→1,→2,∧,∨, e, d) be a dualizing residuated lattice with a

dualizing element d. Then ((a →1 d) ∗ (b →1 d)) →2 d = ((a →2 d) ∗ (b →2 d)) →1 d

for any a, b ∈ D.

P r o o f. Applying Remark 1 (α), (β) we can compute: ((a →1 d) ∗ (b →1 d)) →2

d = (a →1 d) →2 ((b →1 d) →2 d) = (a →1 d) →2 ((b →2 d) →1 d) = (b →2 d) →1

((a →1 d) →2 d) = (b →2 d) →1 ((a →2 d) →1 d) = ((a →2 d) ∗ (b →2 d)) →1 d. �

Lemma 8. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice and x, y ∈ A.

Then x ⊲1 y is the least element u ∈ A with the property y + u > x and x ⊲2 y is the

least element v ∈ A with the property v + y > x.

P r o o f. Clearly, we have y+(x⊲1y) = y+(x−+y)∼ > x by Lemma 4 (4). Now,

suppose y + u > x. Then using Lemma 2 (iv), (i) we get x− + (y + u) > x− + x > 1.

Thus 1 6 x− + y + u = (x− + y)∼− + u and therefore we obtain (x− + y)∼ 6 u

according to Definition 1 , i.e. x ⊲1 y 6 u. Similarly we can show that x ⊲2 y is the

least element v ∈ A with the property v + y > x. �

Lemma 9. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice, x, y ∈ A and

define x · y := (y∼ + x∼)−. Then x  y is the greatest element u ∈ A with the

property u · x 6 y and x → y is the greatest element v ∈ A with the property

x · v 6 y.

P r o o f. We compute (x y) · x = (x∼ + (x y)∼)− = (x∼ + (y + x∼)∼)− =

(x∼ + (y∼− + x∼)∼)−. Applying Lemma 4 (4) we obtain x∼ + (y∼− + x∼)∼ > y∼

and therefore we have (x  y) · x 6 y∼− = y. Now, assume u · x 6 y. Then

(x∼ + u∼)− 6 y, which implies x∼ + u∼ > y∼ and u∼ > y∼ ⊲1 x∼ due to Lemma 8.

Hence u 6 (y∼ ⊲1 x∼)−, i.e. u 6 (y∼− + x∼)∼− = y + x∼, which implies u 6 x y.

Analogously it can be proved that x → y is the greatest element v ∈ A such that

x · v 6 y. �

732



Let us denote the class of all dualizing residuated lattices by DRL .

Theorem 3. PL is term equivalent to DRL .

P r o o f. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice and x · y := (y∼ +

x∼)−. Then we shall show that A + = (A, ·,→, ,∧,∨, 1, 0) is a dualizing residuated

lattice with the dualizing element 0.

Clearly, the residuation laws are satisfied due to Lemma 9. Further, for an arbi-

trary a ∈ A we have (a → 0)  0 = 0 + (a− + 0)∼ = a−∼ = a (a  0) → 0 =

(0+a∼)−+0 = a∼− = a and 0 is the dualizing element of A +. Now, let us show that

(A, ·, 1) is a monoid. We compute (x·y)·z = (y∼+x∼)− ·z = (z∼+(y∼+x∼)−∼)− =

(z∼ +(y∼+x∼))− = ((z∼ +y∼)+x∼)− = ((z∼ +y∼)−∼ +x∼)− = x · (y ·z). Finally,

x · 1 = (1∼ + x∼)− = (0 + x∼)− = x and 1 · x = (x∼ + 1∼)− = (x∼ + 0)− = x.

Conversely, let (D, ∗,→1,→2,∧,∨, e, d) be a dualizing residuated lattice and let
−d , ∼d , +d be such that for any a, b ∈ D we have a−d = a →2 d, a∼d = a →1 d,

a +d b = ((a →1 d) ∗ (b →1 d)) →2 d (= ((a →2 d) ∗ (b →2 d)) →1 d by Lemma 7).

Then we can prove that D+ = (D, +d, d,−d ,∼d ,∧,∨) is a pseudo ∗-lattice. Indeed,

according to Remark 1 (α) we have a +d b = ((a →1 d) ∗ (b →1 d)) →2 d = (a →1

d) →2 ((b →1 d) →2 d) = (a →1 d) →2 b. Similarly, a +d b = ((a →2 d) ∗ (b →2

d)) →1 d = (b →2 d) →1 ((a →2 d) →1 d) = (b →2 d) →1 a. Due to this argument

and Remark 1 (β) we can write for a, b, c ∈ D: (a +d b) +d c = (c →2 d) →1 ((a →1

d) →2 b) = (a →1 d) →2 ((c →2 d) →1 b) = a +d (b +d c).

Further, applying Remark 1 (α), a +d d = ((a →1 d) ∗ (d →1 d)) →2 d = (a →1

d) →2 ((d →1 d) →2 d) = (a →1 d) →2 d = a and d +d a = ((d →2 d) ∗ (a →2 d) →1

d = (a →2 d) →1 ((d →2 d) →1 d) = (a →2 d) →1 d = a.

To prove (P3) we compute using Remark 1 (γ): (a−d ∧b−d)∼d = ((a →2 d)∧(b →2

d)) →1 d = ((a ∨ b) →2 d) →1 d = a ∨ b. Analogously, (a∼d ∧ b∼d)−d = a ∨ b.

Using the properties of the residuated lattice again we verify (P4): We have a 6 b

iff (a →2 d) →1 d 6 (b →1 d) →2 d iff ((a →2 d) →1 d) ∗ (b →1 d) 6 d iff

d →2 d 6 (((a →2 d) →1 d) ∗ (b →1 d)) →2 d iff d−d 6 a−d +d b. Analogously we

can prove the second part of (P4).

Finally, it can be seen that A coincides with (A +)+ and D coincides with (D+)+.

�

Lemma 10. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice and x · y :=

(y∼ + x∼)−. Then

(i) (x− · y−)∼ = (x∼ · y∼)−;

(ii) (x− + y−)∼ = (x∼ + y∼)−.

P r o o f. (i) According to Theorem 3 we can use the properties of the dualizing

residuated lattice A + = (A, ·,→, ,∧,∨, 1, 0), especially the condition (α) from

733



Remark 1, and we can write (x− · y−)∼ = ((x → 0) · (y → 0))  0 = (x → 0)  

((y → 0) 0) = x−  y.

Analogously, (x∼ · y∼)− = ((x 0) · (y  0)) → 0 = (y  0) → ((x 0) → 0) =

y∼ → x.

Due to Lemma 2 (xv) we have x−  y = y∼ → x−∼ = y∼ → x, i.e. (x− · y−)∼ =

(x∼ · y∼)−.

(ii) Clearly, x · y = (y∼ + x∼)− yields (x · y)∼ = y∼ + x∼, hence x + y = x−∼ +

y−∼ = (y− · x−)∼. By virtue of (i) this implies (x− + y−)∼ = (y−− · x−−)∼∼ =

(y−∼ · x−∼)−∼ = y · x = (x∼ + y∼)−. �

Definition 5. A coresiduated lattice is an algebra L = (L, •, ⊲, ⊳,∧,∨, n) of type

〈2, 2, 2, 2, 2, 0〉 such that (L,∧,∨) is a lattice, (L, •, n) is a monoid and the following

coresiduation laws hold for all a, b, c ∈ L: a 6 b • c iff a ⊲ b 6 c iff c ⊳ a 6 b.

Definition 6. A codualizing coresiduated lattice is an algebra C = (C, •, ⊲, ⊳,∧,

∨, n, c) of type 〈2, 2, 2, 2, 2, 0, 0〉 where (C, •, ⊲, ⊳,∧,∨, n) is a coresiduated lattice and

c is a codualizing element of C , i.e. c ⊲ (c ⊳ a) = c ⊳ (c ⊲ a) = a for any a ∈ C.

Lemma 11. Let A = (A, +, 0,− ,∼ ,∧,∨) be a pseudo ∗-lattice. Then A ++ =

(A, +, ⊲1, ⊲2,∧,∨, 0, 1) is a codualizing coresiduated lattice.

P r o o f. To verify the coresiduation laws we suppose that a, b, c ∈ A and a 6 b+c.

By Lemma 1 (iii), (iv) we have a 6 b+c iff c− 6 a−+b iff (a−+b)∼ 6 c, i.e. a⊲1b 6 c.

Analogously we can show that a 6 b + c iff c ⊲2 a 6 b.

Further, 1 ⊲1 (1 ⊲2 a) = 1 ⊲1 (a + 1∼)− = (1− + a−)∼ = a−∼ = a, 1 ⊲2 (1 ⊲1 a) =

1⊲2 (1−+a)∼ = (a∼+1∼)− = a∼− = a and 1 is the codualizing element of A ++. �

Lemma 12. Let C = (C, •, ⊲, ⊳,∧,∨, n, c) be a codualizing coresiduated lattice

and define x−c := c ⊳ x, x∼c := c ⊲ x. Then C++ = (C, •, n,−c ,∼c ,∧,∨) is a pseudo

∗-lattice.

P r o o f. To prove (P3) we will use a property of the coresiduated lattices which

is analogous to the condition (γ) of Remark 1: (x−c ∧y−c)∼c = ((c⊳x)∧ (c⊳y))∼c =

c⊲((c⊳x)∧(c⊳y)) = (c⊲(c⊳x))∨(c⊲(c⊳y)) = x∨y. Similarly, (x∼c ∧y∼c)−c = x∨y.

Now, we will prove (P4). Applying Definition 6 we have x 6 y iff c ⊲ (c ⊳ x) 6 y iff

c 6 (c ⊳ x) • y. Clearly, c ⊳ n = c, thus n−c 6 x−c • y. Further, x 6 y iff c ⊲ y 6 c ⊲ x

iff c 6 y • (c ⊲ x) and since c ⊲ n = c we obtain n∼c 6 y • x∼c . �
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3. Ideals

Definition 7. Let A be a pseudo ∗-autonomous lattice, x ∈ A. By an absolute

value of x we mean an element |x| := δ2(x, 0) = x ∨ ¬1x ∨ 0.

Lemma 13. For an arbitrary pseudo ∗-lattice A and a, b ∈ A the following

conditions hold:

(i) 0 6 |a|, a 6 |a|, ¬1a 6 |a|;

(ii) 0 6 a ⇒ |a| = a, a 6 0 ⇒ |a| = ¬1a;

(iii) a = 0 ⇔ |a| = 0;

(iv) ‖a‖ = |a|;

(v) |a ∨ b| 6 |a| ∨ |b|;

(vi) |a| ∨ |b| 6 |a| + |b|.

P r o o f. (i) It evidently follows from Definition 7.

(ii) For any a ∈ A, 0 6 a we have a ∨ 0 = a, i.e. |a| = a ∨ ¬1a. Further,

1 = 0 + 1 6 a + 1, which implies (a + 1)− 6 0, thus ¬1a 6 0 and using transitivity

we obtain ¬1a 6 a and |a| = a ∨ ¬1a = a. Similarly, for any a ∈ A, a 6 0 we have

0 = ¬10 6 ¬1a. Hence |a| = ¬1a.

(iii) Clearly, a = 0 implies |a| = 0.

Conversely, if |a| = a ∨ ¬1a ∨ 0 = 0 then a ∨ ¬1a 6 0. Consequently, a 6 0, which

implies 0 6 ¬1a, thus ¬1a = 0 and a = 0.

(iv) We have |a| > 0 for any a ∈ A due to (i) and according to (ii) we obtain the

claim.

(v) |a ∨ b| = (a ∨ b) ∨ ¬1(a ∨ b) ∨ 0 = (a ∨ b ∨ 0) ∨ ¬1(a ∨ b), |a| ∨ |b| = (a ∨ ¬1a ∨

0) ∨ (b ∨ ¬1b ∨ 0) = (a ∨ b ∨ 0) ∨ (¬1a ∨ ¬1b). Using Lemma 2 (ix) we are done.

(vi) With respect to Lemma 2 (vi) we have |a| 6 (|a|+ b)∨ (|a|+¬1b)∨ (|a|+0) 6

|a| + (b ∨ ¬1b ∨ 0) = |a| + |b|.

Analogously we can show that |b| 6 |a| + |b|. These two inequalities give the

proposition. �

Definition 8. Let A be a pseudo ∗-autonomous lattice and ∅ 6= J ⊆ A. Then

J is called an ideal of A if for any a, b ∈ A the following conditions are satisfied:

(I1) a, b ∈ J imply a + b ∈ J ;

(I2) a ∈ J implies ¬1a ∈ J ;

(I3) a ∈ J , b ∈ A, |b| 6 |a| imply b ∈ J .

The set of all ideals of A will be denoted by I (A ).
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Lemma 14. In any pseudo ∗-lattice A :

(i) {0} is the smallest ideal of A;

(ii) if J ∈ I (A ) and a ∈ A then a ∈ J iff |a| ∈ J ;

(iii) if J ∈ I (A ) then J is a convex sublattice of (A,∧,∨).

P r o o f. (i) Due to Lemma 13 (i), (iii) we have |0| 6 |a| for an arbitrary a ∈ A.

Thus 0 ∈ J for any J ∈ I (A ) by (I3). Evidently, {0} satisfies (I1)–(I3), i.e. {0} is

the smallest ideal of A.

(ii) Let a ∈ J . Then ‖a‖ = |a| 6 |a| according to Lemma 13 (iv) and by (I3) we

get |a| ∈ J .

Conversely, if |a| ∈ J then |a| 6 |a| = ‖a‖ and using (I3) again we obtain a ∈ J .

(iii) Let J ∈ I (A ), a, b ∈ J . Then |a ∨ b| 6 |a| ∨ |b| 6 |a| + |b| =
∣

∣|a| + |b|
∣

∣ due

to Lemma 13 (v), (vi) and by virtue of |a| + |b| > 0. Clearly |a| + |b| ∈ J by (ii) and

(I1). Hence (I3) gives a ∨ b ∈ J .

Further, according to Lemma 2 (viii) we have |a ∧ b| = (a ∧ b) ∨ ¬1(a ∧ b) ∨ 0 =

(a∧ b)∨ (¬1a∨¬1b)∨ 0 6 (a∨ b)∨ (¬1a∨¬1b)∨ 0 = |(a∨ b)∨ (¬1a∨¬1b)∨ 0|. Thus

a ∧ b ∈ J by (I3) and we conclude that J is a sublattice of (A,∧,∨).

To prove the convexity of J we suppose that a, b ∈ J , x ∈ A and a 6 x 6 b. Then

x∨ 0 6 b∨ 0 and taking into account b∨ 0 ∈ J and |x∨ 0| = x∨ 0 6 b∨ 0 = |b∨ 0| we

get x∨ 0 ∈ J by (I3). Further, |x| = (x ∨ 0) ∨ ¬1x 6 (x ∨ 0)∨ ¬1a = |(x ∨ 0) ∨ ¬1a|.

Since (x ∨ 0) ∨ ¬1a ∈ J we obtain x ∈ J . �

4. Homomorphisms and congruences

Definition 9. An ideal J of a pseudo ∗-lattice A is said to be normal if it

satisfies the following condition for each a, b ∈ A:

σ1(a, b) ∈ J iff σ2(a, b) ∈ J.

The set of all normal ideals of A will be denoted by N (A) and the set of all congru-

ences on A by Con(A).

Lemma 15. If J ∈ N (A ) then for each a, b ∈ A we have

δ1(a, b) ∈ J iff δ2(a, b) ∈ J.

P r o o f. Let J ∈ N (A ) and δ1(a, b) ∈ J . Then σ1(a, b)∨ σ1(b, a) ∈ J and since

0 6 σ1(a, b), σ1(b, a) 6 σ1(a, b)∨σ1(b, a) we get σ1(a, b), σ1(b, a) ∈ J by the convexity

of J . Hence also σ2(a, b), σ2(b, a) ∈ J by the normality of J and δ2(a, b) ∈ J . The

converse is analogous. �
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Definition 10. Let A , B be two pseudo ∗-lattices and let h be a homomorphism

from A to B. The set Kerh = {a ∈ A; h(a) = 0B} is called the kernel of h.

Lemma 16. Let h : A → B be a homomorphism of pseudo ∗-lattices A and B.

Then for each a, b ∈ A the following assertions are valid:

(i) h(a) 6B h(b) iff σA
1 (a, b) ∈ Kerh;

(ii) Kerh = {0A} iff h is an injection;

(iii) Kerh ∈ N (A ).

P r o o f. (i) According to Lemma 2 (xiii) we have h(a) 6B h(b) ⇔ σ1(h(a),

h(b)) = 0B but σ1(h(a), h(b)) = h(σ1(a, b)) and we are done.

(ii) Let h be an injection from A to B. Then obviously Kerh = {0A}.

Conversely, let Kerh = {0A} and let a, b ∈ A be such that h(a) = h(b). Then by

Lemma 2 (xiv) we have δ1(h(a), h(b)) = 0B, i.e. h(δ1(a, b)) = 0B and δ1(a, b) ∈ Kerh.

Hence δ1(a, b) = 0A and using Lemma 2 (xiv) again we get a = b.

(iii) To check (I1) we suppose that a, b ∈ Kerh, i.e. h(a) = h(b) = 0B. Then

h(a + b) = h(a) + h(b) = 0B + 0B = 0B and a + b ∈ Kerh.

Further, for a ∈ Kerh we have h(¬1a) = h((a + 1)−) = (h(a + 1))− = (h(a) +

h(1))− = (0B + h(1))− = (h(1))− = h(1−) = h(0A) = 0B, i.e. ¬1a ∈ Kerh.

Now, we will prove the condition (I3). Let a ∈ Kerh, b ∈ A and |b| 6 |a|. Then

h(b) ∨ ¬1h(b) ∨ h(0) = h(b ∨ ¬1b ∨ 0) 6 h(a ∨ ¬1a ∨ 0) = h(a) ∨ ¬1h(a) ∨ h(0).

Consequently, |h(b)| 6 |h(a)| = 0. This implies |h(b)| = 0, h(b) = 0 and b ∈ Kerh.

It remains to prove that Kerh is normal. For this purpose we compute σ1(x, y) ∈

Kerh ⇔ h((x− + y)∼ ∨ 0) = 0 ⇔ (h(x)− +h(y))∼ ∨ 0 = 0 ⇔ (h(x)− +h(y))∼ 6 0 ⇔

h(x)− + h(y) > 1 ⇔ h(x) 6 h(y) ⇔ h(y) + h(x)∼ > 1 ⇔ (h(y) + h(x)∼)− 6 0 ⇔

(h(y) + h(x)∼)− ∨ 0 = 0 ⇔ h(y + x∼)− ∨ 0 = 0 ⇔ σ2(x, y) ∈ Kerh. �

Definition 11. Let J ∈ I (A ). The binary relation f1(J) ⊆ A × A is defined

as follows: 〈a, b〉 ∈ f1(J) iff δ1(a, b) ∈ J .

Lemma 17. Let A be a pseudo ∗-lattice and J ∈ I (A ). Then the following

conditions are equivalent for any a, b ∈ A:

(a) 〈a, b〉 ∈ f1(J);

(b) there exists c ∈ J , c > 0 such that a 6 b + c and b 6 a + c;

(c) σ1(a, b) ∈ J and σ1(b, a) ∈ J .

P r o o f. (a) ⇒ (b): Due to Lemma 2 (ii) we have a 6 (a → b) b = b + (a− +

b)∼ 6 b + ((a− + b)∼ ∨ 0) = b + σ1(a, b) 6 b + δ1(a, b). Since 〈a, b〉 ∈ f1(J) we have

δ1(a, b) ∈ J . Similarly we can show that b 6 a + δ1(a, b).
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(b) ⇒ (c): Let a 6 b + c where c ∈ J , c > 0. Then c− 6 a− + b, which implies

(a− + b)∼ 6 c and consequently σ1(a, b) = (a− + b)∼ ∨ 0 6 c∨ 0 6 |c|. Applying (I3)

we obtain σ1(a, b) ∈ J . Analogously one can prove that b 6 a+c entails σ1(b, a) ∈ J .

(c) ⇒ (a): This implication follows immediately from Lemma 14 (iii). �

Remark 2. Analogously we can define the relation f2(J) ⊆ A × A such that

〈a, b〉 ∈ f2(J) iff δ2(a, b) ∈ J .

Then we can get equivalent conditions similarly to the previous lemma:

(a)
∗ 〈a, b〉 ∈ f2(J);

(b)
∗

there exists d ∈ J , d > 0, such that a 6 d + b, b 6 d + a;

(c)∗ σ2(a, b) ∈ J and σ2(b, a) ∈ J .

Obviously, we can take d = δ2(a, b).

Remark 3. Clearly, if J ∈ N (A ) then we have 〈a, b〉 ∈ f1(J) iff 〈a, b〉 ∈ f2(J)

iff there exists 0 6 u = δ1(a, b) ∨ δ2(a, b) such that a 6 b + u, b 6 a + u, a 6 u + b,

b 6 u + a. It means that for J ∈ N (A ) we have f1(J) = f2(J) and therefore we

will denote this relation simply by f(J).

Lemma 18. Let J ∈ I (A ). Then f1(J) and f2(J) are equivalence relations

on A .

P r o o f. It is obvious that f1(J) is reflexive and symmetric. Let us prove

transitivity applying the previous lemma. Suppose that 〈a, b〉, 〈b, c〉 ∈ f1(J). Then

there exist u, v ∈ J , 0 6 u, v such that a 6 b+u, b 6 a+u, b 6 c+v, c 6 b+v. This

entails a 6 a∨c 6 (b+u)∨ (b+v) 6 b+(u∨v) 6 (c+v)+(u∨v) = c+(v +(u∨v)).

Similarly it can be shown that c 6 a + (u + (u ∨ v)) and we conclude that there

exists w = (v + (u ∨ v)) ∨ (u + (u ∨ v)) ∈ J such that a 6 c + w, c 6 a + w. Hence

〈a, c〉 ∈ f1(J) by Lemma 17 and f1(J) is transitive. Analogously for f2(J). �

Lemma 19. Let J ∈ N (A ). Then f(J) is a congruence relation on A .

P r o o f. Assume that J ∈ N (A ) and 〈a, b〉 ∈ f(J). Then by Lemma 17 and

Remark 2 there exists x ∈ J , x > 0 such that a 6 b + x, b 6 a + x, a 6 x + b and

b 6 x + a. Then a− 6 b− + x and b− 6 a− + x, hence 〈a−, b−〉 ∈ f(J). Further,

a∼ 6 x + b∼ and b∼ 6 x + a∼. Thus 〈a∼, b∼〉 ∈ f(J).

To prove that f(J) satisfies the substitution property under + and ∧ we suppose

u ∈ A. Then a + u 6 (x + b)+ u = x + (b + u) and b + u 6 (x + a) +u = x+ (a + u),

i.e. 〈a + u, b + u〉 ∈ f(J). Analogously it can be shown that 〈a, b〉 ∈ f(J) yields

〈u + a, u + b〉 ∈ f(J).

Similarly, a ∧ u 6 (x + b) ∧ u 6 (x + b) ∧ (x + u) = x + (b ∧ u) because 0 6 x

implies u 6 x + u. Hence 〈a ∧ u, b ∧ u〉 ∈ f(J). Now, let 〈c, d〉 ∈ f(J). Then
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〈a+c, b+c〉, 〈b+c, b+d〉, 〈a∧c, b∧c〉, 〈b∧c, b∧d〉 ∈ f(J) and 〈a+c, b+d〉, 〈a∧c, b∧d〉 ∈

f(J) by the transitivity.

Compatibility of f(J) with ∨ follows from the fact that a ∨ c = (a− ∧ c−)∼ and

b ∨ d = (b− ∧ d−)∼. �

Definition 12. Let Θ be a congruence on A . We define g(Θ) as the coset of 0

modulo Θ, i.e. g(Θ) = 0/Θ = {x ∈ A; 〈x, 0〉 ∈ Θ}.

Lemma 20. If Θ is a congruence on A , then g(Θ) ∈ N (A ).

P r o o f. (I1): Let Θ ∈ Con(A ) and a, b ∈ g(Θ). Then 〈a, 0〉, 〈b, 0〉 ∈ Θ, thus

〈a + b, 0〉 ∈ Θ, i.e. a + b ∈ g(Θ).

(I2): Clearly, a ∈ g(Θ) implies 〈a, 0〉 ∈ Θ, 〈a + 1, 0 + 1〉 ∈ Θ, 〈(a + 1)−, 1−〉 ∈ Θ,

i.e. 〈¬1a, 0〉 ∈ Θ and ¬1a ∈ g(Θ).

(I3): Suppose a ∈ g(Θ), b ∈ A and |b| 6 |a|. Then 〈a, 0〉, 〈¬1a, 0〉 ∈ Θ, which yields

〈a∨¬1a∨0, 0〉 ∈ Θ, i.e. 〈|a|, 0〉 ∈ Θ and |a| ∈ g(Θ). Now we have 0 6 |b| 6 |a| ∈ g(Θ)

and using the convexity of the sublattice (g(Θ),∧,∨) we conclude |b| ∈ g(Θ). We

will show that |b| ∈ g(Θ) implies b ∈ g(Θ). Obviously, 〈b ∨ ¬1b ∨ 0, 0〉 ∈ Θ entails

〈b∧ (b∨ (¬1b∨ 0)), b∧ 0〉 ∈ Θ, i.e. 〈b, b∧ 0〉 ∈ Θ. This implies 〈b∨ 0, (b∧ 0)∨ 0〉 ∈ Θ,

i.e. 〈b ∨ 0, 0〉 ∈ Θ and b ∨ 0 ∈ g(Θ). Analogously, ¬1b ∨ 0 ∈ g(Θ) and consequently

¬2(¬1b∨0) ∈ g(Θ). Further, b∧0 6 b entails ¬1b 6 ¬1(b∧0) = ¬1b∨¬10 = ¬1b∨0.

Now, applying Lemma 2 (xi), we have g(Θ) ∋ ¬2(¬1b∨0) 6 ¬2¬1b 6 b 6 b∨0 ∈ g(Θ).

Hence we get b ∈ g(Θ) by the convexity of g(Θ).

To show the normality of g(Θ) it suffices to use Lemma 16 and to realize that g(Θ)

is the kernel of the canonical homomorphism ν : a 7→ a/Θ. �

Theorem 4. Let A be a pseudo ∗-lattice. Then the latticesN (A ) and Con(A )

are isomorphic.

P r o o f. Obviously, it suffices to prove the following properties of the correspon-

dences f , g from Remark 3 and Definition 12: (A) g(f(J)) = J , (B) f(g(Θ)) = Θ,

(C) both f and g are order preserving.

(A) Applying Lemma 14 (ii) we get g(f(J)) = {x ∈ A; 〈x, 0〉 ∈ f(J)} = {x ∈

A; δ2(x, 0) ∈ J} = {x ∈ A; |x| ∈ J} = J .

(B) Due to Lemma 17 we have f(g(Θ)) = {〈a, b〉 ⊆ A × A; δ2(a, b)/Θ = 0/Θ} =

{〈a, b〉; there exists c ∈ J such that 〈c, 0〉 ∈ Θ, a 6 b + c, b 6 a + c}. First, we

will show Θ ⊆ f(g(Θ)). Let 〈a, b〉 ∈ Θ. Then 〈(a− + a)∼ ∨ 0, (a− + b)∼ ∨ 0〉 ∈

Θ, i.e. 〈σ1(a, a), σ1(a, b)〉 ∈ Θ and since σ1(a, a) = 0 by Lemma 2 (xii) we obtain

〈σ1(a, b), 0〉 ∈ Θ. Similarly it can be shown that 〈σ1(b, a), 0〉 ∈ Θ, thus 〈δ1(a, b), 0〉 ∈

Θ and 〈a, b〉 ∈ f(g(Θ)).
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Conversely, let 〈a, b〉 ∈ f(g(Θ)), i.e. there exists c ∈ 0/Θ such that a 6 b + c,

b 6 a + c. Hence 〈c, 0〉 ∈ Θ, which entails 〈b + c, b〉, 〈a + c, a〉 ∈ Θ and consequently

a/Θ = (a∧(b+c))/Θ = (a∧b)/Θ = (b∧a)/Θ = (b∧(a+c))/Θ = b/Θ, i.e. 〈a, b〉 ∈ Θ

and f(g(Θ)) ⊆ Θ.

(C) Assume I ⊆ J and 〈a, b〉 ∈ f(I), i.e. δ1(a, b) ∈ I ⊆ J . Hence δ1(a, b) ∈ J ,

〈a, b〉 ∈ f(J) and we conclude f(I) ⊆ f(J).

Finally, let Θ, Φ ∈ Con(A ) with Θ ⊆ Φ and let a ∈ g(Θ), i.e. 〈a, 0〉 ∈ Θ ⊆ Φ.

Thus a ∈ g(Φ) and g(Θ) ⊆ g(Φ). �
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