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Abstract. We generalize the concept of an integral residuated lattice to join-semilattices
with an upper bound where every principal order-filter (section) is a residuated semilat-
tice; such a structure is called a sectionally residuated semilattice. Natural examples come
from propositional logic. For instance, implication algebras (also known as Tarski alge-
bras), which are the algebraic models of the implication fragment of the classical logic, are
sectionally residuated semilattices such that every section is even a Boolean algebra. A
similar situation rises in case of the  Lukasiewicz multiple-valued logic where sections are
bounded commutative BCK-algebras, hence MV-algebras. Likewise, every integral resid-
uated (semi)lattice is sectionally residuated in a natural way. We show that sectionally
residuated semilattices can be axiomatized as algebras (A, r,→, , 1) of type 〈3, 2, 2, 0〉
where (A,→, , 1) is a {→, , 1}-subreduct of an integral residuated lattice. We prove
that every sectionally residuated lattice can be isomorphically embedded into a residuated
lattice in which the ternary operation r is given by r(x, y, z) = (x · y) ∨ z. Finally, we de-
scribe mutual connections between involutive sectionally residuated semilattices and certain
biresiduation algebras.

Keywords: residuated lattice, residuated semilattice, biresiduation algebra, pseudo-MV-
algebra, sectionally residuated semilattice, sectionally residuated lattice

MSC 2010 : 06D35, 06F05, 06F35

1. Introduction

A residuated partially ordered monoid is a structure A = (A,6, ·,→, , 1) such

that (A, ·, 1) is a monoid, (A,6) is a poset and

(1.1) x · y 6 z iff x 6 y → z iff y 6 x z

This work was supported by the Czech Government via the project MSM6198959214.
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for all x, y, z ∈ A. We will assume in addition that (A,6) is a join-semilattice or a

lattice, and that the multiplicative identity 1 is its greatest element. In this case A

is called an integral residuated semilattice or lattice, respectively.

In the last years residuated structures have become a subject of an intensive re-

search in the logical context as well as in their own right. The algebraic model

of a propositional logic usually is (or can equivalently be regarded as) a bounded

residuated lattice, while the models of the implication fragment are join-semilattices

with an upper bound such that every section (principal order-filter) is a bounded

residuated lattice, but the whole semilattice is not residuated. This is the case at

least for the classical propositional logic as well as for the  Lukasiewicz many valued

logic (and its non-commutative extension).

Indeed, the algebraic counterpart of implication in the classical calculus is given by

implication algebras (also called Tarski algebras), which are join-semilattices where

each section is a Boolean algebra. The algebras for the implication fragment of

the  Lukasiewicz logic are  LBCK-algebras, i.e., commutative BCK-algebras satisfying

prelinearity, which form join-semilattices whose sections are MV-algebras. Actually,

semilattices with the property that every section is an MV-algebra lead to commuta-

tive BCK-algebras (weak implication algebras [5]) that need not be embedable into

an MV-algebra.

Also every section of any residuated (semi)lattice is a residuated (semi)lattice.

Thus there exist natural examples of sectionally residuated structures that generalize

known integral residuated lattices.

In Section 2 we recall some relevant facts about residuated lattices and their

{→, , 1}-subreducts that are called biresiduation algebras or pseudo-BCK-algebras,

and about pseudo-MV-algebras, which are a non-commutative generalization of MV-

algebras. In Section 3 we introduce the notion of a sectionally residuated semilattice

and prove that sectionally residuated semilattices can alternatively be regarded as

algebras (A, r,→, , 1) of type 〈3, 2, 2, 0〉 satisfying certain identities, such that the

reduct (A,→, , 1) is a biresiduation algebra. Section 4 is devoted to sectionally

residuated lattices; we show that they can be embedded into bounded residuated lat-

tices expanded with the ternary operation r which is defined by r(x, y, z) = (x·y)∨z.

Finally, in Section 5 we are concerned with sectionally residuated semilattices the

sections of which are involutive residuated lattices.
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2. Preliminaries

A residuated lattice is an algebra A = (A,∨,∧, ·,→, , 1) such that (A,∨,∧) is a

lattice, (A, ·, 1) is a monoid, and the condition (1.1) is satisfied, i.e., for all x, y, z ∈ L

we have

x · y 6 z iff x 6 y → z iff y 6 x z,

where 6 is the partial order induced by the lattice operations. More generally, if

(A,∨) is a join-semilattice, (A, ·, 1) is a monoid and (1.1) is satisfied, then A =

(A,∨, ·,→, , 1) is called a residuated (join-)semilattice.

If, moreover, the monoid identity 1 is the greatest element of (A,6), then A is

said to be an integral residuated lattice or semilattice, respectively. Since we restrict

ourselves exclusively to integral residuated lattices and semilattices, we will omit the

adjective ‘integral’ unless we want to emphasize that 1 is a greatest element.

The concept of a bounded (integral) residuated lattice and semilattice is obtained

by adding the least element 0 of (A,6), provided it exists, to the similarity type as

a new nullary operation.

Commutative residuated lattices were first studied by Ward and Dilworth [15]

as a generalization of residuation in lattices of ideals of commutative rings with an

identity element. For background on residuated lattices we refer to the survey paper

[10] that contains an overview of recent results.

In the following lemma we collect basic properties of residuated semilattices:

Lemma 2.1. In any residuated semilattice:

(1) x 6 y implies x · z 6 y · z and z · x 6 z · y;

(2) if
∨

i∈I

xi exists then
(

∨

i∈I

xi

)

· y =
∨

i∈I

xi · y and y ·
(

∨

i∈I

xi

)

=
∨

i∈I

y · xi;

(3) x→ x = x x = 1, x→ 1 = x 1 = 1 and 1 → x = 1 x = x;

(4) x 6 y implies z → x 6 z → y and y → z 6 x→ z, the same for  ;

(5) x 6 y iff x→ y = 1 iff x y = 1;

(6) (x · y) → z = x→ (y → z), (x · y) z = y  (x z);

(7) x→ (y  z) = y  (x→ z);

(8) x 6 y → z iff y 6 x z;

(9) y 6 x→ y, y 6 x y;

(10) x 6 (x→ y) y, x 6 (x y) → y;

(11) x→ y 6 (y → z) (x→ z), x y 6 (y  z) → (x z);

(12) if
∨

i∈I

xi exists then so does
∧

i∈I

(xi → y) and
(

∨

i∈I

xi

)

→ y =
∧

i∈I

(xi → y), and

the same for  ; in particular, (x ∨ y) → y = x→ y and (x ∨ y) y = x y.
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The residuation equivalences (1.1) can be captured by a few simple identities and

hence residuated semilattices form a variety (another axiomatization of residuated

semilattices can be found in [2]):

Lemma 2.2. An algebraA = (A,∨, ·,→, , 1) of type 〈2, 2, 2, 2, 0〉 is a residuated

semilattice if and only if (A,∨) is a join-semilattice with 1 as the greatest element,

(A, ·, 1) is a monoid, and A satisfies the identities

(x · y) → z = x→ (y → z), (x · y) z = y  (x z),(2.1)

((x→ y) · x) ∨ y = (x · (x y)) ∨ y = y,(2.2)

x→ (x ∨ y) = x (x ∨ y) = 1.(2.3)

P r o o f. It is easily seen that (2.1), (2.2) and (2.3) hold in any residuated

semilattice. Conversely, let A be an algebra that fulfils (2.1), (2.2) and (2.3). Note

that by (2.2) and (2.3) we obtain x 6 y iff x→ y = 1 iff x y = 1. Now, if x ·y 6 z

then x → (y → z) = (x · y) → z = 1, so that x 6 y → z, and conversely, x 6 y → z

entails (x ·y) → z = x→ (y → z) = 1, thus x ·y 6 z. Similarly, we can show x ·y 6 z

iff y 6 x z. �

A biresiduation algebra [3] is an algebra A = (A,→, , 1) of type 〈2, 2, 0〉 which

is a {→, , 1}-subreduct (i.e., a subalgebra of the {→, , 1}-reduct) of an integral

residuated lattice. Biresiduation algebras form a quasi-variety axiomatized by the

following identities and quasi-identity:

(x→ y) ((y → z) (x→ z)) = 1,(2.4)

(x y) → ((y  z) → (x z)) = 1,(2.5)

1 → x = x,(2.6)

1 x = x,(2.7)

x→ 1 = 1,(2.8)

x→ y = 1 & y → x = 1 ⇒ x = y.(2.9)

We should note that if → and  coincide, i.e., x → y = x  y for all x, y ∈ A,

then (A,→, 1) becomes a BCK-algebra. As known, BCK-algebras do not form a

variety, and hence neither do biresiduation algebras.

For any biresiduation algebra A = (A,→, , 1), the relation 6 defined by x 6 y iff

x→ y = 1 (or equivalently, x y = 1) is a partial order on A with 1 as the greatest

element. The poset (A,6) in general has no particular properties since any poset

with a greatest element 1 can be made into a BCK-algebra by putting x→ y := 1 if

x 6 y, and x→ y := y otherwise.
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Georgescu and Iogulescu [9] introduced a non-commutative extension of BCK-

algebras under the name pseudo-BCK-algebras, which are essentially the same as

van Alten’s biresiduation algebras. As a matter of fact, it was proved by the sec-

ond author [11] that pseudo-BCK-algebras are exactly the {→, , 1}-subreducts of

integral residuated lattices.

Even strongly, if (A,6) is a join-semilattice with the associated join operation ∨,

then the algebra A = (A,∨,→, , 1) is a {∨,→, , 1}-subreduct of a residuated

lattice (this was proved in [3], and independently in [12]). These biresiduation semi-

lattices form a variety which can be axiomatized by (2.4)–(2.8) and

x→ (x ∨ y) = 1,(2.10)

x ∨ ((x→ y) y) = (x→ y) y.(2.11)

As a consequence one readily sees that, in addition to (2.4)–(2.9), biresiduation

algebras satisfy (3)–(5) and (7)–(12) of Lemma 2.1.

BCK-algebras satisfying the identity (x→ y) → y = (y → x) → x are traditionally

referred to as commutative BCK-algebras. An appropriate generalization is the class

of biresiduation algebras satisfying the identities

(2.12)
(x→ y) y = (y → x) x,

(x y) → y = (y  x) → x.

Such algebras are called commutative pseudo-BCK-algebras in [12]. It can be easily

shown that if A = (A,→, , 1) fulfil (2.12), then (A,6) is a join-semilattice in which

(2.13) x ∨ y = (x→ y) y = (x y) → y,

however, a biresiduation algebra which is a join-semilattice with respect to 6 need

not fulfil (2.12).

A pseudo-MV-algebra A = (A,⊕,− ,∼ , 0, 1) is a monoid (A,⊕, 0) endowed with a

constant 1 and two unary operations − and ∼, such that A satisfies the identities

x⊕ 1 = 1 = 1 ⊕ x,

1− = 0 = 1∼,

(x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,

x⊕ (y · x∼) = y ⊕ (x · y∼) = (y− · x) ⊕ y = (x− · y) ⊕ x,

(x− ⊕ y) · x = y · (x⊕ y∼),

(x−)∼ = x,

where the additional binary operation · is defined by x · y := (x− ⊕ y−)∼.
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Pseudo-MV-algebras were introduced by Georgescu and Iorgulescu in [8], and

independently by Rach̊unek in [14] to be a non-commutative generalization of MV-

algebras, the algebraic counterpart of the  Lukasiewicz many-valued propositional

calculus. In fact, MV-algebras agree with commutative pseudo-MV-algebras since

the negations − and ∼ coincide provided the addition ⊕ is commutative. For back-

ground on MV-algebras we refer to [6].

It is important to point out that pseudo-MV-algebras are termwise equivalent to

bounded residuated lattices satisfying (2.13) [7], [10], and to bounded biresiduation

algebras satisfying (2.12) [9]:

(a) Given a pseudo-MV-algebra (A,⊕,− ,∼ , 0, 1), we define

x · y := (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,

x→ y := x− ⊕ y,

x y := y ⊕ x∼,

x ∨ y := (x→ y) y = (x y) → y,

x ∧ y := (x→ y) · x = x · (x y) = (x− ∨ y−)∼ = (x∼ ∨ y∼)−.

Then (A,∨,∧, ·,→, , 0, 1) is a bounded residuated lattice that obeys (2.13), and so

the reduct (A,→, , 0, 1) is a bounded biresiduation algebra satisfying (2.12). The

lattice (A,∨,∧) is distributive.

(b) Let (A,→, , 0, 1) be a bounded biresiduation algebra satisfying the identities

(2.12). If we put

x− := x→ 0,

x∼ := x 0,

x⊕ y := x∼ → y = y−  x,

then (A,⊕,− ,∼ , 0, 1) is a pseudo-MV-algebra. Furthermore, this also means that

whenever (A,∨,∧, ·,→, , 0, 1) is a bounded residuated lattice satisfying (2.13) and

the operations ⊕, −, ∼ are defined as above, then (A,⊕,− ,∼ , 0, 1) again is a pseudo-

MV-algebra. Note that x⊕ y = (x− · y−)∼ = (x∼ · y∼)−.

Another equivalent counterpart of pseudo-MV-algebras are Ceterchi’s pseudo-

Wajsberg algebras [4], which employ →,  , −, ∼ and 1 as fundamental operations.

3. Sectionally residuated semilattices

We start with several natural examples. Throughout, by a section in a poset

(P,6) with a greatest element 1 we shall mean any principal order-filter [a, 1] =

{x ∈ P : a 6 x}, a ∈ P .
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Example 3.1. An implication algebra [1] is an algebra (A,→) with a single binary

operation → satisfying the identities

(x→ y) → x = x,(3.1)

(x→ y) → y = (y → x) → x,(3.2)

x→ (y → z) = y → (x→ z).(3.3)

Implication algebras (also known as Tarski algebras) are the algebraic models of the

implication fragment of the classical propositional calculus. That is, if (B,∨,∧,′ , 0, 1)

is a Boolean algebra, then (B,→) is an implication algebra with x → y := x′ ∨ y,

and every implication algebra (A,→) embeds into (B,→) for some Boolean algebra.

Every implication algebra is a join-semilattice with a greatest element 1 where the

supremum x∨y of x, y ∈ A is given by x∨y = (x→ y) → y. Moreover, for all a ∈ A,

the section [a, 1] forms a Boolean lattice in which xa := x → a is the complement

of x ∈ [a, 1], and x ∧a y := (xa ∨ ya)a = (x → (y → a)) → a is the infimum of

x, y ∈ [a, 1].

Thus every section [a, 1] in an implication algebra is a commutative residuated

lattice where the multiplication ·a agrees with the meet ∧a.

Example 3.2. Recall that a BCK-algebra (A,→, 1) is commutative if it satisfies

the identity (3.2); commutative BCK-algebras form an equational class axiomatized

e.g. by the identities (3.2), (3.3), x → x = 1 and x → 1 = 1. The models of the

implication in the infinite-valued logic of  Lukasiewicz are commutative BCK-algebras

satisfying in addition the identity

(3.4) (x→ y) → (y → x) = y → x.

(These algebras are sometimes called  Lukasiewicz BCK-algebras, in short  LBCK-

algebras.) Indeed, for any MV-algebra (M,⊕,¬, 0), the algebra (M,→, 1)—where

x → y := ¬x⊕ y and 1 := ¬0—is a commutative BCK-algebra satisfying (3.4), and

every commutative BCK-algebra that fulfils (3.4) can be embedded into (M,→, 1)

for a suitable MV-algebra (M,⊕,¬, 0).

Regardless of the identity (3.4), all commutative BCK-algebras enjoy the property

of being a sectionally residuated semilattice. Indeed, given any commutative BCK-

algebra (A,→, 1), x ∨ y = (x → y) → y is the join of x, y ∈ A, and for an arbitrary

a ∈ A, the section [a, 1] is the carrier of an MV-algebra ([a, 1],⊕a,¬a, a), where

x⊕a y := (x→ a) → y and ¬ax := x→ a. The multiplication ·a on [a, 1] is given by

x ·a y := (x→ (y → a)) → a.
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We will show later in Theorem 5.3 that a similar situation rises in case of pseudo-

MV-algebras that are algebras for the non-commutative version of the  Lukasiewicz

sentential logic, i.e., we will have join-semilattices whose sections are pseudo-MV-

algebras.

Example 3.3. Let (S,∨, ·,→, , 1) be a residuated semilattice, and a ∈ S. Define

x ·a y := (x · y) ∨ a,

for x, y ∈ [a, 1]. Then ([a, 1],∨, ·a,→, , 1) is a residuated semilattice. Analogously,

if we are given a residuated lattice (L,∨,∧, ·,→, , 1) and an arbitrary a ∈ L, then

the structure ([a, 1],∨,∧, ·a,→, , 1) is again a residuated lattice.

1

a

x ·a y b

x ·b y

Figure 3.1. The compatibility condition (C)

In any case, we have a join-semilattice whose sections are residuated lattices

(Boolean algebras or MV-algebras) or, more generally, residuated semilattices.

These observations provide a motivation of the following extension of residuated

(semi)lattices:

Definition 3.4. A sectionally residuated semilattice is a system

S = (S,∨, (·a,→a, a)a∈S , 1)

such that

(i) (S,∨) is a join-semilattice with 1 at the top,

(ii) for every a ∈ S, ([a, 1],∨, ·a,→a, a, 1) is a residuated semilattice,

(iii) the following compatibility condition holds for all a, b ∈ S:

(C) If a 6 b then x ·b y = (x ·a y) ∨ b for all x, y ∈ [b, 1].

It is not hard to verify that the compatibility condition (C), which can be visu-

alized by Fig. 3.1, is satisfied in Examples 3.1 and 3.2. Obviously, every residuated

semilattice is sectionally residuated (Example 3.3), but the converse fails to be true,

i.e., a sectionally residuated semilattice need not admit a residuated structure, as

shown in the following simple examples:
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Example 3.5. Let S = {a, b, 1} and consider the join-semilattice (S,∨), where

a < 1, b < 1 and a ‖ b. It is clear that {a, 1} and {b, 1} are carriers of two isomorphic

commutative residuated lattices (Boolean algebras), and hence S is the carrier of a

sectionally residuated semilattice. Suppose that there are binary operations ·, → and

 on S such that (S,∨, ·,→, , 1) is a residuated semilattice. In view of Lemma 2.1

(1), a, b < 1 would imply a · b 6 a, b, which is impossible since the elements a, b have

no common lower bound.

a

b

c

d

1

Figure 3.2

Example 3.6. Let (S,∨) be the join-semilattice from Fig. 3.2. The section [a, 1] =

{a, b, c, 1} is a residuated (semi)lattice with the operations ·a, →a and  a given by

·a a b c 1
a a a a a
b a a a b
c a b c c
1 a b c 1

→a a b c 1
a 1 1 1 1
b b 1 1 1
c b b 1 1
1 a b c 1

 a a b c 1
a 1 1 1 1
b c 1 1 1
c a b 1 1
1 a b c 1

and [d, 1] = {d, c, 1} forms a commutative residuated (semi)lattice with the opera-

tions ·d and →d= d defined by

·d d c 1
d d d d
c d d c
1 d c 1

→d d c 1
d 1 1 1
c c 1 1
1 d c 1

The section [b, 1] = {b, c, 1} is equipped with the multiplication ·b inherited from

[a, 1] by the rule x ·b y := (x ·a y) ∨ b. Therefore (S,∨, (·p,→p, p)p∈S , 1) is a

(non-commutative) sectionally residuated semilattice which is not residuated again

because of the absence of a least element.
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Lemma 3.7. The compatibility condition (C) is equivalent to either of the fol-

lowing conditions:

If a 6 b then x→a y = x→b y for all x, y ∈ [b, 1].(C1)

If a 6 b then x a y = x b y for all x, y ∈ [b, 1].(C2)

P r o o f. (C) ⇒ (C1). Let a 6 b and x, y ∈ [b, 1]. From b ·a x 6 b 6 y it follows

b 6 x →a y, so x →a y ∈ [b, 1]. Now, from (x →a y) ·b x = ((x →a y) ·a x) ∨ b 6

y ∨ b = y we obtain x →a y 6 x →b y. On the other hand, (x →b y) ·a x 6 ((x →b

y)·ax)∨b = (x→b y)·bx 6 y yields x→b y 6 x→a y. Altogether, x→a y = x→b y.

(C1) ⇒ (C). Again, let a 6 b and x, y, z ∈ [b, 1]. If x ·b y 6 z then x 6 y →b

z = y →a z, whence x ·a y 6 z and so (x ·a y) ∨ b 6 z ∨ b = z. Conversely, from

x ·a y 6 (x ·a y) ∨ b 6 z it follows x 6 y →a z = y →b z whence x ·b y 6 z. Thus for

any z ∈ [b, 1], x ·b y 6 z iff (x ·a y) ∨ b 6 z, which settles x ·b y = (x ·a y) ∨ b.

We can analogously show that (C) is equivalent to (C2). �

It is more convenient to have some total operations on S instead of plenty of

partial operations (·a,→a, a)a∈S . The difficulty concerning the number of the

partial operations (→a, a)a∈S on S can be overcome in the following way:

Given a sectionally residuated semilattice S = (S,∨, (·a,→a, a)a∈S , 1), we define

two new total binary operations → and  on S via

(3.5) x→ y := (x ∨ y) →y y and x y := (x ∨ y) y y.

We are going to show that, for each a ∈ S, the operations →a and  a on the

section [a, 1] are the restrictions to [a, 1] of → and  , respectively. Hence any sec-

tionally residuated semilattice (S,∨, (·a,→a, a)a∈S , 1) can be equivalently defined

as a structure (S,∨, (·a)a∈S ,→, , 1) such that (S,∨) is a join-semilattice with an

upper bound 1, and for every a ∈ S, ([a, 1],∨, ·a,→, , 1) is a residuated semilattice.

This is a consequence of the following

Lemma 3.8. Let S = (S,∨, (·a,→a, a)a∈S , 1) be a sectionally residuated semi-

lattice and let → and  be defined by (3.5). Then

(i) (x ∨ y) → y = x→ y and (x ∨ y) y = x y for all x, y ∈ S,

(ii) for any a ∈ S, if x, y ∈ [a, 1] then x→ y = x→a y and x y = x a y.

P r o o f. We have (x∨y) → y = (x∨y∨y) →y y = (x∨y) →y y = x→ y. Using

the condition (C1) for a 6 y 6 x ∨ y, we obtain x→ y = (x ∨ y) →y y = (x ∨ y) →a

y = x→a y. The argument for  is parallel. �

Now we summarize basic properties of the operations → and  defined by (3.5):
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Lemma 3.9. Let S = (S,∨, (·a)a∈S ,→, , 1) be a sectionally residuated semilat-

tice. The following hold:

(1) x→ x = 1, x→ 1 = 1 and 1 → x = x, and the same for  ;

(2) x 6 y iff x→ y = 1 iff x y = 1;

(3) x 6 (x→ y) y, x 6 (x y) → y;

(4) if x 6 y then y → z 6 x→ z and z → x 6 z → y, and the same for  ;

(5) x→ (y  z) = y  (x→ z);

(6) x 6 y → z iff y 6 x z;

(7) x→ y 6 (y → z) (x→ z), x y 6 (y  z) → (x z);

(8) if
∨

i∈I

xi exists then so does
∧

i∈I

(xi → y) and
(

∨

i∈I

xi

)

→ y =
∧

i∈I

(xi → y); the

same holds for  .

P r o o f. (1) By (3.5) we have x → x = (x ∨ x) →x x = x →x x = 1,

x→ 1 = (x ∨ 1) →1 1 = 1 and 1 → x = (1 ∨ x) →x x = x.

(2) If x 6 y then x → y = (x ∨ y) → y = y → y = 1. Conversely, if x → y = 1

then (x ∨ y) →y y = 1 which entails x ∨ y 6 y, so x 6 y.

(3) In the section [y, 1] we have x ∨ y 6 ((x ∨ y) →y y)  y y = (x → y)  y by

Lemma 3.8.

(4) From x 6 y it follows x∨ z 6 y∨ z whence x→ z = (x∨ z) →z z > (y∨ z) →z

z = y → z proving the first part of (4). Furthermore, x 6 y implies

z → x = (z ∨ x) →x x 6 (z ∨ x) →x y = ((z ∨ x) →x y) ∧ (y →x y)

= (z ∨ x ∨ y) →x y = (z ∨ y) →x y = (z ∨ y) →y y = z → y.

(5) Using Lemma 3.8 we get

x→ (y  z) = (x ∨ ((y ∨ z) z)) → ((y ∨ z) z)

= ((x ∨ z) ∨ ((y ∨ z) z)) → ((y ∨ z) z)

= (x ∨ z) → ((y ∨ z) z)

= (x ∨ z) →z ((y ∨ z) z z)

= (y ∨ z) z ((x ∨ z) →z z)

= (y ∨ z) ((x ∨ z) → z)

= y  (x→ z).

(6) This follows immediately from (2) and (5).

(7) By (3) we have y 6 (y → z)  z, whence it follows x → y 6 x →

((y → z) z) = (y → z) (x→ z) by (4) and (5).
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(8) Put x =
∨

i∈I

xi. By (4) we have x → y 6 xi → y for all i ∈ I. But if z is

another common lower bound of all xi → y’s then by (6), xi 6 z  y for every i ∈ I,

so x 6 z  y, which is equivalent to z 6 x→ y. Thus x→ y =
∧

i∈I

(xi → y). �

Corollary 3.10. Let S = (S,∨, (·a)a∈S ,→, , 1) be a sectionally residuated semi-

lattice. Then (S,→, , 1) is a biresiduation algebra and (S,∨,→, , 1) is a biresidu-

ation semilattice, i.e., it is a {∨,→, , 1}-subreduct of an integral residuated lattice.

P r o o f. By Lemma 3.9 (1), (3) and (7) (S,∨,→, , 1) satisfies (2.4)–(2.8),

(2.10) and (2.11). �

One way of interpreting this result is that the operations →, in sectionally resid-

uated semilattices have essentially the same properties as the residua in residuated

lattices. The converse of Corollary 3.10 does not hold (even when the semilattice is

a lattice); the following is an example of a biresiduation semilattice that is not the

reduct of any sectionally residuated semilattice:

Example 3.11. Let us come back to the sectionally residuated semilattice from

Example 3.6. The operations → and  defined by (3.5) are given by the tables

→ a b c d 1
a 1 1 1 c 1
b b 1 1 c 1
c b b 1 c 1
d b b 1 1 1
1 a b c d 1

 a b c d 1
a 1 1 1 c 1
b c 1 1 c 1
c a b 1 c 1
d a b 1 1 1
1 a b c d 1

If we add a new bottom element 0 (see Fig. 3.3) and define x → 0 = x  0 := 0

and 0 → x = 0  x := 1 for all x ∈ S, then (S ∪ {0},→, , 0, 1) is a bounded

biresiduation algebra (lattice) which is not (sectionally) residuated. Indeed, if it were

(sectionally) residuated then necessarily a ·0 d = 0, which would yield a 6 d→ 0 = 0

by (1.1), a contradiction.

d

c

b

a

0

1

Figure 3.3
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Let S = (S,∨, (·a)a∈S ,→, , 1) be a sectionally residuated semilattice. Similarly

to the case of partial operations (→a, a)a∈S , which can be replaced by the op-

erations →, defined by (3.5), we would like to capture the family (·a)a∈S by a

single total operation on S. Unfortunately, Examples 3.5 and 3.6 show that this is

not manageable by means of a single binary operation. Instead, we define a ternary

operation r : S3 → S via

(3.6) r(x, y, z) := (x ∨ z) ·z (y ∨ z).

It is worth noticing that in any residuated semilattice (regarded as a sectionally

residuated semilattice as in 3.3) we have

(3.7) r(x, y, z) = (x · y) ∨ z.

Indeed, r(x, y, z) = ((x∨z) ·(y∨z))∨z = (x ·y)∨(x ·z)∨(z ·y)∨(z ·z)∨z = (x ·y)∨z.

It turns out that sectionally residuated semilattices can be axiomatized using the

ternary operation r:

Theorem 3.12.

(i) Let S = (S,∨, (·a)a∈S ,→, , 1) be a sectionally residuated semilattice. Then

the algebra A (S) = (S,∨, r,→, , 1)—where r is the operation defined by

(3.6)—satisfies the following identities:

x→ (x ∨ y) = 1,

x (x ∨ y) = 1,(R1)

x ∨ y = r(1, x, y) = r(x, 1, y),(R2)

r(r(x, y, w), z, w) = r(x, r(y, z, w), w),(R3)

r(x, y, w) → (z ∨ w) = x→ (y → (z ∨w)),

r(x, y, w) (z ∨ w) = y  (x (z ∨w)),(R4)

r(x → (y ∨ z), x, z) 6 y ∨ z,

r(x, x (y ∨ z), z) 6 y ∨ z,(R5)

r(x, y, z ∨ w) = r(x ∨ w, y ∨ w, z) ∨ w.(R6)

(ii) Let A = (A,∨, r,→, , 1) be an algebra of type 〈2, 3, 2, 2, 0〉 such that (A,∨)

is a join-semilattice with a greatest element 1 and A satisfies (R1)–(R6). If we

define

x ·a y := r(x, y, a)

for any a ∈ A and x, y ∈ [a, 1], then S (A) = (A,∨, (·a)a∈A,→, , 1) is a

sectionally residuated semilattice.
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(iii) The correspondence is one-to-one, i.e., if S is a sectionally residuated semilattice

then S (A (S)) = S, and if A = (A,∨, r,→, , 1) is an algebra satisfying (R1)–

(R6) then A (S (A)) = A.

P r o o f. (i) (R1) This is an immediate consequence of Lemma 3.9 (2).

(R2) We have r(1, x, y) = (1∨y) ·y (x∨y) = x∨y and r(x, 1, y) = (x∨y) ·y (1∨y) =

x ∨ y.

(R3) We calculate

r(r(x, y, w), z, w) = (((x ∨ w) ·w (y ∨ w)) ∨ w) ·w (z ∨ w)

= ((x ∨ w) ·w (y ∨w)) ·w (z ∨ w)

= (x ∨ w) ·w ((y ∨w) ·w (z ∨ w))

= r(x, r(y, z, w), w).

(R4) By Lemma 3.9 (8) we have

(x ∨ w) → ((y ∨ w) → (z ∨ w))

= (x ∨ w) → ((y → (z ∨ w)) ∧ (w → (z ∨ w)))

= (x ∨ w) → (y → (z ∨ w))

= (x→ (y → (z ∨ w))) ∧ (w → (y → (z ∨w)))

= x→ (y → (z ∨w)

since w 6 z ∨ w 6 y → (z ∨ w) yields w → (y → (z ∨ w)) = 1. Therefore

r(x, y, w) → (z ∨ w) = ((x ∨ w) ·w (y ∨ w)) →w (z ∨ w)

= (x ∨ w) →w ((y ∨w) →w (z ∨ w))

= (x ∨ w) → ((y ∨ w) → (z ∨ w))

= x→ (y → (z ∨ w)).

(R5) We have r(x→ (y∨ z), x, z) = ((x→ (y∨ z))∨ z) ·z (x∨ z) = (x→ (y∨ z)) ·z

(x∨z) = ((x∨z) →z (y∨z))·z (x∨z) 6 y∨z. Analogously, r(x, x (y∨z), z) 6 y∨z.

(R6) By the compatibility condition (C) applied to z 6 z∨w 6 x∨z∨w, y∨z∨w

we obtain r(x, y, z∨w) = (x∨z∨w)·z∨w (y∨z∨w) = ((x∨z∨w)·z (y∨z∨w))∨z∨w =

r(x ∨ w, y ∨ w, z) ∨ w.

(ii) Let a ∈ A. In order to show that ([a, 1],∨, ·a,→, , 1) is a residuated semi-

lattice we have to verify the identities (2.1)–(2.3) of Lemma 2.2. Let x, y, z ∈ [a, 1].

By (R3), the operation ·a is associative since (x ·a y) ·a z = r(r(x, y, a), z, a) =

r(x, r(y, z, a), a) = x ·a (y ·a z). By (R2) x ·a 1 = r(x, 1, a) = x ∨ a = x and
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1 ·a x = x for each x ∈ [a, 1]. Thus ([a, 1], ·a, 1) is a monoid. Further, by (R4),

(x ·a y) → z = r(x, y, a) → (z ∨ a) = x→ (y → (z ∨ a)) = x→ (y → z) and similarly

(x ·a y) z = y  (x z). Finally, by (R5) we have (x→ y) ·a x = r(x→ y, x, a) =

r(x → (y ∨ a), x, a) 6 y ∨ a = y; similarly x ·a (x  y) 6 y. This shows that the

section [a, 1] is a residuated semilattice.

The compatibility condition is captured by the identity (R6). Indeed, if a 6 b 6

x, y then x ·b y = r(x, y, b) = r(x, y, a ∨ b) = r(x ∨ b, y ∨ b, a) ∨ b = r(x, y, a) ∨ b =

(x ·a y) ∨ b.

(iii) Let S = (S,∨, (·a)a∈S ,→, , 1) is a sectionally residuated semilattice and

let S (A (S)) = (S,∨, (·′a)a∈S ,→, , 1). For any a ∈ S and x, y ∈ [a, 1] we have

x ·′a y = r(x, y, a) = (x ∨ a) ·a (y ∨ a) = x ·a y. Thus S (A (S)) = S.

Let now A = (A,∨, r,→, , 1) be an algebra fulfilling the equations (R1)–(R6).

Let A (S (A)) = (A,∨, r′,→, , 1). Then using (R6) twice with w = z, we obtain

r′(x, y, z) = (x ∨ z) ·z (y ∨ z) = r(x ∨ z, y ∨ z, z) = r(x ∨ z, y ∨ z, z) ∨ z = r(x, y, z).

So A (S (A)) = A. �

Consequently, sectionally residuated semilattices are in fact algebras (A,∨, r,

→, , 1) of type 〈2, 3, 2, 2, 0〉 and as such algebras form a variety. However, ∨ is a

term operation in r and 1, explicitly, we have x ∨ y = r(1, x, y) = r(x, 1, y), and

so sectionally residuated semilattices can alternatively be treated as algebras (A, r,

→, , 1) of type 〈3, 2, 2, 0〉.

Let us recall several universal algebraic notions. As usual, Con(A) stands for the

set of all congruences of an algebra A = (A, τ), and for any θ ∈ Con(A) and a ∈ A,

[a]θ = {x ∈ A : (x, a) ∈ θ}.

A variety V with a nullary fundamental operation 1 is said to be

(a) weakly regular if every congruence θ on any algebra A in V is determined by

its kernel [1]θ, and regular if θ is determined by any single class [a]θ;

(b) distributive at 1 if [1](θ∨ϕ)∩ψ = [1](θ∩ψ)∨(ϕ∩ψ) for all θ, ϕ, ψ ∈ Con(A) and

A ∈ V , and distributive if for every A ∈ V , the congruence lattice (Con(A),⊆)

is distributive;

(c) permutable at 1 if [1]θ◦ϕ = [1]ϕ◦θ, and permutable if θ ◦ ϕ = ϕ ◦ θ for all

θ, ϕ ∈ Con(A) and for each A ∈ V ;

(d) arithmetical at 1 if it is both distributive and permutable at 1, and arithmetical

if V is both distributive and permutable.

Theorem 3.13. The variety of all sectionally residuated semilattices is weakly

regular, arithmetical at 1, and hence distributive.

P r o o f. Weak regularity: It is well known that a variety V is weakly reg-

ular if and only if there exist binary terms t1, . . . , tn for some n ∈ N such that
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t1(x, y) = . . . = tn(x, y) = 1 is equivalent to x = y. For the variety S of section-

ally residuated semilattices, let t1(x, y) = x → y and t2(x, y) = y → x. Clearly,

t1(x, y) = t2(x, y) = 1 iff x = y.

Arithmeticity at 1: This property is captured by a simple Maltsev type condition—

V is arithmetical at 1 if and only if there exists a binary term t with t(x, x) = t(1, x) =

1 and t(x, 1) = x. In the case of S , the term t(x, y) = y → x satisfies t(x, x) = 1,

t(1, x) = 1 and t(x, 1) = x.

Distributivity: Since S is weakly regular and distributive at 1, it follows at once

that S is distributive. �

4. Sectionally residuated lattices

Definition 4.1. A structure L = (L,∨,∧, (·a)a∈L,→, , 1) is called a sec-

tionally residuated lattice if (L,∨,∧) is a lattice with a greatest element 1 and

(L,∨, (·a)a∈L,→, , 1) is a sectionally residuated semilattice.

In the light of Theorem 3.12 likewise sectionally residuated lattices form a vari-

ety since they can be equivalently regarded as algebras (A,∨,∧, r,→, , 1) of type

〈2, 2, 3, 2, 2, 0〉.

Theorem 4.2. The variety of all sectionally residuated lattices is weakly regular

and arithmetical.

P r o o f. Weak regularity: Again, we take the terms t1(x, y) = x → y and

t2(x, y) = y → x.

Arithmeticity: It is well-known that a variety V is arithmetical if and only if it

has a Pixley term t satisfying t(x, y, y) = t(x, y, x) = t(y, y, x) = x. For the variety

of all sectionally residuated lattice we can use the same Pixley term as for residuated

lattices, namely, t(x, y, z) = ((x → y) → z) ∧ ((z → y) → x) ∧ (x ∨ z). It can be

easily seen that t(x, y, y) = t(x, y, x) = t(y, y, x) = x. �

Example 4.3. Let L = {ai : i ∈ N0} be a countable chain with 1 = a0 > a1 >

a2 > . . ., i.e., ai 6 aj iff i > j. For every ak ∈ L, we can define a multiplication ·ak

on [ak, 1] as follows: ai ·ak
aj := ak if ak 6 ai, aj < 1, and 1 ·ak

ai = ai ·ak
1 := ai for

ak 6 ai. The section [ak, 1] is then the carrier of a commutative residuated lattice

in which

ai → aj =











1 for ai 6 aj ,

aj for ai = 1,

a1 otherwise.
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The compatibility condition is clearly satisfied, hence L = (L,∨,∧, (·ak
)k∈N0

,→, 1) is

a commutative sectionally residuated lattice which is not residuated. Indeed, given

any ai < aj < a1, the product ai ·aj in L has to be the least element al ∈ L such that

ai 6 aj → al. But such an element does not exist since we have aj → al ∈ {1, a1}

and ai 6 aj → al holds for all al.

Nevertheless, L embeds into a residuated lattice—it suffices to add a new least

element a∞ and define ai · aj := a∞ for all ai, aj < 1, and 1 · ai = ai · 1 := ai for

every ai.

In the case of sectionally residuated lattices, it is always possible to derive the

operations (·a)a∈L or the ternary operation r, respectively, from a certain residuated

lattice in the following manner:

Theorem 4.4. Let L = (L,∨,∧, r,→, , 1) be a sectionally residuated lattice.

Then there exists a bounded residuated lattice M = (M,∨,∧, ·,→, , 0, 1) such

that (L,∨,∧,→, , 1) is a subalgebra of the reduct (M,∨,∧,→, , 1) and for every

x, y, z ∈ L,

r(x, y, z) = (x · y) ∨ z.

In other words, (L,∨,∧, r,→, , 1) is a subalgebra of (M,∨,∧, r,→, , 1).

P r o o f. It is easy to see that (a] ∩ (b] = (a ∧ b] 6= ∅ for all a, b ∈ L, so the set

{(a] : a ∈ L} has the finite intersection property and hence there exists an ultrafilter

U in the Boolean algebra Exp(L) of all subsets of L such that {(a] : a ∈ L} ⊆ U .

Let L[a] denote the bounded residuated lattice ([a, 1],∨,∧a, ·a,→, , a, 1), for

every a ∈ L. Let

M =
∏

a∈L

L[a]/U

be the ultraproduct of {L[a] : a ∈ L} over U . Of course, M is a bounded residuated

lattice. Recall that the ultraproduct M is the quotient algebra
∏

a∈L

L[a]/θU , where θU

is a congruence on the direct product
∏

a∈L

L[a] given by (α, β) ∈ θU iff {a ∈ L : α(a) =

β(a)} ∈ U ; the elements of M are denoted α/U or, more detailed, (α(a) : a ∈ L)/U .

Now, define a mapping f : L −→M by

f(x) = (x ∨ a : a ∈ L)/U .

This mapping has the following properties:

(1) f is injective,

(2) f preserves the operations ∨, ∧, → and  ,
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(3) for every p ∈ L and x, y ∈ [p, 1],

f(x ·p y) = (f(x) · f(y)) ∨ f(p).

For (1), note that for any x, y ∈ L, f(x) = f(y) iff {a ∈ L : x ∨ a = y ∨ a} ∈ U .

Let x 6= y. It is clear that whenever a 6 x ∧ y then x ∨ a 6= y ∨ a and hence

(x ∧ y] ⊆ {a ∈ L : x ∨ a 6= y ∨ a}. Since (x ∧ y] ∈ U , it follows that {a ∈ L : x ∨ a 6=

y ∨ a} ∈ U . But {a ∈ L : x∨ a 6= y ∨ a} is the complement of {a ∈ L : x∨ a = y ∨ a}

in the Boolean algebra Exp(L) and U is an ultrafilter in Exp(L), and consequently,

{a ∈ L : x ∨ a = y ∨ a} /∈ U , showing that f(x) 6= f(y).

The parts of (2) are similar to one another, as a sample we show that f preserves

→. We have f(x) → f(y) = ((x ∨ a) → (y ∨ a) : a ∈ L)/U and f(x → y) =

((x → y) ∨ a : a ∈ L)/U . If a 6 y then (x ∨ a) → (y ∨ a) = (x ∨ a) → y =

(x → y) ∧ (a → y) = (x → y) ∧ 1 = x → y and likewise (x → y) ∨ a = x → y

since x → y > y > a. Thus (y] ⊆ {a ∈ L : (x ∨ a) → (y ∨ a) = (x → y) ∨ a}

which yields ((x ∨ a) → (y ∨ a) : a ∈ L)/U = ((x → y) ∨ a : a ∈ L)/U , so that

f(x) → f(y) = f(x→ y).

It remains to verify (3). We have f(x·py) = ((x·py)∨a : a ∈ L)/U and (f(x)·f(y))∨

f(p) = ((x∨a : a ∈ L)/U·(y∨a : a ∈ L)/U)∨(p∨a : a ∈ L)/U = (((x∨a)·a(y∨a))∨p :

a ∈ L)/U . Thus we wish to show that {a ∈ L : (x·py)∨a = ((x∨a)·a (y∨a))∨p} ∈ U .

If a 6 p then (x·py)∨a = x·py and ((x∨a)·a (y∨a))∨p = (x·ay)∨p = x·py due to

the compatibility condition (C). So (p] ⊆ {a ∈ L : (x ·p y)∨a = ((x∨a) ·a (y∨a))∨p}

yielding f(x ·p y) = (f(x) · f(y)) ∨ f(p).

Therefore, for any x, y, z ∈ L, f(r(x, y, z)) = f((x ∨ z) ·z (y ∨ z)) = (f(x ∨ z) ·

f(y ∨ z)) ∨ f(z) = ((f(x) ∨ f(z)) · (f(y) ∨ f(z))) ∨ f(z) = (f(x) · f(y)) ∨ f(z) =

r(f(x), f(y), f(z)). Now, when identifying L with the corresponding subalgebra of

M, the statement follows directly from (1)–(3). �

5. Involutive sectionally residuated semilattices

We turn our attention to a narrower class of sectionally residuated semilattices in

which the operations r and (·a)a∈S can be expressed by means of →, as polynomial

functions.

Definition 5.1. A sectionally residuated semilattice S = (S,∨, r,→, , 1) is

said to be involutive if every residuated semilattice ([a, 1],∨, ·a,→, , a, 1) obeys the

law of double negation

x = (x→ a) a = (x a) → a

for all x ∈ [a, 1].
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For instance, the sectionally residuated semilattice from Example 3.6 is not invo-

lutive since in the section [a, 1] we have (b→ a) a = c 6= b.

The term ‘law of double negation’ reflects the fact that on each section [a, 1] we

have two negations defined by x−a := x→ a and x∼a := x→ a. Thus S is involutive

if

x = x−a∼a = x∼a−a

for all a ∈ S and x ∈ [a, 1]. It is also obvious that S is involutive if and only if it

satisfies the identities

(5.1) x ∨ y = ((x ∨ y) → y) y = ((x ∨ y) y) → y,

which are nothing else than (2.13) rewritten using (x ∨ y) → y = x → y and

(x ∨ y)  y = x  y. Furthermore, it can be easily seen that for each a ∈ S,

([a, 1],6) is a lattice as it follows from (8) of Lemma 3.9 that

x ∧a y := (x−a ∨ y−a)∼a = (x∼a ∨ y∼a)−a

is the infimum of {x, y} ⊆ [a, 1]. Hence ([a, 1],∨,∧a, ·a,→, , 1) is a residuated

lattice; since it fulfils (2.13), it is distributive by [7], [10]. Consequently, we may say

that (S,6) is a distributive nearlattice, i.e., a join-semilattice, where all principal

filters are distributive lattices.

Theorem 5.2. Let S = (S,∨, r,→, , 1) be an involutive sectionally residuated

semilattice. Then (S,→, , 1) is a biresiduation algebra satisfying (2.12).

P r o o f. As we have pointed out S satisfies the equations x ∨ y = (x → y)  

y = (x  y) → y which imply (2.12), thus the biresiduation algebra (S,→, , 1)

fulfils (2.12). �

A natural question arises whether also every biresiduation algebra which satisfies

(2.12) can be converted into a sectionally residuated semilattice. In view of the

equivalence between bounded biresiduation algebras satisfying the equations (2.12),

pseudo-MV-algebras and bounded residuated lattices satisfying (2.13) we have briefly

discussed in Section 2, one can expect the positive answer. Roughly speaking, ev-

ery section of a biresiduation algebra satisfying (2.12) is a pseudo-MV-algebra and

consequently a residuated lattice satisfiyng (2.13) [9], thus the initial biresiduation

algebra is a sectionally residuated semilattice. For the reader’s convenience we give

more detailed proof below:
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Theorem 5.3. Let (A,→, , 1) be a biresiduation algebra that satisfies (2.12).

Then for every a ∈ A, upon defining

x ·a y := (x→ (y → a)) a = (y  (x a)) → a,

([a, 1],∨,∧a, ·a,→, , a, 1) is a bounded residuated semilattice satisfying the law

of double negation, hence (A,∨, r,→, , 1) is an involutive sectionally residuated

semilattice, where

r(x, y, z) = (x→ (y → z)) z = (y  (x z)) → z.

P r o o f. For every a ∈ A, ([a, 1],→, , a, 1) obviously is a bounded biresiduation

algebra satisfying (2.12). Hence ([a, 1],⊕a,
−a ,∼a , a, 1) is a pseudo-MV-algebra where

x−a := x → a, x∼a := x  a and x ⊕a y := x∼a → y = y−a  x. It follows that

([a, 1],∨,∧a, ·a,→, , a, 1)—where x·ay := (x−a⊕ay
−a)∼a—is a bounded residuated

lattice; it is easily seen that x ·a y = (x−a∼a → y−a)∼a = (x→ y−a)∼a = (x→ (y →

a)) a and similarly x ·a y = (y  (x a)) → a. Finally, we have

r(x, y, z) = (x ∨ z) ·z (y ∨ z) = ((x ∨ z) → ((y ∨ z) → z)) z = (x→ (y → z)) z

since (y∨z) → z = y → z and (x∨z) → (y → z) = (x→ (y → z))∧(z → (y → z)) =

(x→ (y → z)) ∧ 1 = x→ (y → z). Analogously r(x, y, z) = (y  (x z)) → z. �

Corollary 5.4. Involutive sectionally residuated semilattices and biresiduation

algebras satisfying the identities (2.12) are term equivalent.

P r o o f. The only point is the passage from involutive sectionally residuated

semilattices to biresiduation algebras and back to involutive sectionally residuated

semilattices.

Let (S,∨, r,→, , 1) be an involutive sectionally residuated semilattice. Then

(S,→, , 1) is a biresiduation algebra satisfying (2.12) and (S,∨, r′,→, , 1) is an

involutive sectionally residuated semilattice in which r′(x, y, z) = (x → (y → z)) 

z. But by (2.13) and (R4) of Theorem 3.12 we have r(x, y, z) = r(x, y, z) ∨ z =

(r(x, y, z) → z) z = (x→ (y → z)) z, so r′ = r as desired. �

Remark. If a bounded residuated lattice is an involutive sectionally residuated

lattice then it is a pseudo-MV-algebra, but we stress that this does not mean that

a bounded residuated lattice satisfying the law of double negation is a pseudo-MV-

algebra—there are many different classes of bounded biresiduation algebras satisfying

the law of double negation.
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Remark. Biresiduation algebras satisfying (2.12) are not the models of impli-

cation in the non-commutative version of the  Lukasiewicz propositional logic [13],

because a biresiduation algebra is embedable into a pseudo-MV-algebra if and only

if it fulfils (2.12) together with the identities

(x→ y) (y → x) = y → x,

(x y) → (y  x) = y  x.
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