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COMPARISON THEOREMS FOR THE THIRD ORDER TRINOMIAL

DIFFERENTIAL EQUATIONS WITH DELAY ARGUMENT

Jozef Džurina and Renáta Kotorová, Košice

(Received June 20, 2007)

Abstract. In this paper we study asymptotic properties of the third order trinomial delay
differential equation

(∗) y′′′(t)− p(t)y′(t) + g(t)y(τ (t)) = 0

by transforming this equation to the binomial canonical equation. The results obtained
essentially improve known results in the literature. On the other hand, the set of comparison
principles obtained permits to extend immediately asymptotic criteria from ordinary to
delay equations.
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We consider the third order delay differential equation

(1) y′′′(t)− p(t)y′(t) + g(t)y(τ(t)) = 0

and the corresponding second order differential equation

(2) v′′(t) = p(t)v(t).

We always assume that

(i) p(t) and g(t) ∈ C([t0,∞)), p(t) > 0, g(t) > 0, sup{p(s) : s > t} > 0 for any

t > t0,

(ii) τ(t) ∈ C([t0,∞)), τ(t) 6 t and τ(t)→∞ as t→∞.

Research was supported by S.G.A. No. 1/003/09.
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We consider only nontrivial solutions of (1). Such a solution of (1) is called oscil-

latory if it has arbitrarily large zeros; otherwise it is called nonoscillatory.

In general, most of the asymptotic results which have appeared in literature for

delay differential equations are generalizations of known results for ordinary differ-

ential equations. Very often the method of proof of a generalized result is the same

as that of the original result, sometimes requiring a severe restrictions on the delay.

But when studying properties of the delay trinomial equations we cannot apply the

technique used for equations without delay, since the presence of the term −p(t)y′(t)

and the delay argument does not allow it. On the other hand, the presence of the

term −p(t)y′(t) disables direct applications of Mahfoud’s type of comparison theo-

rems [15] for obtaining immediate results for the delay equation. Therefore not much

is known about the asymptotic properties of solutions of delay trinomial equations.

In this chapter we propose two new methods to get over these difficulties. The

first method employs Trench’s theory of canonical operators, essentially utilizes the

positive decreasing solution of (2) and is based on Mahfoud’s comparison theorem

to reduce the study of the asymptotic properties of solutions of (1) to that of an

ordinary differential equations of the form (3), so that desirable generalizations of

some asymptotic criteria from ordinary to delay equations of the same types become

immediate. We give two illustrative applications of our technique by deriving some

results from the corresponding ones in ordinary differential equations in [14] and [17].

The letter method also uses the positive decreasing solution of (2) and employs

oscillation of a suitable second order equation for deducing desirable properties of (1).

In earlier papers [6], [7], [8], [10], [14] and [17] the authors have investigated a

particular case of (1), namely the ordinary differential equation (without delay)

(3) y′′′(t)− p(t)y′(t) + g(t)y(t) = 0.

Lazer in [14] has shown that (3) has the following structure of nonoscillatory solu-

tions:

Lemma 1. Let (i) hold. Let y(t) be a nonoscillatory solution of (3). Then there

exists a t1 > t0 such that either

y(t)y′(t) < 0 or(4)

y(t)y′(t) > 0(5)

for t > t1 and moreover, if y(t) satisfies (4) then also

(6) (−1)iy(t)y(i)(t) > 0, 0 6 i 6 3, t > t1.
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It is known (see [14]) that (3) always has a solution satisfying (6).

Below we show that Eq. (1) has the same structure of nonoscillatory solutions as

Eq. (3). We say that (1) has property (P0) if every nonoscillatory solution y(t) of

(1) satisfies (6).

The prototype of results we wish to establish in the first part of the paper is the

following theorem which is due to Lazer [14].

Theorem A. Let (i) hold. If

∫

∞ [

g(s)− 2

3
√

3

(

p(s)
)3/2

]

ds =∞,

then (3) has property (P0).

This result has been improved and modified by several authors (see e.g. [8], [10],

[17]). The following analogue of Theorem A is due to Škerlík [17].

Theorem B. Let (i) hold. If

∫

∞ [

s2g(s)− sp(s)− 2

3
√

3s

(

1 + s2p(s)
)3/2

]

ds =∞,

then (3) has property (P0).

We present a set of comparison theorems which enable us to deduce property (P0)

of the delay equation (1) from that of the ordinary equation (3) so that we will easily

extend Theorem A and B to (1).

Preliminary results

All functional inequalities considered in this paper are assumed to hold eventually,

that is, they are satisfied for all t large enough.

The following result shows the importance of Eq. (2).

Lemma 2. The operator Ly ≡ y′′′(t)− p(t)y′(t) can be written as

Ly ≡ 1

v

(

v2
(1

v
y′

)

′
)

′

,

where v(t) is a solution of (2).

P r o o f. Straightforward computation shows that

Ly =
1

v

(

v2
(

− v′

v2
y′ +

1

v
y′′

))

′

= y′′′ − v′′

v
y′ = y′′′(t)− p(t)y′(t).

�
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For our next considerations it is useful for the operator Ly to be in canonical form

that is
∫

∞

v−2(t) dt =
∫

∞

v(t) dt = ∞. Now we present some useful properties of
positive solutions of (2). In the sequel we shall work only with positive solutions

of (2).

Lemma 3. Eq. (2) possesses the couple of solutions

(7) v(t) > 0, v′(t) < 0 and v′′(t) > 0

and

(8) v(t) > 0, v′(t) > 0 and v′′(t) > 0

for all t large enough.

Following Kiguradze we say that a positive function v(t) is of degree 0 {2} if (7)

{(8)} holds. A solution of degree 0 is also called principal solution [9].
The following lemma complements the classical results dealing with (2) presented

in [1] and [9] and permits to obtain a solution of degree 0 if the corresponding solution

of degree 2 is known.

Lemma 4. If v2(t) is a solution of (2) of degree 2 then

v1(t) = v2(t)

∫

∞

t

v−2
2 (s) ds

is also a solution of (2) and moreover, v1(t) is of degree 0.

P r o o f. It is easy to see that if v2(t) is of degree 2 then
∫

∞

v−2
2 (s) ds < ∞ so

v1(t) is well defined. It is easy to see that v1 is a solution of (2) since

v′′1 = v′′2

∫

∞

t

v−2
2 (s) ds = p(t)v2

∫

∞

t

v−2
2 (s) ds = p(t)v1.

On the other hand,

v′1(t) = v′2(t)

∫

∞

t

v−2
2 (s) ds− 1

v2(t)
.

Noting that
1

v2(t)
=

∫

∞

t

v′2(s)v
−2
2 (s) ds > v′2(t)

∫

∞

t

v−2
2 (s) ds,

so we see that v′1(t) < 0. So v1(t) is of degree 0. �

The next result is obvious.
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Lemma 5. If v1(t) is a solution of degree 0 of (2) then
∫

∞

v−2
1 (t) dt =∞.

We integrate our previous results to:

Lemma 6. If v1(t) is a solution of degree 0 of (2) and

(9)

∫

∞

v1(t) dt =∞

then the operator Ly ≡ y′′′(t)− p(t)y′(t) can be written in the canonical form as

Ly ≡ 1

v1

(

v2
1

( 1

v1
y′

)

′
)

′

.

For our further considerations a solution of degree 0 is the key solution for us

because if (9) is satisfied then Eq. (1) can be represented in canonical form as

(10)
(

v2
1

( 1

v1
y′

)

′
)

′

+ v1(t)g(t)y(τ(t)) = 0

and it is preferable to study properties of (10) than those of (1). So it is desirable to

have a criterion guaranteeing (9). Let us denote P̃ (t) =
∫

∞

t
p(s) ds (it is supposed

that
∫

∞

p(s) ds <∞).

Lemma 7. Assume that

(11)

∫

∞

t0

e
−

∫
t

t0
P̃ (s) ds

dt =∞.

Then every solution of degree 0 of (2) satisfies (9).

P r o o f. Let v1(t) satisfy (7). Integrating (2) from t to ∞, one gets

v′1(∞)− v′1(t) =

∫

∞

t

p(s)v1(s) ds,

where v′1(∞) = lim
t→∞

v′1(t). We claim v′1(∞) = 0. If not, then lim
t→∞

v′1(t) = −l, l > 0.

Then v′1(t) 6 −l. Integrating from t1 to t, we have v1(t) 6 v1(t1)− l(t− t1)→ −∞
as t→∞. This is a contradiction and we conclude that

−v′1(t) =

∫

∞

t

p(s)v1(s) ds 6 v1(t)

∫

∞

t

p(s) ds = v1(t)P̃ (t).

Then integrating from t1 to t, we have

v1(t) > v1(t1)e
−

∫
t

t1
P̃ (s) ds

.

Now it is easy to see that the last inequality together with (11) implies (9). �
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Example 1. For the second order equation

v′′ =
α(α− 1)

t2
v

condition (11) reduces to α ∈ ([1−
√

5]/2, 0) and tα is a solution of degree 0.

Let us denote

L0y = y, L1y =
1

v1
(L0y)′, L2y = v2

1(L1y)′, L3y = (L2y)′.

We recall that a nonoscillatory solution of (10) is of degree 0 if

(12) (−1)iyLiy > 0, i = 0, 1, 2, 3

and a nonoscillatory solution of (10) is of degree 2 if

(13) yLiy > 0, i = 0, 1, 2, yL3y < 0,

eventually.

The following result is a modification of a well-known lemma of Kiguradze [11].

Lemma 8. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Then every positive nonoscillatory solution of canonical representation of (1), namely

Eq. (10), is of degree 0 or 2.

Following Kiguradze we say that (10) has property (A) if each of its nonoscillatory

solutions is of degree 0 (i.e. it satisfies (12)).

Lemma 9. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9). Then

a positive solution of (10) satisfies (12) if and only if it satisfies (6).

P r o o f. It is clear that y(t) is a solution of (1) iff it is a solution of (10). Assume

that y(t) is positive.

→ Assume that y(t) satisfies (12). From L1y(t) < 0, we have y′(t) < 0. Then

(1) implies y′′′(t) < 0. Therefore we must have y′′(t) > 0 eventually, because in the

opposite case integrating the inequality y′(t) < y′(t1) we would have y(t)→ −∞ as
t→∞.
← Let (6) hold. Then L0y(t) > 0 and L1y(t) < 0. On the other hand, it follows

form (10) that L3y(t) < 0. Thus L2y(t) is decreasing. If we admit L2y(t) < 0,

eventually, then L1y(t) < −l < 0 and integrating from t1 to t, one gets y(t) <

y(t1)− l
∫ t

t1
v1(s) ds→ −∞ as t→∞. Therefore L2y(t) > 0 and (6) holds. �

Lemma 9 can be reformulated as
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Theorem 1. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Then (10) has property (A) if and only if (1) has property (P0).

Now we can deal with property (P0) of the trinomial equation (1) with help of

property (A) of the binomial equation (10).

Remark. If the assumptions of Theorem 1 hold and
∫

∞

v1(s)g(s) ds = ∞ then
(see e.g. [4], [5], [13]) Eq. (10) has property (A), which means that Eq. (1) has prop-

erty (P0). Consequently, in the sequel we may assume that
∫

∞

v1(s)g(s) ds <∞.

Main results I

Our goal in this part is to present a comparison principle that permits to deduce

property (P0) of the delay equation (1) from that of the equation without deviating

argument, so that desirable generalizations of criteria for property (P0) from ordinary

to delay equations of the same types become immediate.

The following comparison result is a modification of that of Kusano & Naito [12]

or Dzurina [5].

Theorem 2. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Let

(14) τ ∈ C1, τ ′(t) > 0.

If

(15)
(

v2
1(t)

( 1

v1(t)
y′(t)

)

′
)

′

+
v1(τ

−1(t))g(τ−1(t))

τ ′(τ−1(t))
y(t) = 0

has property (A) then so does (10).

Combining Theorem 1 and Theorem 2, we get

Theorem 3. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Let (14) hold. If (15) has property (A) then (1) has property (P0).

Applying Theorem 1 to (15), one gets
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Theorem 4. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Let (14) hold. Then (15) has property (A) if and only

(16) y′′′(t)− p(t)y′(t) +
v1(τ

−1(t))g(τ−1(t))

v1(t)τ ′(τ−1(t))
y(t) = 0

has property (P0).

Finally, Theorems 3 and 4 provide

Theorem 5. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Let (14) hold. If (16) has property (P0) then so does (1).

This comparison theorem enables us to extend immediately Theorem A and B to

delay equations.

Theorem 6. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Let (14) hold. If either

∫

∞ [g(t)v1(t)

v1(τ(t))
− 2

3
√

3
p3/2(τ(t))τ ′(t)

]

dt =∞ or

∫

∞ [τ2(t)g(t)v1(t)

v1(τ(t))
− p(τ(t))τ(t)τ ′(t)− 2

3
√

3τ(t)
[1 + τ2(t)p(τ(t))]3/2τ ′(t)

]

dt =∞,

then (1) has property (P0).

P r o o f. Applying Theorem A and B to (16) we get in view of Theorem 5 the

assertion of the theorem. �

Main results II

Now we present another comparison method for deducing property (P0) of (1) from

the absence of positive solutions of a suitable second order differential inequality. To

simplify notation we set

g̃(t) =
v1(τ

−1(t))g(τ−1(t))

τ ′(τ−1(t))
and G̃(t) = v1(t)

∫

∞

τ−1(t)

v1(s)g(s) ds.
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Theorem 7. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Let (14) hold. If the second order differential inequality

(17)
(

v2
1(t)z

′(t)
)

′

+

[

v1(t)

∫

∞

τ−1(t)

v1(s)g(s) ds

]

z(t) 6 0

has no positive solution then (1) has property (P0).

P r o o f. Taking Theorem 3 into account it is sufficient to show that (17) implies

property (A) of (15). Assume the contrary, that is, (15) has a positive solution y(t)

satisfying (13). Integrating (15) from t to ∞, we obtain

L2y(t) = c +

∫

∞

t

g̃(s)y(s) ds, c = lim
t→∞

L2y(t).

Since y(t) = y(t1) +
∫ t

t1
v1(x)L1y(x) dx we have

L2y(t) >

∫

∞

t

g̃(s)

∫ s

t1

v1(x)L1y(x) dxds >

∫

∞

t

g̃(s)

∫ s

t

v1(x)L1y(x) dxds.

Changing order of integration leads to

L2y(t) >

∫

∞

t

L1y(x)v1(x)

∫

∞

x

g̃(s) dxds =

∫

∞

t

L1y(x)G̃(x) dx.

Integrating from t1 to t, we get

(18) L1y(t) > L1y(t1) +

∫ t

t1

1

v2
1(s)

∫

∞

s

L1y(x)G̃(x) dxds.

Let us denote the right hand side of (18) by z(t), then z(t) > 0 and

(

v2
1(t)z

′(t)
)′

+ G̃(t)L1y(t) = 0.

Since L1y(t) > z(t), we see that z(t) is a positive solution of (17). This is a contra-

diction and the proof is complete. �
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Theorem 8. Assume that v1(t) is a solution of degree 0 of (2) satisfying (9).

Let (14) hold. If

(19) lim inf
t→∞

(
∫ t

t1

1

v2
1(s)

ds

)(
∫

∞

t

v1(s)

∫

∞

τ−1(s)

v1(x)g(x) dxds

)

>
1

4

then (1) has property (P0).

P r o o f. It is known (see e.g. [4], [13]) that (19) is sufficient for (17) to have no

positive solution. The assertion of the theorem follows from Theorem 7. �

Example 2. Let us consider the equation

(E1) y′′′ − 2

t2
y′ +

a

t3
y(0.5t) = 0.

Clearly v1(t) = 1/t is a solution of degree 0 of the corresponding Eq. (2). Since (9)

and (14) hold, applying Theorem 8 to (E1) we ensure that (E1) has property (P0) if

a > 54.

Generalization I

There is a natural question what to do if we are not able to solve (2). In this

case, as stated below, we can replace the needed solution v1(t) by its asymptotic

expression as t → ∞ and Theorems 5, 7 and 8 still work. Although we can solve
(2) only in some particular cases we have various kinds of necessary and sufficient

conditions (see e.g. [1], [2], [9] and [19]) for the asymptotic expression of a solution

of (2) as t→∞.
We note that ṽ1(t) is an asymptotic expression as t → ∞ of a function v1(t) if

lim
t→∞

v1(t)/ṽ1(t) = 1. We will denote it by v1 ∼ ṽ1. Obviously, for any λ ∈ (0, 1) we

have

(20) λṽ1(t) 6 v1(t) 6
1

λ
ṽ1(t),

eventually.

The following result is a simple modification of a comparison principle which is

due to Kusano & Naito [12] and Dzurina [5].
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Theorem 9. Assume that v(t) is a solution of degree 0 of (2), v(t) ∼ ṽ1(t) and

(21)

∫

∞

ṽ1(t) dt =∞.

Let (14) hold and 0 < λ < 1. If

(22)
( 1

λ2
ṽ1

2(t)
( 1

λṽ1(t)
y′(t)

)

′
)

′

+
λṽ1(τ

−1(t))g(τ−1(t))

τ ′(τ−1(t))
y(t) = 0

has property (A) then so does (15).

The next comparison principle is a simple combination of Theorem 9 and Theo-

rem 3.

Theorem 10. Assume that v(t) is a solution of degree 0 of (2) and v(t) ∼ ṽ1(t).

Let (14) and (21) hold. If

(23) lim inf
t→∞

(
∫ t

t1

1

ṽ1
2(s)

ds

)(
∫

∞

t

ṽ1(s)

∫

∞

τ−1(s)

ṽ1(x)g(x) dxds

)

>
1

4

then (1) has property (P0).

P r o o f. It is clear from (23) that there exists a λ ∈ (0, 1) such that

(24) lim inf
t→∞

(
∫ t

t1

λ2

ṽ1
2(s)

ds

)(
∫

∞

t

λṽ1(s)

∫

∞

τ−1(s)

λṽ1(x)g(x) dxds

)

>
1

4
.

On the other hand (24) guarantees that

( ṽ1
2(t)

λ2
z′(t)

)

′

+

[

λṽ1(t)

∫

∞

τ−1(t)

λṽ1(s)g(s) ds

]

z(t) 6 0

has no positive solution. Thus taking the proof of Theorem 7 into account we see that

this suffices for property (A) of (22). Then by Theorem 9 Eq. (15) enjoys property

(A) too. Applying Theorem 3, we get property (P0) of (1). �

Roughly speaking, the previous theorem says that we can replace v1 by its asymp-

totic representation ṽ1 in (19) and Theorem 8 holds true.

We present several results for the asymptotic expression of v1(t).
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Lemma 10. Assume that
∫

∞

sp(s) ds <∞. Then v1(t) ∼ ṽ1(t) = 1.

P r o o f. Let t1 > t0 be such that
∫

∞

t1
sp(s) ds < 1. Let v1(t) be a solution of

degree 0. In the proof of Lemma 7 we have shown that lim
t→∞

v′1(t) = 0. Moreover,

lim
t→∞

v1(t) = l > 0. We need to show that l > 0. We assume the contrary. Then

integrating (2) twice from t > t1 to ∞, one gets

v(t) =

∫

∞

t

∫

∞

x

p(s)v(s) ds dx =

∫

∞

t

(s− t)p(s)v(s) ds 6

∫

∞

t

sp(s)v(s) ds

6 v(t)

∫

∞

t

sp(s) ds < v(t),

a contradiction. Then v1 ∼ l 6= 0 and so l−1v1 is the required asymptotic expression.

�

Combining Theorem 10 with Lemma 10 we get the following criterion:

Corollary 1. Let (14) hold. Assume that
∫

∞

sp(s) ds <∞. If

lim inf
t→∞

t

(
∫

∞

t

∫

∞

τ−1(s)

g(x) dxds

)

>
1

4

then (1) has property (P0).

The following result is recalled from [9, Corollary 9.2].

Lemma 11. Assume that p(t) = λ2 + ϕ(t), λ > 0. If
∫

∞ |ϕ(t)| dt < ∞. Then
v1(t) ∼ ṽ1(t) = e−λt.

The following criterion can be found in [1].

Lemma 12. Assume that p(t) = 1+ϕ(t). If lim
t→∞

ϕ(t) = 0 and
∫

∞

ϕ2(t) dt <∞
then v1(t) ∼ ṽ1(t) = exp[−t− 1

2

∫ t

t0
ϕ(s) ds].

Since condition (21) fails for ṽ1(t) = e−t and ṽ1(t) = exp[−t− 1
2

∫ t

t0
ϕ(s) ds],

Theorem 10 cannot be applied at present. We will recall Lemmas 11 and 12 later

after we expand our theory.
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Generalization II

In our above results, it has been supposed that (9) holds. Our next considerations

are intended to make it possible to deduce property (P0) of (1) even if a solution of

degree 0 of (2) satisfies the opposite condition, namely

(25)

∫

∞

v1(t) dt <∞.

Let us denote

(26) r0(t) =

∫

∞

t

v1(s) ds,

r1(t) = v1(t)

(
∫

∞

t

v1(s) ds

)

−2

,

r2(t) = v−2
1 (t)

∫

∞

t

v1(s) ds,

r3(t) = v1(t).

Theorem 11. Assume that v1(t) is a solution of degree 0 of (2) satisfying (25).

Then the operator Ly ≡ y′′′(t)− p(t)y′(t) can be represented in canonical form as

Ly ≡ 1

r3

( 1

r2

( 1

r1

( y

r0

)

′
)

′
)

′

.

P r o o f. Direct computation shows that

Ly =
1

r3

(

1

r2

[

y′′

∫

∞

t
v1(s) ds

v1
− y′

v′1
∫

∞

t
v1(s) ds

v2
1

])

′

= y′′′ − p(t)y′.

Now we verify that Ly is in canonical form, i.e.
∫

∞

ri(t) dt =∞ for i = 1, 2. Let us

denote V (t) =
∫

∞

t v1(s) ds. It is easy to see that (25) implies lim
t→∞

V (t) = lim
t→∞

v1(t) =

0. Moreover, it follows from the proof of Lemma 7 that lim
t→∞

v′1(t) = 0. Therefore

∫

∞

t0

r1(t) dt =

∫

∞

t0

−V ′(t)

V 2(t)
dt = lim

t→∞

( 1

V (t)
− 1

V (t0)

)

=∞.

To ensure that
∫

∞

r2(t) dt =∞ it is sufficient to show that lim
t→∞

r2(t) > 0. Applying

L’Hospital rule, we get

lim
t→∞

r2(t) = lim
t→∞

1

−2v′1(t)
=∞.

�
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Under the conditions of Theorem 11, Eq. (1) can be represented as the canonical

equation
( 1

r2(t)

( 1

r1(t)

( y(t)

r0(t)

)

′
)

′
)

′

+ r3(t)g(t)y(τ(t)) = 0

or, setting y(t) = r0(t)z(t), as

(27)
( 1

r2(t)

( 1

r1(t)
z′(t)

)

′
)

′

+ r0(τ(t))r3(t)g(t)z(τ(t)) = 0.

For (27) we set

L0z = z, L1z =
1

r1
(L0z)′, L2z =

1

r2
(L1z)′, L3z = (L2z)′.

Theorem 12. Assume that v1(t) is a solution of degree 0 of (2) satisfying (25).

If Eq. (27) has property (A) then Eq. (1) has property (P0).

P r o o f. Assume that y(t) is a positive solution of (1). Then z(t) = y(t)/r0(t) is

a positive solution of (27). Consequently, z(t) is of degree 0, i.e.

L0z > 0, L1z < 0, L2z > 0, L3z < 0,

eventually. Then

0 > (L0z)′ =
y′r0(t) + yv1(t)

r2
0(t)

.

Considering the sign properties of the terms on the right hand side, one gets y′(t) < 0.

Eq. (1) then implies y′′′(t) < 0. Now exactly as in the proof of Lemma 7, we get

y′′(t) > 0, eventually. The proof is complete now. �

The following result is an analogue of Theorem 2 for Eq. (27).

Theorem 13. Assume that v1(t) is a solution of degree 0 of (2) satisfying (25).

Let (14) hold. If equation

(28)
( 1

r2(t)

( 1

r1(t)
z′(t)

)

′
)

′

+
r0(t)r3(τ

−1(t))g(τ−1(t))

τ ′(τ−1(t))
z(t) = 0

has property (A) then so does (27).

Combining Theorems 12 and 13 we can deduce property (P0) of the delay trinomial

equation from property (A) of the binomial equation without delay.
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Theorem 14. Assume that v1(t) is a solution of degree 0 of (2) satisfying (25).

Let (14) hold. If Eq. (28) has property (A) then Eq. (1) has property (P0).

Now we are prepared to extend Theorem 7 to the case when v1(t) satisfies (25).

Theorem 15. Assume that v1(t) is a solution of degree 0 of (2) satisfying (25).

Let (14) hold. If the second order differential inequality

(29)
( 1

r2(t)
u′(t)

)

′

+

[

r1(t)

∫

∞

τ−1(t)

r0(τ(s))r3(s) g(s) ds

]

u(t) 6 0

has no positive solution then (1) has property (P0).

The proof follows all steps of the proof of Theorem 7 and so it is omitted.

Adding a criterion for absence of a positive solution of (29) we get in view of

Theorem 15 a criterion for property (P0).

Theorem 16. Assume that v1(t) is a solution of degree 0 of (2) satisfying (25).

Let (14) hold. If

(30) lim inf
t→∞

(

∫ t

t0

r2(s) ds
)

(
∫

∞

t

r1(s)

∫

∞

τ−1(s)

r0(τ(x))r3(x) g(x) dxds

)

>
1

4

then (1) has property (P0).

Example 3. Let us consider the delay equation

(E2) y′′′(t)− y′(t) + ae(1−λ)ty(λt) = 0, a > 0, 0 < λ < 1.

Obviously v(t) = e−t is a solution of degree 0 of (2) and satisfies (25). Therefore

r0(t) = r3(t) = e−t and r1(t) = r2(t) = et. Then condition (30) reduces to a > 1
2λ,

which by Theorem 16 guarantees property (P0) of (E2). Moreover, it is clear from

our results here and from the classical comparison theorems (see e.g. [12], [4]) that

the equation

y′′′(t)− y′(t) + g(t)y(λt) = 0, 0 < λ < 1

has property (P0) provided that

g(t) >
λ

2
e(1−λ)t.

Remark. Arguing as in Generalization I it can be shown that Theorems 12–16

hold true even if we replace v1(t) by ṽ1(t) in (26). Now we can return to Lemmas 11

and 12.
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Example 4. Let us consider the delay equation

(E3) y′′′(t)− t2 + k

t2
y′(t) + g(t)y(τ(t)) = 0, k ∈ R, τ ∈ C1, τ ′(t) > 0.

As ϕ(t) = kt−2 satisfies the condition of Lemma 11, we have v1(t) ∼ e−t. By

Theorem 16 Eq. (E3) enjoys property (P0) if

lim inf
t→∞

et

(
∫

∞

t

es

∫

∞

τ−1(s)

e−x−τ(x)g(x) dxds

)

>
1

4
.

Example 5. Let us consider the delay equation

(E4) y′′′(t)− t− 2

t
y′(t) + g(t)y(τ(t)) = 0, τ ∈ C1, τ ′(t) > 0.

Then ϕ(t) = −2/t satisfies the conditions of Lemma 12. Thus v1(t) ∼ te−t. It follows

from Theorem 16 that Eq. (E4) enjoys property (P0) if

lim inf
t→∞

(
∫ t

3

s + 1

s2
es ds

)(
∫

∞

t

ses

(s + 1)2

∫

∞

τ−1(s)

x(1+ τ(x))e−x−τ(x)g(x) dxds

)

>
1

4
.

Remark. If a solution of degree 0 of (2) satisfies (9) then employing an additional

condition, namely

∫

∞

t0

v1(s3)

∫

∞

s3

v−2
1 (s2)

∫

∞

s2

v1(s1)g(s1)ds1ds2ds3 =∞,

our results here concerning property (P0) can be formulated in stronger form as every

nonoscillatory solution y(t) of (1) satisfies lim
t→∞

y(t) = 0. Really, if y(t)y′(t) < 0 and

we assume lim
t→∞

y(t) = l > 0 then y(τ(t)) > l. Integrating (10) twice from t to ∞
and then from t1 to t, we have

y(t) = y(t1)−
∫ t

t1

v1(s3)

∫

∞

s3

v−2
1 (s2)

∫

∞

s2

v1(s1)g(s1)y(τ(s1))ds1ds2ds3

6 y(t1)− l

∫ t

t1

v1(s3)

∫

∞

s3

v−2
1 (s2)

∫

∞

s2

v1(s1)g(s1)ds1ds2ds3 → −∞

as t→∞. Consequently, lim
t→∞

y(t) = 0.

Remark. We have presented a set of comparison theorems of higher order of

generality. Theorem 5 enables us immediately to extend criteria for property (P0)

of trinomial third order differential equations to delay equations. So we were able to

generalize results of Lazer, Skerlik and, as a matter of fact, we can generalize many

more results.
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On the other hand, Theorems 7 and 15 permit to deduce property (P0) of (1)

from the absence of positive solutions of the corresponding second order differential

equation, covering both cases whether or not
∫

∞

v1(s) ds is convergent.

Theorems 8, 10, 16 present easily verifiable criteria for the desired property of (1)

and Theorem 10 is applicable even if we are not able to find v1(t) but its asymptotic

form is known.

Corollary 1 is applicable to a wide class of equations and its assumptions include

only coefficients τ(t), p(t) and g(t). A result of this type is not known from earlier

papers on property (P0) of (1).

Presented comparison theorems generalize earlier ones od Dzurina [3], Parhi and

Padhi [16].
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