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Abstract. We consider the initial-boundary value problem for first order differential-
functional equations. We present the ‘vanishing viscosity’ method in order to obtain viscos-
ity solutions. Our formulation includes problems with a retarded and deviated argument
and differential-integral equations.
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1. Introduction

Let Ω ⊆ R
n be any open bounded domain. For given constants T > 0, a0, r0 > 0

we define

Ωr0 = {x ∈ R
n : dist(x,Ω) 6 r0}, ∂0Ω = Ωr0 \ Ω, Θ = (0, T ) × Ω,

Θ0 = [−a0, 0] × Ωr0 , ∂0Θ = (0, T )× ∂0Ω, Γ = Θ0 ∪ ∂0Θ, E = Γ ∪ Θ.

Let D = [−a0, 0]×B(r0), where B(r0) = {x ∈ R
n : |x| 6 r0} and | · | is the norm

in R
n. For every z : E → R and (t, x) ∈ Θ we define a function z(t,x) : D → R by

z(t,x)(s, y) = z(t+ s, x+ y) for (s, y) ∈ D. We call the restriction operator z → z(t,x)

“the Hale operator” (see [9] for ordinary differential equations).

Throughout the paper C(A) stands for the space of all continuous functions w :

A→ R with the supremum norm ‖ · ‖A.
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Suppose that f : Θ × R × C(D) × R
n → R of the variables (t, x, u, w, p) and

Ψ: Γ → R are given function. We will consider the initial-boundary value problem

(IBVP)

Dtu(t, x) = f(t, x, u(t, x), u(t,x), Du(t, x)) in Θ,(1)

u(t, x) = Ψ(t, x) in Γ.(2)

We write Du for the spatial derivative Dxu.

Definition 1.1. A function u ∈ C(E) is a viscosity subsolution (resp. superso-

lution) of (1), (2) provided for all ϕ ∈ C1(Θ) if u−ϕ attains a local maximum (resp.
minimum) at (t0, x0) ∈ Θ then

Dtϕ(t0, x0) 6 f(t0, x0, u(t0, x0), u(t0,x0), Dϕ(t0, x0)) (resp. “ > ”)(3)

u(t, x) 6 Ψ(t, x) in Γ, (resp. “ > ”)(4)

Definition 1.2. A function u ∈ C(E) is a viscosity solution of (1), (2) if u is

both a viscosity subsolution and supersolution of (1), (2).

We denote by SUB(f,Ψ), SUP(f,Ψ), SOL(f,Ψ) the sets of all viscosity subsolu-

tions, supersolutions and solutions of problem (1), (2).

The following remark is immediate.

Remark 1.1. If u ∈ C(E) ∩ C1(Θ) then u ∈ SOL(f,Ψ) (u ∈ SUB(f,Ψ),

SUP(f,Ψ)) if and only if u is a classical solution (subsolution, supersolution) of

(1), (2).

The notion of viscosity solution was first introduced by M.G.Crandall and

P.L. Lions in [8], [15] for first order differential equations. The best general ref-

erences for the second order equations (not considered here) are [2], [7].

The existence of classical solutions for first order partial differential-functional

equations was considered in [3] (equation with a retarded argument) and in [4] (equa-

tion with operators of the Volterra type). The paper [12] is devoted to classical and

Carathéodory solutions for a Hale type model of functional dependence in equations.

This model is also studied in [20] where vanishing viscosity method is applied to the

Cauchy problem. It is worth manthionig here that some expict estimates that leads

to the convergence of vanishing viscosity method (for the Cauchy problem) are given

in [11] for Bellman-Isaacs differential-integral equations.

The method presented in this paper (interesting in itself) is not the only one that

gives existence of a viscosity solution for our problem. We believe that the existence

result can be obtained also as a particular case of the theorem for a second order
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degenerate parabolic problem. This can be done by generalizing results obtained

in [2], [7]. This problem for integro- PDE which has many applications in optimal

control jump-diffusion processes was discussed in [1] for second order equation and

in [16] for first order equations. Both of them deal with the Cauchy problem. Fixed

point techniques combined with a results obtained for nonfunctional case can be used

also to prove the existence. (see [10], [21]).

Problem (1), (2) contains as a particular case equations with a retarded and de-

viated argument and differential-integral (integro- PDE) equations. This can be

derived from (1), (2) by specializing the function f .

Indeed, let us consider two examples,

Example 1.1. Let g : Θ×R×R×R
n → R and µ : Θ → R, ν : Θ → R

n be given

functions such that

(5) t− a0 6 µ(t, x) 6 t, |ν(t, x) − x| 6 r0 for (t, x) ∈ Θ.

Consider the equation

(6) Dtu(t, x) = g(t, x, u(t, x), u(µ(t, x), ν(t, x)), Du(t, x)) in Θ,

with an initial-boundary condition (2). It is easy to verify that putting

(7) f(t, x, u, w, p) = g(t, x, u, w(µ(t, x) − t, σ(t, x) − x), p)

for (t, x, u, w, p) ∈ Θ × R× C(D) × R
n we can obtain problem (1), (2).

In Section 3 we present the theorem on the existence of viscosity solution for (6),

(2).

Problem in the form (1), (2) can be obtained also by transformation of the

differential-integral equation.

Example 1.2. Let D(t,x) = {(t+t′, x+x′) : (t′, x′) ∈ D} and h : Θ×R×R×R
n →

R and K : Θ × Θ × R → R be given functions.

Consider the equation

(8) Dtu(t, x) = h

(

t, x, u(t, x),

∫

D(t,x)

K(t, x, s, y, u(s, y)) ds dy,Du(t, x)

)

in Θ.

Define f : Θ × R× C(D) × R
n → R by

f(t, x, u, w, p) = h

(

t, x, u,

∫

D(t,x)

K(t, x, s, y, w(s− t, y − x)) ds dy, p

)

.

By the above formula it is evident that (8), (2) can be treated as a particular case

of (1), (2).
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2. Auxiliary theorems

In this section we will be concerned with the problem,

Dtu(t, x) − ε∆xu(t, x) = f(t, x, u(t, x), u(t,x), Du(t, x)) in Θ,(9)

u(t, x) = Ψ(t, x) in Γ.(10)

Let C1,2(Θ̄) denote the space of all functions u ∈ C(Θ) such that Dtu,Du,D
2
xu

exist and are continuous in Θ. Write C1,2
∗ (E) = C1,2(Θ) ∩ C(E). We will write

CSL(f,Ψ, ε) for the set of classical solutions of (9), (10) (i.e. uε ∈ C1,2
∗ (E) and uε

satisfies (9), (10)).

The reason why we consider (9), (10) together with (1), (2) is the following. In

order to obtain viscosity solutions of (1), (2) we apply the vanishing viscosity method

(see [13] for entropy generalized solutions and [8], [15] for viscosity solutions, both

for the nonfunctional case).

Proposition 2.1 (vanishing viscosity method). Let uε ∈ CLS(fε,Ψε, ε). Assume

that fε → f in C(Θ × R× C(D) × R
n) (on bounded subsets) and Ψε → Ψ in C(Γ).

If uε → u in C(E) as ε→ 0 then u is a viscosity solution of (9), (10).

The idea of the proof is similar to the nonfunctional case (see [8]).

To apply this method we need a theorem on global existence of classical solutions

for (9), (10). This subject (for nonfunctional case) was investigated in the classical

monograph [14]. The functional case was studied in [5], [6] for a special type of

functional dependence. The problem for an arbitrary linear parabolic operator with

a Hale’s type functional dependence was considered in [19]. We wil present later a

set of assumptions giving existence of classical solutions for (9), (10) (proved in [19]).

A function ω : R+ 7→ R+ is called a modulus if ω is nondecreasing and ω(0+) = 0.

Let K(R) = {w ∈ C(D) : ‖w‖D 6 R}. We write Gt = {(s, x) ∈ G : −a0 6 s 6 t} for
any G ⊆ R

n+1.

Definition 2.1. Let M > 0 and σ : [0, T ]×R+ 7→ R+. We will write σ ∈ OM if

(i) σ is continuous and nondecreasing with respect to both variables,

(ii) the right-hand maximum solution of the problem

(11) z′(t) = σ(t, z(t)), z(0) = M

exists in [0, T ]. (We will denote this solution by µσ(·,M).)

Definition 2.2. Let M > 0, σ ∈ OM . We will write f ∈ Xσ, M if
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(i) for every (t, x, u, w) ∈ Θ × R× C(D)

f(t, x, u, w, 0) sgn(u) 6 σ(t,max (|u|, ‖w‖D);

(ii) for every R > 0 there exists a modulus ωR such that

|f(t, x, u, w, p) − f(t, x, u, w, 0)| 6 ωR(|p|) in Θ × [−R,R]×K(R) × R
n.

Define

(12) R(σ,M) = µσ(T,M).

Proposition 2.2. Suppose that f ∈ Xσ, M , ‖Ψ‖Γ 6 M and u ∈ CLS(f,Ψ, ε)

(u ∈ SOL(f,Ψ)). Then

(13) ‖u‖Et
6 µσ(t,M) 6 R(σ,M) for t ∈ [0, T ].

This proposition is proved in [18] (Theorem 2).

The following corollary is easily seen.

Corollary 2.1. If σ(t, z) = C1 + C2z for C1, C2 > 0 in Proposition 2.2 then,

(14) ‖u‖Et
6 eC2t( ‖Ψ‖Γt

+ C1t ) for t ∈ [0, T ].

Definition 2.3. Let (X, ‖ · ‖) be a real normed space and R > 0 any constant.

We define IR : X 7→ X by

(15) IR(x) =

{

x, if ‖x‖ 6 R;
x

‖x‖R if ‖x‖ > R.

It is evident that

(16) ‖IR(x)‖ = min (‖x‖, R), ‖IR(x) − IR(y)‖ 6 2‖x− y‖ in X.

For any function f : Θ × R× C(D) × R
n → R and R > 0 we define fR : Θ × R×

C(D) × R
n → R by

(17) fR(t, x, u, w, p) = f(t, x, IR(u), IR(w), p).

By Proposition 2.2 we have
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Remark 2.1. Let ‖Ψ‖Γ 6 M,σ ∈ 0M If f ∈ Xσ,M then for every R > R(σ,M),

(i) fR ∈ Xσ,M ,

(ii) SOL(f,Ψ) = SOL(fR,Ψ),

(iii) CSL(f,Ψ, ε) = CSL(fR,Ψ, ε).

Let, A ⊂ R
1+n. Define CL(A) ⊂ C(A) as the set of all lipschitz in x continuous

functions. Put

Lx[u] = sup

{ |u(t, x) − u(t, x̄)|
|x− x̄| : (t, x), (t, x̄) ∈ A, x 6= x̄

}

.

For a fixed L̃ > 0 we write CL(A; L̃) = {u ∈ CL(A) : Lx[u] 6 L̃}.
In the following C1+α/2,2+α(A), Cα/2,α(A) stand for the Hölder spaces which

are considered in the classical theory of parabolic equations (see [14]). We write

Cα/2,α(D, q) for the ball in Cα/2,α(D).

Assumption 2.1.

Let α ∈ (0, 1). Suppose that

1) ‖Ψ‖Γ 6 M , and there exists σ ∈ OM such that f ∈ Xσ,M ;

2) there exists a nondecreasing function ̺ : R+ → R+ such that

|f(t, x, u, w, p)| 6 ̺(max (|u|, ‖w‖D)(1 + |p|2)

in Θ × R× C(D) × R
n;

3) for every R,L > 0 there exists a constant C(R,L) > 0 such that

|f(t, x, u, w, p) − f(t, x, ū, w, p̄)| 6 C(R,L)(|u− ū|α + ‖w − w‖D + |p− p̄|)

in Θ × [−R,R]×K(R) ×B(L);

4) for every R, q, L > 0 there exists a constant H(R, q, L) > 0 such that

|f(t, x, u, w, p) − f(t̄, x̄, u, w, p)| 6 H(R, q, L)(|t− t̄|α/2 + |x− x̄|α)

in Θ × [−R,R]× Cα/2,α(D, q) ×B(L);

5) there exists Ψ̃ ∈ C1+α/2,2+α(Θ) ∩ Cα/2,α(E) such that Ψ̃|Γ = Ψ.

Definition 2.4. We will say that IBVP (9), (10) satisfies the compatibility con-

dition if

(18) DtΨ(0, x) − ε∆xΨ(0, x) = f(0, x,Ψ(0, x),Ψ(0,x), DΨ(0, x))

for x ∈ ∂Ω.

We base on
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Theorem 2.1. Assume that ∂Ω belongs to class C2+α, problem (9), (10) sat-

isfies (18) and f,Ψ satisfy Assumption 2.1. Then (9), (10) has a solution u ∈
C1+α/2,2+α(Θ) ∩ Cα/2,α(E).

This is a simplified version of Theorem 2.1 [19].

To prove convergence of the vanishing viscosity method we need

Assumption 2.2. Suppose that,

1. ‖Ψ‖Γ 6 M and there exists σ ∈ OM such that f ∈ Xσ,M . Put R = R(σ,M).

2. There exists a modulus ωR and a constant CR > 0 such that

|f(t, x, u, w, p) − f(t, x, ū, w, p̄)| 6 CR max(|u− ū|, ‖w − w‖D) + ωR(|p− p̄|)

in Θ × [−R,R]×K(R) × R
n.

3. There exists C̃R > 0 such that

|f(t, x, u, w, p) − f(t, y, u, w, p)| 6 C̃R(1 + max (Lx[w], |p|))|x − y|

in Θ × [−R,R]×K(R) ∩ CL(D) × R
n.

4. There exists L0 > 0 and Ψ̃ ∈ CL(E,L0) such that, Ψ̃|Γ = Ψ.

The fact that we take the space CL(D) in 3) allows us to apply our results not

only to differential-integral equations but to equations with a retarded and deviated

argument as well (see the last paragraph). It would not be possible if we took in 3)

C(D) in place of CL(D) (without Lx[w] on the right). Of course the assumption

would be stronger in that case.

Remark 2.2. In view of Proposition 2.2 and Remark 2.1, without loss of general-

ity we can assume that CR = C, C̃R = C̃, ωR = ω i.e. 2.) and 3.) of Assumption 2.2

are global.

Definition 2.5. We will say that f ∈ Y (σ,M,C, C̃) if f satisfies Assumption 2.2

in global sense (i.e. CR = C, C̃R = C̃, ωR = ω).

Remark 2.3. Let ‖Ψ‖Γ 6 M,σ ∈ OM . If f satisfies Assumption 2.2 then for

every R > R(σ,M), fR ∈ Y (σ,M,C, C̃) where C = 2CR, C̃ = C̃R.

Put γ = ‖f(·, ·, 0, 0, 0)‖Θ. Corollary 2.1 implies

Remark 2.4. Let f satisfy Assumption 2.2 and let u ∈ CLS(f,Ψ, ε) (u ∈
SOL(f,Ψ)). Then

(19) ‖u‖Et
6 eCt(‖Ψ‖Γt

+ γt), t ∈ [0, T ].

To make our notation shorter we introduce
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Definition 2.6. We will say that a family (fε,Ψε)ε>0 has the B-property if

there exists L̃0 > 0 independent of ε such that ‖Duε‖[0,T ]×δΩ 6 L̃0, for every uε ∈
CSL(fε,Ψε, ε).

The following lemma says when the B-property is global. It is crucial in our

method.

Lemma 2.1. Let ‖Ψε‖Γ 6 M and let uε ∈ CSL(fε,Ψε, ε), ε > 0. Suppose that

(i) there exist C, C̃,M,L0 > 0, σ ∈ OM such that fε ∈ Y (σ,M,C, C̃), Ψε ∈
CL(E,L0) for every ε > 0;

(ii) (fε,Ψε)ε>0 has the B-property.

Then there exists L > 0 independent of ε such that ‖Duε‖Θ 6 L.

P r o o f. Of course we can assume that ‖Duε‖[0,T ]×δΩ 6 L̃0, where L0 6 L̃0.

Define Ω(δ) = {x ∈ Ω: dist(x,Rn \ Ω) > δ},Θ(δ) = (0, T ) × Ω(δ), E(δ) = {(t, x) ∈
E : dist(x,Rn \ Ωr0) > δ}, Γ(δ) = E(δ) \ Θ(δ), where Ωr0 is defined in the first

section.

Fix δ, ε > 0 sufficiently small. Let ξ ∈ Rn such that |ξ| < δ. Put ūε(t, x) =

uε(t, x + ξ) for (t, x) ∈ E(δ) and fε(t, x, u, w, p) = fε(t, x + ξ, u, w, p). Write Lε
t =

max(‖Duε‖Θt
, L̃0). It is easy to check that ūε satisfies

Dtu(t, x) − ε∆xu(t, x) = fε(t, x, u(t, x), u(t,x), Du(t, x)) = 0 in Θ(δ).

Put

g(t, x, z, w, p) = fε(t, x, z + uε(t, x), w + uε(t,x), p+Duε(t, x))

− fε(t, x, uε(t, x), uε(t,x), Duε(t, x)).

Of course ūε − uε satisfies

Dtu(t, x) − ε∆xu(t, x) = g(t, x, u(t, x), u(t,x), Du(t, x)) = 0 in Θ(δ)

and

|g(t, x, z, w, 0)| 6 |fε(t, x+ ξ, z + uε(t, x), w + uε(t,x), Duε(t, x))

− fε(t, x+ ξ, uε(t, x), uε(t,x), Duε(t, x))|
+ |fε(t, x+ ξ, uε(t, x), uε(t,x), Duε(t, x))

− fε(t, x, uε(t, x), uε(t,x), Duε(t, x))|
6 C(max (|u|, ‖w‖D)) + C̃(1 + Lε

t )|ξ|.
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Thus by Corollary 2.1 (for E(δ)) we get

‖uε − ūε‖Et(δ) 6 eCt[‖u− ū‖Γt(δ) + tC̃(1 + Lε
t ) |ξ|]

and

max(‖Duε‖Θ(δ)t
, L̃0) 6 eCt(max(‖Duε‖Γδ∩Θ, L̃0) + C̃t(1 + Lε

t )].

Letting δ → 0 (note that uε ∈ C1,2
∗ (E)) we conclude that

Lε
t 6 eCt[L̃0 + C̃t(1 + Lε

t )].

Let m ∈ N be such that 1 − C̃hech > 0 for h = T/m, ti = ih, i = 0, 1, 2, . . .m, Lε
i =

Lε
ti
. Aa analysis similar to the above shows that

Lε
i 6 eCh[Lε

i−1 + hC̃(1 + Lε
i )] for i = 1, 2, . . .m,

which yields

Lε
i 6

eCh

1 − C̃heCh
(Lε

i−1 + C̃h).

Writing α(h) = eCh/(1 − C̃heCh) we get

(20) Lε = Lε
m 6 αm(h)L̃0 + C̃h

n
∑

k=1

αk(h) 6 αm(h)(L̃0 + C̃T ).

Since αm(h) → e(C+C̃)T as h→ 0 it is easily seen that

Lε 6 e(C+C̃)T (L̃0 + C̃T ) = L,

which proves the lemma. �

Now we will specify some conditions under which the B-property holds. For the

sake of simplicity we consider a constant family (f, 0).

Let ̺(x) = dist(x, ∂Ω). Put Ωδ = {x ∈ Ω: ̺(x) < δ} for δ > 0. We define

Θδ, Γδ, Eδ, ∂0Ω
δ, Θδ

0, ∂0Θ
δ in the same way as Θ, Γ, E, ∂0Ω, Θ0, ∂0Θ.

We define the upper and lower (classical) solution of (9) in a standard way. We

will need
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Lemma 2.2. Consider problem (9), (10) in the set Eδ (E). Suppose that f

satisfies Assumption 2.2 1) 2) and is nondecreasing with respect to w. Let u be a

lower solution and ū an upper solution of (9). Then u 6 ū in Γδ (Γ) implies u 6 ū

in Eδ (E).

The proof is a simple application of Theorem 3 in [18].

Write C1,2
∗ (Eδ) = C1,2(Θ

δ
) ∩ C(E

δ
). Put

Pε[z](t, x) = Dtz(t, x) − ε∆xz(t, x) − f(t, x, z(t, x), z(t,x), Dz(t, x)).

Lemma 2.3. Suppose that

(i) f satisfies Assumption 2.2 and is nondecreasing with respect to w,

(ii) f(t, x, 0, 0, 0) > 0 for (t, x) ∈ Θ,

(iii) there exist δ > 0 and ϕ ∈ C1,2
∗ (Eδ) such that, ϕ = 0 in ∂0Θ

δ ∩ ∂0Θ, ϕ(t, x) >

γteCt in ∂0Θ
δ \ ∂0Θ, ϕ > 0 in Θδ

0 and

(21) Dtϕ(t, x) − f(t, x, ϕ(t, x), ϕ(t,x), Dϕ(t, x)) > 0 in Θδ.

Then (f, 0) has the B-property.

P r o o f. Let uε ∈ CLS(f, 0, ε). From (i), (ii) and from Lemma 2.2 we have uε >

0 in Θδ (0 is a lower solution). On the other hand, uε 6 ϕ in Γδ (see Remark 2.4))

and

Pε[ϕ](t, x)) > λ0 − ε∆xϕ > λ0/2 > 0 in Θδ

for some λ0 > 0 and ε sufficiently small. Thus ϕ is an upper solution of our parabolic

problem in Eδ. By Lemma 2.2 this gives uε 6 ϕ in Θδ. Finally,

0 6 uε(t, x) − uε(t, x0) 6 ϕ(t, x) − ϕ(t, x0) for x0 ∈ ∂Ω, x ∈ Ωδ

since uε(t, x0) = ϕ(t, x0) = 0 and Dϕ is bounded. This completes the proof. �

To illustrate the above lemma we will give the following examples.

Example 2.1. Let ∂Ω ∈ C2. Then ̺ ∈ C2(Ωδ) and |D̺(x)| > 1
2 for some δ > 0.

Let b > 0 be such that δeb(t+1) > γteCt. Then there exists ϕ ∈ C1,2
∗ (Eδ) such that

ϕ > 0, ϕ = 0 in ∂0Θ, ϕ(t, x) = ̺(x)eb(t+1) in Θδ and γteCt 6 ϕ(t, x) 6 2δeb(t+1) in

∂0Θ
δ \ ∂0Θ. Assume that there exists λ0 > 0 such that for x̄ ∈ ∂Ω, t ∈ [0, T ]

lim sup
|p|→∞,k→∞

f(t, x̄, 0, k, p) < −λ0 < 0 if r0 > 0,

lim sup
|p|→∞

f(t, x̄, 0, 0, p) < −λ0 < 0 if r0 = 0

where k denotes any constant function. (Recall that r0 = 0 means that there is no

functional dependence in x in the equation). It is easy to check that ϕ satisfies (iii)

in Lemma 2.3 for some b.
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We will verify inequality (21). For (t, x) ∈ Θδ and some x̄ ∈ ∂Ω we have

b̺(x)eb(t+1) − f(t, x, ̺(x)eb(t+1), ϕ(t,x), D̺(x)e
b(t+1))

> b̺(x)eb(t+1) − f(t, x, ̺(x)eb(t+1), ϕ(t,x), D̺(x)e
b(t+1))

+ f(t, x, 0, ϕ(t,x), D̺(x)e
b(t+1)) − f(t, x, 0, ϕ(t,x), D̺(x)e

b(t+1))

> b̺(x)eb(t+1) − C̺(x)eb(t+1) − f(t, x, 0, ϕ(t,x), D̺(x)e
b(t+1))

> b̺(x)eb(t+1) − C̺(x)eb(t+1) + f(t, x̄, 0, ϕ(t,x), D̺(x)e
b(t+1))

− f(t, x, 0, ϕ(t,x), D̺(x)e
b(t+1)) − f(t, x̄, 0, ϕ(t,x), D̺(x)e

b(t+1))

> b̺(x)eb(t+1) − C̺(x)eb(t+1)

− C̃(1 + ‖D̺‖Ωδeb(t+1))|x− x̄| − f(t, x̄, 0, ϕ(t,x), D̺(x)e
b(t+1))

> b̺(x)eb(t+1) − C̺(x)eb(t+1)

− 2C̃(1 + eb(t+1))̺(x) − f(t, x̄, 0, 2δeb(T+1), D̺(x)eb(t+1))

> − f(t, x̄, 0, 2δeb(T+1), D̺(x)eb(t+1)) > λ0 > 0

for b sufficiently large (notice that ϕ(t,x) 6 2δeb(T+1)). The case r0 = 0 we treat in

a similar way (see the next lemma).

Now we will present another set of assumptions which yields (ii) of Lemma 2.1

Lemma 2.4. Suppose that ∂Ω is analytic, f satisfies Assumption 2.2, is nonde-

creasing in w and there exists p0 > 0 such that for every x̄ ∈ ∂Ω, t ∈ [0, T ] and a

constant function k ∈ C(D)

f(t, x̄, 0, k, p) = 0 for |p| > p0, if r0 > 0(24)

f(t, x̄, 0, 0, p) = 0 for |p| > p0, if r0 = 0(25)

Then (f, 0) has the B-property.

P r o o f. Since ∂Ω is analytic, by the Cauchy-Kowalewska theorem there exist

δ > 0 and ϕ ∈ C2(Ωδ) such that

∆ϕ = 0 in Ωδ, ϕ = 0 in ∂Ω, ∂nϕ = 1 in ∂Ω

where ∂nϕ denotes the normal interior derivative of ϕ. Of course without loss of

generality we can assume that |Dϕ| > 1
2 in Ωδ. Moreover, we can also assume that

ϕ > 0 in Ωδ \ Ω and consequently

(26) ϕ(x) = |ϕ(x)| = |ϕ(x) − ϕ(x̄)| >
1

2
|x− x̄|

for some x̄ ∈ ∂Ω and x ∈ Ωδ.
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Put δ0 = ‖ϕ‖∂Ωδ > 0 and δ1 = min
∂Ωδ\∂Ω

ϕ > 0. The maximum principle implies

that ϕ 6 δ0 in Ωδ. Let ψ ∈ C1,2
∗ (Eδ) be such that ψ > 0, ψ = 0 in ∂0Θ

δ ∩ ∂0Θ,

ψ(t, x) = ϕ(x)eb(t+1) in Θδ and γteCt 6 ψ(t, x) 6 2δ0e
b(t+1) in ∂0Θ

δ \ ∂0Θ where b

is such that γteCt < δ1e
b(t+1).

We will show that ψ is an upper solution of the problem

Dtu(t, x) − ε∆xu(t, x) = fε(t, x, u(t, x), u(t,x), Du(t, x)) in Θδ,(27)

u(t, x) = 0 in Γδ.(28)

Indeed, since ϕ is harmonic , by Assumption 2.2 we have

Pε[ψ](t, x) = bϕ(x)eb(t+1) − εeb(t+1)∆ϕ(x) − f(t, x, ϕ(x)eb(t+1), ψ(t,x), Dϕ(x)eb(t+1))

= bϕ(x)eb(t+1) − f(t, x, ϕ(x)eb(t+1), ψ(t,x), Dϕ(x)eb(t+1))

+ f(t, x, 0, ψ(t,x), Dϕ(x)eb(t+1)) − f(t, x, 0, ψ(t,x), Dϕ(x)eb(t+1))

> bϕ(x)eb(t+1) − Cϕ(x)eb(t+1) − f(t, x, 0, ψ(t,x), Dϕ(x)eb(t+1))

and by the monotonicity of f

Pε[ψ](t, x) > bϕ(x)eb(t+1) − Cϕ(x)eb(t+1) − f(t, x, 0, 2δ0e
b(t+1), Dϕ(x)eb(t+1))

> bϕ(x)eb(t+1) − Cϕ(x)eb(t+1) − f(t, x, 0, 2δ0e
b(t+1), Dϕ(x)eb(t+1))

+ f(t, x̄, 0, 2δ0e
b(t+1), Dϕ(x)eb(t+1)) − f(t, x̄, 0, 2δ0e

b(t+1), Dϕ(x)eb(t+1))

for some x̄ ∈ ∂Ω satisfying (26). This implies in view of Assumption 2.2 3.)

Pε[ψ](t, x) > bϕ(x)eb(t+1) − Cϕ(x)eb(t+1)

− C̃(1 + |eb(t+1)Dϕ|)|x− x̄| − f(t, x̄, 0, 2δ0e
b(t+1), Dϕ(x)eb(t+1))

and by (26) we obtain

Pε[ψ](t, x) > bϕ(x)eb(t+1) − Cϕ(x)eb(t+1) − 2C̃(1 + eb(t+1)‖Dϕ‖Ωδ )ϕ(x)

− f(t, x̄, 0, 2δ0e
b(t+1), Dϕ(x)eb(t+1))

> (b−A)ϕ(x)eb(t+1) − f(t, x̄, 0, 2δ0e
b(t+1), Dϕ(x)eb(t+1)),

where A = 2C̃(1 + ‖Dϕ‖Ωδ ). This yields (see (24))

Pε[ψ](t, x) > 0 for b sufficiently large.

In a similar way we can show that −ψ is a lower solution of problem (27), (28) for
b large.
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In view of Lemma 2.2 we have −ψ(t, x) 6 uε(t, x) 6 ψ(t, x) for (t, x) ∈ Θ, for

some b and since ψ(t, x0) = uε(t, x0) = 0 for x0 ∈ ∂Ω,we have

|uε(t, x) − uε(t, x0)| 6 |ψ(t, x) − ψ(t, x0)| for x0 ∈ ∂Ω, x ∈ Ωδ,

which gives the desired conclusion.

The proof for r0 = 0 is similar. The only difference is that in this case ‖ψ(t,x)‖D 6

ϕ(x)eb(t+1) (this is not necessarily true for r0 > 0) and we can treat the functional

and nonfunctional arguments similarly. �

3. The vanishing viscosity method

In the proof of the next lemma we will apply the following property of viscosity

inequalities,

Proposition 3.1. Let a > 0 and h,H ∈ C([0, a]). Assume that h is a viscosity

solution of h′ 6 H (i.e. h is a viscosity subsolution of h′ = H) in (0, a). Then

h(t) 6 h(s) +

∫ t

s

H(τ) dτ for 0 6 s 6 t 6 a.

The proof can be found in [8], p. 12.

Lemma 3.1. Suppose that the hypotheses of Lemma 2.1 are satisfied. Then there

exist K > 0 and R0, L independent of ε and ε0 > 0 such that

(29) ‖uε − uκ‖E 6 K(
√
ε+

√
κ+ ‖Ψε − Ψκ‖Γ + ‖fε − fκ‖A)

for ε, κ > ε0 > 0 where A = Θ × [−R0, R0] ×K(R0) ×B(L).

P r o o f. Fix ε, κ > 0. Put for simplicity u = uε, v = uκ. Define

m(t) = sup{|u(τ, x) − v(τ, x)| : 0 6 τ 6 t, x ∈ Ω}, t ∈ [0, T ].

Put R0 = R̃ = R(σ,M) and let L be defined as in Lemma 2.1. Then of course

‖u‖E, ‖v‖E 6 R0 and L is a lipschitz constant in x for u, v.

Put R = 5(R0 + 1), h = 4
√
ε+ 4

√
κ.

Set βh(z) = β(z/h), β ∈ C∞
0 (Rn), 0 6 β 6 1, β(z) = 0 for |z| > 1, β(z) = 1−|z|2

for |z| 6
√

2/2, β(z) < 1/2 for |z| >
√

2/2.

Define

M(t) = sup{|u(t− s, x) − v(t− s, y)|(30)

+ReCtβh(x− y) : 0 6 s 6 t, |x− y| 6 Lh2, x, y ∈ Ω}.

�

939



It is important that m and M are not defined here in the same way as in the

classical theory of viscosity solutions. We must take the supremum also for the past.

This makes the proof much more complicated.

We see at once that

(31) M(t) > sup{|u(t− s, x) − v(t− s, x)| +ReCt : 0 6 s 6 t, x ∈ Ω, }

which yields

(32) M(t) > m(t) +ReCt.

Let K̃ = 2L2. If

M(T ) 6 K̃(
√
ε+

√
κ) + ‖Ψε − Ψκ‖Γ +ReCT

then by (32)

m(T ) 6 K̃(
√
ε+

√
κ) + ‖Ψε − Ψκ‖Γ,

and the proof is complete.

Suppose that

M(T ) > K̃(
√
ε+

√
κ) + ‖Ψε − Ψκ‖Γ +ReCT .

Since M(0) 6 (Lh)2 + ‖Ψε − Ψκ‖Γ +R there exists t∗ such that

(33) M(t∗) = K̃(
√
ε+

√
κ) + ‖Ψε − Ψκ‖Γ +ReCt∗

and

(34) M(t) > K̃(
√
ε+

√
κ) + ‖Ψε − Ψκ‖Γ +ReCt for t ∈ (t∗, T ].

We will show that there exists K1 > 0 such that

(35) M ′(t) 6 CM(t) +K1(
√
ε+

√
κ+ ‖Ψε − Ψκ‖Γ + ‖fε − fκ‖A)

in a viscosity sense for t ∈ (t∗, T ).

Let η ∈ C1((t∗, T )) and suppose that M − η has a local maximum at t̃ ∈ (t∗, T ).

Of course we can assume that η′(t̃) > 0. It follows from Lemma 1.4 of [8] that we can

find a function η ∈ C1([t∗, T ]) such that η′(t̃) = η′(t̃) and (M − η)(t0) > (M − η)(t)

for t 6= t0. To simplify notation we continue to write η for η.
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Set ∆ = {(t, s) : t ∈ [t∗, T ], 0 6 s 6 t}. Let Φ: ∆ × Ω × Ω → R be given by

(36) Φ(t, s, x, y) = |u(t− s, x) − v(t− s, y)| +ReCtβh(x− y) − η(t).

Let (t0, s0, x0, y0) ∈ ∆ × Ω × Ω be such that

(37) Φ(t0, s0, x0, y0) = sup{Φ(t, s, x, y) : (t, s, x, y) ∈ ∆ × Ω × Ω}.

We proceed to show that

(38) |x0 − y0| 6 Lh2.

We first prove that

(39) |x0 − y0| 6

√
2

2
h.

Indeed, since Φ(t0, s0, x0, y0) > Φ(t0, s, x, x) we get

2P +ReCt0βh(x0 − y0) > ReCt0

which yields

βh(x0 − y0) > (3P + 5)/(5P + 5) > 1/2

and finally leads to (39).

We will show that

(40) |u(t0 − s0, x0) − v(t0 − s0, y0)| > ‖Ψε − Ψκ‖Γ.

On the contrary, suppose that |u(t0 − s0, x0) − v(t0 − s0, y0)| 6 ‖Ψε − Ψκ‖Γ.

Since Φ(t0, s0, x0, y0) > Φ(t0, s, x, y) we obtain for s 6 t0, |x− y| 6 Lh2,

‖Ψε − Ψκ‖Γ +ReCt0βh(x0 − y0) > |u(t0 − s, x) − v(t0 − s, y)| +ReCt0βh(x− y)

and consequently, ‖Ψε − Ψκ‖Γ +ReCt0 > M(t0) which contradicts (34).

Thus we can assume that u(t0 − s0, x0) − v(t0 − s0, y0) > ‖Ψε − Ψκ‖Γ. The case

u(t0 − s0, x0) − v(t0 − s0, y0) < −‖Ψε − Ψκ‖Γ we treat analogously. Since

(41) Φ(t0, s0, x0, y0) > Φ(t0, s0, x, y0)

it follows that

u(t0 − s0, x0) − v(t0 − s0, y0) +ReCt0βh(x0 − y0) − η(t0)

> u(t0 − s0, x) − v(t0 − s0, y0) +ReCt0βh(x− y0) − η(t0),
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hence

ReCt0(βh(x− y0) − βh(x0 − y0)) 6 u(t0 − s0, x0) − u(t0 − s0, x) 6 L|x− x0|.

This together with (39) gives (38).

Our next claim is that t̃ = t0. Indeed, it follows from (37) that

u(t0 − s0, x0) − v(t0 − s0, y0) +ReCt0βh(x0 − y0) − η(t0)

> u(t− s, x) − v(t− s, y) +ReCtβh(x− y) − η(t)

where 0 6 s 6 t, ‖x− y‖ 6 Lh2.

This in view of (30) and (38) gives M(t0)− η(t0) > M(t)− η(t). Putting t = t̃ we

obtain by the property of η that t̃ = t0.

Observe now that we may assume x0, y0 ∈ Ω. Indeed, suppose that x0 ∈ δΩ. An

analysis similar to the above (for t = t0) and the inequality

|u(t0 − s0, x0) − v(t0 − s0, x0)| 6 ‖Ψε − Ψκ‖Γ

imply

‖Ψε − Ψκ‖Γ + L|x0 − y0| +ReCt0 > M(t0)

which leads to

‖Ψε − Ψκ‖Γ + 2L2(
√
ε+

√
η) +ReCt0 > M(t0).

This contradicts (34).

Similarly we can show that s0 6= t0. The equality s0 = t0 implies

|u(0, x0) − v(0, y0)| +ReCt0βh(x− y) − η(t0) 6 M(t0) − η(t0)

and the same reasoning leads to a contradiction.

Notice that the function

t→ (u(t− s0, x0) − v(t− s0, y0)) +ReCtβh(x0 − y0) − η(t)

for max(t∗, s0) < t < T attains its maximum at t0. Thus

Dtu(t0 − s0, x0) −Dtv(t0 − s0, y0)) + CReCtβh(x0 − y0) = η′(t0).

Moreover,

x→ u(t0 − s0, x) +ReCt0βh(x− y0) has a maximum at x0, and

y → v(t0 − s0, y) −ReCt0βh(x0 − y) has a minimum at y0.
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This gives

Du(t0 − s0, x0) = Dv(t0 − s0, y0) = p0

and

∆xu(t0 − s0, x0) +ReCt0∆βh(x0 − y0) 6 0,

∆xv(t0 − s0, y0) −ReCt0∆βh(x0 − y0) > 0.

By assumption,

Dtu(τ0, x0) − ε∆u(τ0, x0) = fε(τ0, x0, u(τ0, x0), u(τ0,x0), Du(τ0, x0)),

Dtv(τ0, y0) − κ∆v(τ0, y0) = fκ(τ0, y0, v(τ0, x0), v(τ0,y0), Dv(τ0, y0))

where τ0 = t0 − s0. This implies

η′(t0) − CReCt0βh(x0 − y0) + (ε+ κ)ReCt0∆βh(x0 − y0)

6 fε(τ0, x0, u(τ0, x0), u(τ0,x0), p0) − fκ(τ0, y0, v(τ0, y0), v(τ0,y0), p0)

6 fε(τ0, x0, u(τ0, x0), u(τ0,x0), p0) − fε(τ0, x0, v(τ0, y0), v(τ0,y0), p0)

+ fε(τ0, x0, v(τ0, y0), v(τ0,y0), p0) − fε(τ0, y0, v(τ0, y0), v(τ0,y0), p0)

+ fε(τ0, y0, v(τ0, y0), v(τ0,y0), p0) − fκ(τ0, y0, v(τ0, y0), v(τ0,y0), p0)

and by Assumption 2.1

η′(t0) − CReCt0 6 C‖u(τ0,x0) − v(τ0,y0)‖D + CP (1 + L)|x0 − y0| + ‖fε − fκ‖A.

Since

‖u(τ0,x0) − v(τ0,y0)‖D 6 ‖Ψε − Ψκ‖Γ +m(t0) + L|x0 − y0|
and ∆βh(x0 − y0) = 2nh−2 6 2n(

√
ε+

√
κ we conclude (see (38), (32)) that

η′(t0) 6 CM(t0) +K1(
√
ε+

√
κ+ ‖Ψε − Ψκ‖Γ + ‖fε − fκ‖A)

where K1 > 0 is a constant independent of ε.

Thus (35) is proved. Applying Proposition 3.1 (for H(t) = CM(t) + K1(
√
ε +√

κ+ ‖Ψε − Ψκ‖Γ + ‖fε − fκ‖A)) we get (see (33))

M(t) 6 K2(
√
ε+

√
κ+ ‖Ψε − Ψκ‖Γ + ‖fε − fκ‖A) +ReCt∗ +

∫ t

t∗

CM(s) ds

for t ∈ [t∗, T ], K2 > 0.

Hence Gronwall’s inequality and (32) yield

m(t) 6 K(
√
ε+

√
κ+ ‖Ψε − Ψκ‖Γ + ‖fε − fκ‖A)

in [t∗, T ] for some K > 0, and the proof is complete.

In view of the above result we can state
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Theorem 3.1. Suppose that there exist fε ∈ Y (σ,M,C, C̃),Ψε ∈ CL(E,L0) for

ε > 0 and σ,M,C, C̃, L0 independent of ε such that (fε,Ψε)ε>0 has the B-property,

(fε,Ψε) → (f,Ψ) as ε→ 0 and CSL(fε,Ψε, ε) 6= 0. Then there exists u ∈ SOL(f,Ψ)

such that u = limε→0uε where uε ∈ CSL(fε,Ψε, ε)

The formulation of this theorem is very general. It shows the method rather then

any particular existence result.

Now we will present one of these results.

Suppose for simplicity that ψ ≡ 0. Assume that Assumption 2.2 holds and

(42) f(0, x̄, 0, 0, 0, ) = 0 for x̄ ∈ ∂Ω.

Let ηε ∈ C∞(R) be such that ηε(s) = 0 for |s| 6 ε, ηε(s) = 1 for |s| > 2ε and

0 6 ηε 6 1. Let R > R(σ,M). Put

fR,L(t, x, u, w, p) = f(t, x, IR(u), IR(w), IL(p)).

Define

f̃ε(t, x, u, w, p) = ηε(t)ηε(̺(x))ηε(|p|)fR,1/ε(t, x, u, w, p)

and

fε(t, x, u, w, p) = ωt
ε ∗ ωx

ε ∗ ωp
ε ∗ f̃ε(·, ·, u, w, ·)(t, x, p)

where ωz
ε ∈ C∞

0 (X),
∫

ωz
ε = 1, suppωz

ε ⊂ K(0, ε), X = R,Rn, z = t, x, p. We

can verify that fε ∈ Y (σ1,M1, C, C̃) for some M1, C, C̃ > 0 and σ1 ∈ OM1 , and

fε(0, x, 0, 0, 0, ) = 0 in ∂Ω for ε sufficiently large. Moreover, for every L > 0 we have

fε → f in Θ× [−R,R]×K(R)×B(L). Since fε is bounded for each ε and lipschitz

continuous (global in all variable) the assumptions of Theorem 2.1 are satisfied. Thus

CLS(fε, 0, ε) 6= 0.

The problem we face here is how to learn whether the family (fε, 0)ep>0 has the

B-property, or whether there exists a family satisfying the above condition which has

the B-property. We do not know the answer to this question in general, i.e. without

additional assumptions about f (in comparison to the Cauchy problem (see [11],

[20]) where B-property is trivial). Such conditions are proposed in Example 2.1 and

Lemma 2.4. We are aware of the fact that they may not be optimal. Nevertheless

we can formulate an existence theorem,
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Theorem 3.2. Suppose that ∂Ω ∈ C2+α for α ∈ (0, 1), f is nondecreasing in

w and satisfies Assumption 2.2 and (42). Assume also that one of the following

conditions holds:

(i) f(t, x, 0, 0, 0) > 0 in Θ and f satisfies (22) (or (23) if r0 = 0); or

(ii) ∂Ω is analytic and f satisfies (24) (or (25) if r0 = 0)

Then there exists a viscosity solution of (1), (2), obtained by the vanishing viscosity

method.

P r o o f. In view of the above consideration it is enough to notice that fε satisfies

(22), (23), (24), (25) with λ0, p0 independent of ε. �

4. First order IBVP with a deviated argument

In this section we will look more closely at Example 1.1. The only restriction is

that now µ does not depend on x, i.e. µ(t, x) ≡ µ(t). Recall some notation.

Let g : Θ×R×R×R
n → R, µ : [0, T ] → R, ν : Θ → R

n and Ψ be given function.

Suppose that condition (5) is satisfied. In this section we will consider problem (6),

(2). To have the “vanishing viscosity method” working in this case we need

Assumption 4.1. Let ‖Ψ‖Γ 6 M . Suppose that

1) there exists σ ∈ OM such that

g(t, x, u, r, 0) sgn(u) 6 σ(t,max (|u|, |r|)) in Θ × R× R;

2) for every R > 0 there exists a modulus ωR and positive constants CR, C̃R > 0

such that

|g(t, x, u, r, p) − g(t, x, u, r, p̄)| 6 ωR(|p− p̄|),
|g(t, x, u, r, p) − g(t, x, ū, r̄, p)| 6 CR max(|u− ū|, |r − r̄|),
|g(t, x, u, r, p) − g(t, y, u, r, p)| 6 C̃R(1 + |p|)|x− y|

in Θ × [−R,R]× [−R,R]× R
n;

3) ν ∈ CL(Θ, R);

4) there ares L0 > 0 and Ψ̃ ∈ CL(E,L0) such that, Ψ̃|Γ = Ψ.

We will say that IBVP (6), (2) satisfies the compatibility condition if

(43) DtΨ(0, x) − ε∆xΨ(0, x) = g(0, x,Ψ(0, x),Ψ(µ(0, x), ν(0, x)), DΨ(0, x))

for x ∈ ∂Ω.

In view of the result obtained in Section 2 and recalling Example 1.1 we can

formulate
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Theorem 4.1. Suppose that ∂Ω ∈ C2+α, Assumption 4.1 is satisfied, g is nonde-

creasing in r, g(0, x, 0, 0, 0) = 0 in ∂Ω. Assume that one of the following conditions

holds:

(a) g(t, x, 0, 0, 0) > 0 in Θ and

lim sup
|p|→∞,k→∞

g(t, x, 0, k, p) < −λ0 < 0 if r0 > 0,

lim sup
|p|→∞

g(t, x, 0, 0, p) < −λ0 < 0 if r0 = 0

or

(b) ∂Ω is analytic and

g(t, x̄, 0, k, p) = 0 for |p| > p0, if r0 > 0,(46)

g(t, x̄, 0, 0, p) = 0 for |p| > p0, if r0 = 0.(47)

Then problem (6), (2) (ψ ≡ 0) has a solution.

P r o o f. In view of Theorem 3.2 it suffices to show that f given by (7) satisfies

its hypothesis. We will show only Assumption 2.2 3), which is not only the most

complicated but also closely related to the functional dependence in the equation.

Let w ∈ CL(D), |u|, ‖w‖D 6 R. Recalling formula 7 we can write

|f(t, x, u, w, p) − f(t, x̄, u, w, p)|
6 g

(

t, x, u, w(µ(t) − t, ν(t, x) − x), p
)

− g
(

t, x̄, u, w(µ(t) − t, ν(t, x̄) − x̄), p
)

g
(

t, x, u, w(µ(t) − t, ν(t, x) − x), p
)

− g
(

t, x̄, u, w(µ(t) − t, ν(t, x) − x), p
)

+ g
(

t, x̄, u, w(µ(t) − t, ν(t, x) − x), p
)

− g
(

t, x̄, u, w(µ(t) − t, ν(t, x̄) − x̄), p
)

6 C̃R(1 + |p|)|x− x̄| + CR|w(µ(t) − t, ν(t, x) − x) − w(µ(t) − t, ν(t, x̄) − x̄)|
6 C̃R(1 + |p|)|x− x̄| + CRLx(w)Lx(ν)|x− x̄|

which gives 3) of Assumption 2.2. The other items are easy to demonstrate, so we

will not present them here.

Using similar argument it is also possible to obtain a theorem on existence and

uniqueness of viscosity solutions for the differential-integral problem. We will not

present it here, as it seems to be easier to transform this problem into (1), (2) than

to the problem with a deviated argument. In Assumption 2.2 3) for instance we

don’t need to use the space CL(D).

It must be mentioned also that Assumption 2.2 guarantees the uniqueness of the

viscosity solution for problems considered. See [17]. �
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