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1. Introduction

The purpose of our research is to consider some derivatives and some integrals of

mappings in vector spaces and to study their relations, for instance, the fundamental

theorem of calculus, inclusive relations between integrals and so on. To this aim we

refer to the Fréchet derivative, the Denjoy integral of mappings from an abstract

space to the real line in [4], [5], [17] and the Henstock-Kurzweil integral of mappings

from the division space or the real line to a complete vector lattice in [15], [16],

[2]. From the above theories to consider both derivatives and integrals of mappings

in vector spaces a domain of mappings may be needed an interval structure and

linearity and a range of mappings may be needed a convergence structure and lin-

earity. Hereafter we consider that both a domain and a range of mappings are vector

lattices.

In this paper we define the derivative and the Denjoy integral of mappings from

a vector lattice to a complete vector lattice and show the fundamental theorem of

calculus. In the next paper we will define the Henstock-Kurzweil integral of mappings

from a vector lattice to a complete vector lattice and consider a relation between these

two integrals.
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Let X and Y be vector lattices. e ∈ X is said to be unit if e∧x > 0 for any x ∈ X

with x > 0. Let KX be the class of units of X . Let IX be the class of intervals of

X and I KX the class of intervals [a, b] with b − a ∈ KX . x1 ∈ X and x2 ∈ X are

said to be orthogonal, denoted by x1 ⊥ x2, if |x1| ∧ |x2| = 0. Let A⊥ be the class of

x1 ∈ X satisfying x1 ⊥ x for any x ∈ A ⊂ X . Let L (X, Y ) be the class of bounded

linear mappings from X to Y . If Y is complete, then L (X, Y ) is so, too [1], [3], [14],

[18], [19].

2. Derivative

Definition 2.1. Let X be a vector lattice with unit.

D ⊂ X is said to be open if for any x ∈ D and for any e ∈ KX there exists ε ∈ KR

such that [x − εe, x + εe] ⊂ D. Let OX be the class of open subsets of X .

Definition 2.2. Let X be a vector lattice with unit and Y a vector lattice.

Let U s
Y (KX , >) be the class of {ve : e ∈ KX} satisfying the following conditions:

(U1) ve ∈ Y with ve > 0.

(U2)
d

ve1
> ve2

if e1 > e2.

(U3)
s
For any e ∈ KX there exists θ(e) ∈ KR such that vθ(e)e 6 1

2ve.

Remark 2.1. It holds that {αve + βv1,e} ∈ U
s

Y (KX , >) for any {ve} ∈

U s
Y (KX , >), for any {v1,e} satisfying v1,e > 0 and (U2)d (U3)s, for any α ∈ R

with α > 0 and for any β ∈ R with β > 0.

Lemma 2.1. Let X be a vector lattice with unit and Y an Archimedean vector

lattice.

Then
∧

ε∈KRvεe = 0 for any e ∈ KX . In particular,
∧

e∈KX

ve = 0.

P r o o f. Let θ(e, n) = θ(θ(. . . θ(θ
︸ ︷︷ ︸

n

(e)e) . . . e)e). Then by (U3)s it holds that

vθ(e,n)e 6 2−nve for any natural number n. Since Y is Archimedean, we have

∧

e∈KX

ve 6
∧

ε∈KRvεe 6
∧

n∈N

vθ(e,n)e 6
∧

n∈N

2−nve = 0.

�

Definition 2.3. Let X be a vector lattice with unit, Y a complete vector lattice,

x ∈ D ∈ OX and F : D −→ Y .

F is said to be right differentiable at x if there exists l ∈ L (X, Y ) satisfying the

following condition:
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(R) There exists {w+
x,e} ∈ U s

L (X,Y )(KX , >) such that for any e ∈ KX there exists

δ+
x ∈ KR such that |F (x + h) − F (x) − l(h)| 6 w+

x,e(h) for any h ∈ X with

0 < h 6 δ+
x e.

Then we denote o-D+F (x) = l. F is said to be left differentiable at x if there

exists l ∈ L (X, Y ) satisfying the following condition:

(L) There exists {w−
x,e} ∈ U s

L (X,Y )(KX , >) such that for any e ∈ KX there exists

δ−x ∈ KR such that |F (x) − F (x − h) − l(h)| 6 w−
x,e(h) for any h ∈ X with

0 < h 6 δ−x e.

Then we denote o-D−F (x) = l. F is said to be differentiable at x if o-D+F (x) =

o-D−F (x). Then o-DF (x) = o-D+F (x) = o-D−F (x).

Let A ⊂ D and let F : D −→ Y be differentiable at every point of A.

F is said to be uniformly differentiable onA if there exists {we} ∈ U s
L (X,Y )(KX , >)

such that for any x ∈ A and for any e ∈ KX there exists ̺±(x, e) ∈ KX such that

w±
x,̺±(x,e) 6 we.

Example 2.1. Let X = R
d, let Y be a complete vector lattice with Archimedean

unit, D ∈ OX and let F : D −→ Y be a differentiable at every point of D.

Then F is uniformly differentiable on D. Let u1, . . . , ud be Archimedean units

of Y , αe = e1 . . . ed and we = αe(u1, . . . , ud) for any e = (e1, . . . , ed) ∈ KX . Then

{we} ∈ U
s

L (X,Y )(KX , >). For any {w±
x,e} ∈ U

s
L (X,Y )(KX , >) there exists β±

x,e ∈ KR

such that w±
x,e 6 β±

x,e(u1, . . . , ud). Let n
±(x, e) be a natural number with 2−n±(x,e) 6

αe/β±
x,e. Then by (U3)

s

we >
αe

β±
x,e

w±
x,e > 2−n±(x,e)w±

x,e > w±
x,θ(e,n±(x,e))e,

where θ(e, n) is from the proof of Lemma 2.1.

The derivative of mappings in vector lattices is introduced in the case of a domain

with Archimedean unit in [6] and thereafter it is extended to the case of a domain

with unit in [10]. The derivative in Definition 2.3 differs from both of them and is

further extended.

Remark 2.2. By Definition 2.3 it is clear that o-Dl(x) = o-D+l(x) = o-D−l(x) =

l for any l ∈ L (X, Y ) and for any x ∈ X .

The following is evident.
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Theorem 2.1. Let X be a vector lattice with unit, Y a complete vector lattice,

x ∈ D ∈ OX , F1, F2 : D −→ Y and α, β ∈ R.

(1) If F1 and F2 are right differentiable, then αF1 + βF2 is also so and

o-D+(αF1 + βF2)(x) = αo-D+F1(x) + βo-D+F2(x).

(2) If F1 and F2 are left differentiable, then αF1 + βF2 is also so and

o-D−(αF1 + βF2)(x) = αo-D−F1(x) + βo-D−F2(x).

3. Integral

3.1. Preliminary. All integrals have double-facedness of an inverse operation of

the derivative and the limit of a certain sum. In the former setting a Newton integral

in [7], [10] and a Lebesgue integral in [8] were given for mappings in vector lattices. In

this paper a Denjoy integral is provided and in the next paper a Henstock-Kurzweil

integral will be given in the latter setting.

First some concepts required in the subsequent arguments are defined.

Definition 3.1. Let X be a vector lattice with unit, e ∈ KX and let a, b ∈ D ⊂

X with a 6= b.

Let CSIPe(a, b) be the class of ϕ : [0, 1] −→ D satisfying the conditions (P) (CPe)

(SI), CSDPe(a, b) the class of ϕ : [0, 1] −→ D satisfying the conditions (P) (CPe)

(SD), and CSMPe(a, b) = CSIPe(a, b) ∪ CSDPe(a, b), where

(P) ϕ(0) = a and ϕ(1) = b.

(CPe) For any t ∈ [0, 1] and for any ε ∈ KR there exists δ ∈ KR such that for any

s ∈ [0, 1] if |s − t| 6 δ, then |ϕ(s) − ϕ(t)| 6 εe.

(SI) ϕ(t1) < ϕ(t2) if t1 < t2.

(SD) ϕ(t1) > ϕ(t2) if t1 < t2.

Remark 3.1. Let ϕrev(t) = ϕ(1 − t). Then ϕ ∈ CSIPe(a, b) is equivalent to

ϕrev ∈ CSDPe(b, a) and ϕ ∈ CSDPe(a, b) is equivalent to ϕrev ∈ CSIPe(b, a).

Definition 3.2. Let X be a vector lattice with unit.

Let |KX | be the class of x satisfying |x| ∈ KX . For any x ∈ |KX | let x⊥
+ = {0∨x}⊥,

x⊥
− = {0 ∨ (−x)}⊥,

Q(x) = {x1 : x1 ∈ |KX |, (x1)
⊥
+ = x⊥

+, (x1)
⊥
− = x⊥

−}
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and

Q(x) =

(
⋃

x1,x2∈Q(x)

[0 ∧ x1, 0 ∨ x2]

)

\ {0}.

Remark 3.2. The class of Q(x)’s is an equivalence class of |KX |. Therefore each

x ∈ |KX | belongs to unique Q(x).

Lemma 3.1. LetX be a vector lattice with unit satisfying the principal projection

property and x ∈ |KX |. Then x⊥
+ ⊕ x⊥

− = X .

P r o o f. Since X satisfies the principal projection property, it holds that

B({x1}) ⊕ {x1}⊥ = X for any x1 ∈ X , where B(A) is the smallest band containing

A ⊂ X . Let x1 = 0 ∨ (−x). Then x⊥
− = {x1}⊥. Since x1 ∧ (0 ∨ x) = 0 and x⊥

+ is a

projection band, it holds that B({x1}) ⊂ x⊥
+. Let x2 ∈ x⊥

+ ∩ x⊥
−. Then

(0 ∨ x) ∧ |x2| = 0, (0 ∨ (−x)) ∧ |x2| = 0

and
|x| ∧ |x2| = ((0 ∨ x) + (0 ∨ (−x))) ∧ |x2|

6 (0 ∨ x) ∧ |x2| + (0 ∨ (−x)) ∧ |x2| = 0

proving that x2 = 0. Therefore x⊥
+ ⊕ x⊥

− = X . �

Lemma 3.2. LetX be a vector lattice with unit satisfying the principal projection

property and let x ∈ |KX |.

If (x1)
⊥
+ = x⊥

+ and (x1)
⊥
− = x⊥

−, then x1 ∈ |KX |.

P r o o f. By Lemma 3.1 we have (x1)
⊥
+ ⊕ (x1)

⊥
− = x⊥

+ ⊕ x⊥
− = X . Therefore

(x1)
⊥
+∩(x1)

⊥
− = {0}. Assume that x1 6∈ |KX |. Then there exists x2 ∈ X with x2 > 0

such that |x1| ∧ x2 = 0. Therefore

(0 ∨ x1) ∧ x2 6 |x1| ∧ x2 = 0,

(0 ∨ (−x1)) ∧ x2 6 |x1| ∧ x2 = 0

implying that x2 ∈ (x1)
⊥
+ ∩ (x1)

⊥
−. This is a contradiction. Therefore x1 ∈ |KX |. �

Remark 3.3. By Lemma 3.1 and Lemma 3.2 ifX satisfies the principal projection

property, then
Q(x) = {x1 : x1 ∈ |KX |, (x1)

⊥
+ = x⊥

+}

= {x1 : x1 ∈ |KX |, (x1)
⊥
− = x⊥

−}

= {x1 : (x1)
⊥
+ = x⊥

+, (x1)
⊥
− = x⊥

−}.
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Lemma 3.3. LetX be a vector lattice with unit satisfying the principal projection

property and let x ∈ |KX |.

Then the mapping

| · |Q(x) : Q(x) −→ KX

∈ ∈

x1 7−→ |x1|

is bijective.

P r o o f. By Lemma 3.1 for any e ∈ KX and for any x ∈ |KX | there exist x1 ∈ x⊥
+

and x2 ∈ x⊥
− such that x1 +x2 = e. Since x1 ⊥ x2, it holds that |x1−x2| = |x1 +x2|.

Therefore |x2 − x1| = e. Note that x2 ⊥ x3 for any x3 ∈ x⊥
+. Since

(0 ∨ (x2 − x1)) ∧ |x3| = (0 ∨ (2x2 − e)) ∧ |x3| 6 (0 ∨ (2x2)) ∧ |x3| = 0,

it holds that x3 ∈ (x2 − x1)
⊥
+ proving that x⊥

+ ⊂ (x2 − x1)
⊥
+. Note that x1 ⊥ x3 for

any x3 ∈ x⊥
−. Since

(0 ∨ (x1 − x2)) ∧ |x3| = (0 ∨ (2x1 − e)) ∧ |x3| 6 (0 ∨ (2x1)) ∧ |x3| = 0,

it holds that x3 ∈ (x2 − x1)
⊥
− proving that x⊥

− ⊂ (x2 − x1)
⊥
−. Since x2 − x1 ∈ |KX |,

by Lemma 3.1 it holds that (x2 − x1)
⊥
+ ⊕ (x2 − x1)

⊥
− = X , (x2 − x1)

⊥
+ = x⊥

+ and

(x2 − x1)
⊥
− = x⊥

−. Therefore x2 − x1 ∈ Q(x) and | · |Q(x) is surjective.

To prove that | · |Q(x) is injective it should be proved that if |x1| = |x2| = e and

x1 6= x2, then Q(x1) 6= Q(x2). Note that 0 ∨ (−x1) ∈ (x1)
⊥
+ and 0 ∨ (−x2) ∈ (x2)

⊥
+.

In general,

(0 ∨ x1) ∧ (0 ∨ (−x2)) + (0 ∨ x2) ∧ (0 ∨ (−x1)) =
1

2
(|x1| + |x2| − |x1 + x2|)

and |x1 +x2|∧ |x1 −x2| = ||x1|− |x2||. Since |x1| = |x2| = e, it holds that |x1 +x2| 6∈

KX and it does never hold that |x1| + |x2| = |x1 + x2|. Therefore

(0 ∨ x1) ∧ (0 ∨ (−x2)) + (0 ∨ x2) ∧ (0 ∨ (−x1)) > 0

and either (0 ∨ x1) ∧ (0 ∨ (−x2)) > 0 or (0 ∨ x2) ∧ (0 ∨ (−x1)) > 0, thus either

0 ∨ (−x2) 6∈ (x1)
⊥
+ or 0 ∨ (−x1) 6∈ (x2)

⊥
+. Therefore (x1)

⊥
+ 6= (x2)

⊥
+ proving that

Q(x1) 6= Q(x2). �
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Lemma 3.4. LetX be a vector lattice with unit satisfying the principal projection

property and let x ∈ |KX |.

If x1, x2 ∈ Q(x), then x1 ∧ x2, x1 ∨ x2 ∈ Q(x).

P r o o f. Since

|x1 ∧ x2| =
1

2
|x1 + x2 − |x1 − x2|| >

1

2
||x1 + x2| − |x1 − x2|| = |x1| ∧ |x2|

and

|x1 ∨ x2| =
1

2
|x1 + x2 + |x1 − x2|| >

1

2
||x1 + x2| − |x1 − x2|| = |x1| ∧ |x2|,

we have x1 ∧ x2, x1 ∨ x2 ∈ |KX |. If x3 ∈ x⊥
− = (x1)

⊥
− = (x2)

⊥
−, then

(0 ∨ (−(x1 ∧ x2))) ∧ |x3| 6 (0 ∨ (−x1) + 0 ∨ (−x2)) ∧ |x3|

6 (0 ∨ (−x1)) ∧ |x3| + (0 ∨ (−x2)) ∧ |x3| = 0

proving that x3 ∈ (x1 ∧ x2)
⊥
−. Conversely, if x3 ∈ (x1 ∧ x2)

⊥
−, then

(0 ∨ (−x1)) ∧ |x3| 6 (0 ∨ (−(x1 ∧ x2))) ∧ |x3| = 0

proving that x3 ∈ (x1)
⊥
− = x⊥

−. Therefore (x1 ∧ x2)
⊥
− = x⊥

−. By Remark 3.3 it holds

that x1 ∧ x2 ∈ Q(x). The rest can be proved similarly. �

Lemma 3.5. Let X be a vector lattice with unit and let x ∈ |KX |.

If x1 ∈ Q(x), 0 ∧ x1 6 x2 6 0 ∨ x1 and x2 6= 0, then x2 ∈ Q(x).

P r o o f. Since x1 ∈ Q(x), there exist x3, x4 ∈ Q(x) such that x1 ∈ [0 ∧ x3,

0∨x4]\{0}. Since 0∧x1 6 x2 6 0∨x1 and x2 6= 0, it holds that x2 ∈ [0∧x3, 0∨x4]\{0}.

Therefore x2 ∈ Q(x). �

Lemma 3.6. Let X be a vector lattice with unit.

(1) Then αx1 ∈ Q(x) for any x1 ∈ Q(x) and for any α ∈ KR.

(2) If X satisfies the principal projection property, then x1 + x2 ∈ Q(x) for any

x1, x2 ∈ Q(x).

P r o o f. (1) Since x1 ∈ Q(x), there exist x3, x4 ∈ Q(x) such that x1 ∈ [0 ∧ x3,

0 ∨ x4] \ {0}. Since α ∈ KR, it holds that αx1 ∈ [0 ∧ (αx3), 0 ∨ (αx4)] \ {0}. Since

(0 ∨ x) ∧ |αx3| 6 (1 ∨ α)((0 ∨ x) ∧ |x3|) = 0
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and

(0 ∨ x) ∧ |αx4| 6 (1 ∨ α)((0 ∨ x) ∧ |x4|) = 0,

it holds that αx3, αx4 ∈ Q(x). Therefore αx1 ∈ Q(x).

(2) Since x1, x2 ∈ Q(x), there exists x3, x4, x5, x6 ∈ Q(x) such that x1 ∈ [0 ∧

x3, 0 ∨ x4] \ {0} and x2 ∈ [0 ∧ x5, 0 ∨ x6] \ {0}. Note that 0 ∨ x4, 0 ∨ x6 ∈ x⊥
− and

0 ∨ (−x3), 0 ∨ (−x5) ∈ x⊥
+. Assume that x2 = −x1. Then

x1 = x1 ∧ (−x2) 6 (0 ∨ x4) ∧ (0 ∨ (−x5)) = 0,

x2 = x2 ∧ (−x1) 6 (0 ∨ x6) ∧ (0 ∨ (−x3)) = 0

proving that x1 = x2 = 0. This is a contradiction. Therefore x2 6= −x1 and

x1 + x2 ∈ [0∧ 2(x3 ∧ x5), 0∨ 2(x4 ∨ x6)] \ {0}. By Lemma 3.4 and the proof of (1) it

holds that 2(x3 ∧ x5), 2(x4 ∨ x6) ∈ Q(x). Therefore x1 + x2 ∈ Q(x). �

Definition 3.3. Let X be a vector lattice with unit and a, b ∈ D ⊂ X with

a 6= b.

Let CSSMP(a, b) be the class of ϕ : [0, 1] −→ D satisfying the following condi-

tions:

(CS1) There exist a natural number rϕ and {ei
ϕ : ei

ϕ ∈ KX for i = 1, . . . , rϕ}

such that the mapping

ϕi : [0, 1] −→ D

∈ ∈

s 7−→ ϕ((s + i − 1)/rϕ)

belongs to CSMPei
ϕ
(ϕ((i − 1)/rϕ), ϕ(i/rϕ)).

(CS2) There exists x ∈ |KX | such that ϕi(1)−ϕi(0) ∈ Q(x) for any i = 1, . . . , rϕ.

(CS3) ϕ([0, 1]) ⊂ [a ∧ b, a ∨ b].

ϕi satisfies either (SI) or (SD). For convenience, ϕi is said to beCSIP if ϕi satiefies

(SI) and ϕi is CSDP if ϕi satisfies (SD).

Remark 3.4. By Remark 3.1, ϕ ∈ CSSMP(a, b) is equivalent to ϕrev ∈

CSSMP(b, a). Since (ϕrev)rev = ϕ, the mapping ϕ 7−→ ϕrev is bijective.

Definition 3.4. Let X be a vector lattice with unit and D ⊂ X .

D is said to be connected if CSSMP(a, b) 6= ∅ for any a, b ∈ D with a 6= b. Let

COX be the class of connected open subsets of X .

Definition 3.5. Let X be a vector lattice with unit and a, b ∈ D ∈ COX .

The subset

〈a|b〉 =







⋃

ϕ∈CSSMP(a,b)

ϕ([0, 1]) if a 6= b,

{a} if a = b

is called to be a stepwise interval from a to b.
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Remark 3.5. By Remark 3.4, it holds that ϕ([0, 1]) = ϕrev([0, 1]). Therefore

〈a|b〉 and 〈b|a〉 coincide as sets. But the former means an “interval from a to b”, the

letter means another “interval from b to a” and they are distinguished.

Remark 3.6. By (CS1) (CS3) we have that 〈a|b〉 ⊂ [a ∧ b, a ∨ b] ∩ D.

Definition 3.6. Let X be a vector lattice with unit, Y a complete vector lattice

and a, b ∈ D ∈ COX .

〈c|d〉 is said to be a subinterval of 〈a|b〉 if c, d ∈ 〈a|b〉 and there exists x ∈ |KX |

such that c − a, d − c, b − d ∈ Q(x).

Remark 3.7. By Lemma 3.6 and (CS2) if X satisfies the principal projection

property, then 〈c|d〉 ⊂ 〈a|b〉.

Definition 3.7. Let X be a vector lattice with unit, e ∈ KX and a, b ∈ X with

a 6 b.

For an interval [a, b] we consider the subset:

[a, b]e = {x : there exists some ε ∈ KR such that x − a > εe and b − x > εe}.

Lemma 3.7. Let X be a vector lattice with unit, e ∈ KX and a, b ∈ X with

a 6 b.

Then [a, b]e 6= ∅ if and only if there exists ε ∈ KR such that b − a > εe.

P r o o f. Suppose that [a, b]e 6= ∅. Let x ∈ [a, b]e. By Definition 3.7 there exists

ε ∈ KR such that x − a > 1
2εe and b − x > 1

2εe. Therefore b − a > εe.

Conversely, suppose that there exists ε ∈ KR such that b−a > εe. Let x = 1
2 (a+b).

Then x − a = b − x = 1
2 (b − a) > 1

2εe. Therefore x ∈ [a, b]e. �

Definition 3.8. Let X be a vector lattice with unit.

We consider the following condition:

(M) There exists an interval function q : IX −→ [0,∞) such that

(M1) q(I1) 6 q(I2) if I1 ⊂ I2.

(M2) q(I) > 0 if I ∈ I KX .

(M3) For any x ∈ X , for any e ∈ KX and for any ε ∈ KR there exists δ ∈ KR

such that q([x, x + δe]) 6 ε and q([x − δe, x]) 6 ε.

Let A ⊂ D ⊂ X .

Given a property P (x) of x ∈ D we say to be true for nearly every x ∈ A if

there exists a countable set N ⊂ D independent of A such that P (x) holds for any

x ∈ A\N . N ⊂ D is said to be a null set if for any e ∈ KX and for any ε ∈ KR there

exists {Ik : Ik ∈ IX , k = 1, 2, . . .} such that it satisfies the following conditions:

(N1) N ⊂
∞⋃

k=1

Ie
k .
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(N2)
∞∑

k=1

q(Ik) 6 ε. Given a property P (x) of x ∈ D we say to be true for almost

every x ∈ A if there exists a null set N ⊂ D independent of A such that

P (x) holds for any x ∈ A \ N .

Let P (x) be a property of x ∈ D ∈ OX and let A ⊂ D. For convenience,

expressions such that P (x) uniformly for every x ∈ A, for nearly every x ∈ A, for

almost every x ∈ A and so on are used. For instance, o-DF (x) = f(x) uniformly

for almost every x ∈ A means that there exists a null set N ⊂ D such that F is

uniformly differentiable on A \ N and o-DF (x) = f(x) for every x ∈ A \ N .

Example 3.1. If X is a Banach lattice, then X satisfies (M). For any x1, x2 ∈ X

with x1 < x2 let q([x1, x2]) = ‖x2 − x1‖. Then X endowed with q satisfies (M).

If X = R
d × X1, where X1 is any vector lattice, then X also satisfies (M). For

x1 = ((x1,1, . . . , x1,d), x
′
1), x2 = ((x2,1, . . . , x2,d), x

′
2) with x1 6 x2 let q([x1, x2]) =

d∏

i=1

(x2,i − x1,i). Then X endowed with q satisfies (M). Moreover, N ⊂ X is a null

set if and only if the Lebesgue measure of the projection on R
d of N is zero.

In general, many interval functions satisfying (M) in X can be considered. Here-

after in the case of X = R
d we always consider the Lebesgue measure as an interval

function q.

Definition 3.9. Let X be a vector lattice with unit, Y a vector lattice, x0 ∈

D ⊂ X and F : D −→ Y . Suppose that X satisfies (M).

F is said to be continuous at x0 if it satisfies the following condition:

(C) There exists {ve} ∈ U s
Y (KX , >) such that for any e ∈ KX there exists

δ ∈ KR such that for any x ∈ D if either 0 < x−x0 6 δe or 0 < x0−x 6 δe,

then |F (x) − F (x0)| 6 ve.

Let C(D, Y ) be the class of mappings continuous at every point in D. F is said

to be absolutely continuous if it satisfies the following condition:

(AC) There exists {ve} ∈ U s
Y (KX , >) such that for any e ∈ KX there exists

δ ∈ KR such that for any x1,k, x2,k ∈ D with x1,k < x2,k (k = 1, . . . , K)

if

K∑

k=1

q([x1,k, x2,k]) 6 δ, then

K∑

k=1

|F (x2,k) − F (x1,k)| 6 ve.

Let AC(D, Y ) be the class of absolutely continuous mappings. F is said to be

restricted absolutely continuous if it satisfies the following condition:
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(AC∗) There exists {ve} ∈ U s
Y (KX , >) such that for any e ∈ KX there exists

δ ∈ KR such that for any x1,k, x2,k ∈ D with x1,k < x2,k (k = 1, . . . , K)

if
K∑

k=1

q([x1,k, x2,k]) 6 δ, then
K∑

k=1

ω(F, [x1,k, x2,k]) 6 ve,

where

ω(F, [u, v]) =
∨

x1,x2∈[u,v]

|F (x2) − F (x1)|

is the oscillation on [u, v] of F .

Let AC
∗(D, Y ) be the class of restricted absolutely continuous mappings. F is

said to be generalized absolutely continuous if it satisfies the following condition:

(ACG) There exists {Ep : Ep ⊂ D, p = 1, 2, . . .} with
∞⋃

p=1
Ep = D and {ve} ∈

U s
Y (KX , >) such that for any natural number p and for any e ∈ KX there

exists δ ∈ KR such that for any x1,k, x2,k ∈ D with x1,k < x2,k and,

x1,k ∈ Ep or x2,k ∈ Ep (k = 1, . . . , K)

if

K∑

k=1

q([x1,k, x2,k]) 6 δ, then

K∑

k=1

|F (x2,k) − F (x1,k)| 6 ve.

Let ACG(D, Y ) be the class of generalized absolutely continuous mappings. F

is said to be restricted generalized absolutely continuous if it satisfies the following

condition:

(ACG∗) There exists {Ep : Ep ⊂ D, p = 1, 2, . . .} with
∞⋃

p=1
Ep = D and {ve} ∈

U s
Y (KX , >) such that for any natural number p and for any e ∈ KX there

exists δ ∈ KR such that for any x1,k, x2,k ∈ D with x1,k < x2,k and,

x1,k ∈ Ep or x2,k ∈ Ep (k = 1, . . . , K)

if

K∑

k=1

q([x1,k, x2,k]) 6 δ, then

K∑

k=1

ω(F, [x1,k, x2,k]) 6 ve.

Let ACG
∗(D, Y ) be the class of generalized absolutely continuous mappings.

Remark 3.8. C(D, Y ) is a vector lattice. First, it is clearly an ordered linear

space. For F1, F2 ∈ C(D, Y ) we have

|(F1 ∨ F2)(x) − (F1 ∨ F2)(x0)| = |F1(x) ∨ F2(x) − F1(x0) ∨ F2(x0)|

6 |F1(x) − F1(x0)| + |F2(x) − F2(x0)|
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and

|(F1 ∧ F2)(x) − (F1 ∧ F2)(x0)| = |F1(x) ∧ F2(x) − F1(x0) ∧ F2(x0)|

6 |F1(x) − F1(x0)| + |F2(x) − F2(x0)|,

C(D, Y ) is a lattice. Similarly it is proved thatAC(D, Y ), AC
∗(D, Y ), ACG(D, Y )

and ACG
∗(D, Y ) are also vector lattices.

Lemma 3.8. Let X be a vector lattice with unit, Y a complete vector lattice and

D ∈ OX .

If F : D −→ Y is differentiable at x0 ∈ D, then F is continuous at x0. In

particular, by Remark 2.2 any element of L (X, Y ) is continuous.

P r o o f. By assumption there exists {w±
x0,e} ∈ U

s
L (X,Y )(KX , >) such that for

any e ∈ KX there exists δ±x0
∈ KR such that |F (x0 ± h) − F (x0) ∓ f(x0)(h)| 6

w±
x0,e(h) for any h ∈ X with 0 < h 6 δ±x0

e. Let {v1,e} ∈ U
s

Y (KX , >) and ve =

v1,e + (|f(x0)| + w+
x0,e + w−

x0,e)(e). By Remark 2.1 it holds that {ve} ∈ U s
Y (KX , >).

Let δx0
= δ+

x0
∧ δ−x0

. Without loss of generality it may be assumed that δx0
6 1. For

any x ∈ D if 0 < x − x0 6 δx0
e, then

|F (x) − F (x0)| 6 |f(x0)(x − x0)| + w+
x0,e(x − x0) 6 (|f(x0)| + w+

x0,e)(e),

and if 0 < x0 − x 6 δx0
e, then

|F (x0) − F (x)| 6 |f(x0)(x0 − x)| + w−
x0,e(x0 − x) 6 (|f(x0)| + w−

x0,e)(e).

In either case we have |F (x) − F (x0)| 6 ve. Therefore F is continuous at x0. �

3.2. Denjoy integral.

Definition 3.10. LetX be a vector lattice with unit, Y a complete vector lattice,

D ∈ COX and f : D −→ L (X, Y ). Suppose that X satisfies (M).

For a, b ∈ D f is said to be Denjoy integrable on 〈a|b〉 and F is the Denjoy primitive

of f on 〈a|b〉 if there exists F ∈ ACG
∗(D, Y ) ∩C(D, Y ) such that o-DF (x) = f(x)

uniformly for almost every x ∈ 〈a|b〉. If for any a, b ∈ D, f is Denjoy integrable on

〈a|b〉, then f is said to be Denjoy integrable on D and F is a Denjoy primitive of f ,

denoted by

F (x) = o-(D∗)

∫

f(x) dx.

The value

F (b) − F (a) = o-(D∗)

∫ b

a

f(x) dx

is said to be the Denjoy integral of f on 〈a|b〉. Let (D∗)(〈a|b〉, Y ) and (D∗)(D, Y )

be the class of Denjoy integrable mappings on 〈a|b〉 and D, respectively.
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We must show that Definition 3.10 is well-defined, that is, if the difference of

constant values is disregarded, then for any Denjoy integrable mapping f its Denjoy

primitive F is uniquely determined on 〈a|b〉.

Lemma 3.9. Let X be a vector lattice with unit, a, b ∈ D ∈ COX with a 6= b

and ϕ ∈ CSSMP(a, b).

If ϕi([0, 1]) ⊂
⋃

λ∈Λ

[cλ, dλ]e
i
ϕ for cλ, dλ ∈ D (λ ∈ Λ) with ϕi([0, 1]) ∩ [cλ, dλ]e

i
ϕ 6= ∅,

then

(1) For any λ ∈ Λ there exists Iλ = [0, 1], (αλ, 1], [0, βλ) or (αλ, βλ) with 0 6 αλ <

βλ 6 1 such that ϕi([0, 1]) ∩ [cλ, dλ]e
i
ϕ = ϕi(Iλ).

(2) It is possible to select a finite subset {Iλk
: k = 1, . . . , K} in {Iλ : λ ∈ Λ} such

that [0, 1] =
K⋃

k=1

Iλk
.

P r o o f. We prove the case where ϕi is CSIP. When ϕi is CSDP, it can be

proved similarly. We consider the following four cases.

(Case I) ϕi(0), ϕi(1) ∈ [cλ, dλ]e
i
ϕ :

Clearly (1) is satisfied for Iλ = [0, 1].

(Case II) ϕi(0) 6∈ [cλ, dλ]e
i
ϕ and ϕi(1) ∈ [cλ, dλ]e

i
ϕ :

Let αλ = inf
ϕi(s)∈[cλ,dλ]

ei
ϕ

s. Then ϕi(s) 6∈ [cλ, dλ]e
i
ϕ if s < αλ and ϕi(s) ∈ [cλ, dλ]e

i
ϕ

if αλ < s. Assume that ϕi(αλ) ∈ [cλ, dλ]e
i
ϕ . Then there exists ε ∈ KR such that

ϕi(αλ) − cλ > εei
ϕ and dλ − ϕi(αλ) > εei

ϕ. There exists δ ∈ KR such that for any

s ∈ [0, 1] if |s − αλ| 6 δ, then |ϕi(s) − ϕi(αλ)| 6 1
2εei

ϕ. Since

ϕi(αλ − δ) − cλ > ϕi(αλ) −
1

2
εei

ϕ − cλ >
1

2
εei

ϕ

and

dλ − ϕi(αλ − δ) > dλ − ϕi(αλ) > εei
ϕ,

it holds that ϕi(αλ − δ) ∈ [cλ, dλ]e
i
ϕ . It is a contradiction. Therefore ϕi(αλ) 6∈

[cλ, dλ]e
i
ϕ proving that (1) is satisfied for Iλ = (αλ, 1].

(Case III) ϕi(0) ∈ [cλ, dλ]e
i
ϕ and ϕi(1) 6∈ [cλ, dλ]e

i
ϕ :

Let βλ = sup
ϕi(s)∈[cλ,dλ]

ei
ϕ

s. Then ϕi(s) ∈ [cλ, dλ]e
i
ϕ if s < βλ and ϕi(s) 6∈ [cλ, dλ]e

i
ϕ

if βλ < s. Assume that ϕi(βλ) ∈ [cλ, dλ]e
i
ϕ . Then there exists ε ∈ KR such that

ϕi(βλ) − cλ > εei
ϕ and dλ − ϕi(βλ) > εei

ϕ. There exists δ ∈ KR such that for any

s ∈ [0, 1] if |s − βλ| 6 δ, then |ϕi(s) − ϕi(βλ)| 6 1
2εei

ϕ. Since

ϕi(βλ + δ) − cλ > ϕi(βλ) − cλ > εei
ϕ
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and

dλ − ϕi(βλ + δ) > dλ − ϕi(βλ) −
1

2
εei

ϕ >
1

2
εei

ϕ,

it holds that ϕi(βλ + δ) ∈ [cλ, dλ]e
i
ϕ . It is a contradiction. Therefore ϕi(βλ) 6∈

[cλ, dλ]e
i
ϕ proving that (1) is satisfied for Iλ = [0, βλ).

(Case IV) ϕi(0), ϕi(1) 6∈ [cλ, dλ]e
i
ϕ :

Let αλ = inf
ϕi(s)∈[cλ,dλ]e

i
ϕ

s and βλ = sup
ϕi(s)∈[cλ,dλ]

ei
ϕ

s. Then similarly (1) is satisfied

for Iλ = (αλ, βλ).

Next we show (2). Since ϕi([0, 1]) =
⋃

λ∈Λ

ϕi(Iλ) and ϕi is injective, it holds that

[0, 1] =
⋃

λ∈Λ

Iλ. Since [0, 1] is compact, (2) is satisfied. �

Lemma 3.10. Let X be a vector lattice with unit, Y a complete vector lattice,

a, b ∈ D ∈ COX with a 6= b and ϕ ∈ CSSMP(a, b). Suppose that X satisfies (M)

and let N ⊂ D be a null set.

If F ∈ ACG
∗(D, Y ) ∩ C(D, Y ) and o-DF (x) > 0 uniformly for every x ∈

ϕi([0, 1]) \ N , then F (ϕi(0)) 6 F (ϕi(1)) when ϕi is CSIP and F (ϕi(0)) > F (ϕi(1))

when ϕi is CSDP.

P r o o f. We prove the case where ϕi is CSIP. When ϕi is CSDP, it can be

proved similarly. Let f be the derivative of F . Since F ∈ ACG
∗(D, Y ), there exists

{Ep : Ep ⊂ D, p = 1, 2, . . .} with
∞⋃

p=1
Ep = D and {ve} ∈ U s

Y (KX , >) such that for

any natural number p and for any ε ∈ KX there exists δp ∈ KR such that for any

x1,k, x2,k ∈ D with x1,k < x2,k and x1,k ∈ Ep or x2,k ∈ Ep (k = 1, . . . , K)

if

K∑

k=1

q([x1,k, x2,k]) 6 δp, then

K∑

k=1

ω(F, [x1,k, x2,k]) 6 vθ(εei
ϕ,p)εei

ϕ
6 2−pvεei

ϕ
.

Since Np = N ∩ Ep is a null set, there exists {[ap,j, bp,j] : j = 1, 2, . . .} such that

Np ⊂
∞⋃

j=1

[ap,j , bp,j ]
ei

ϕ and

∞∑

j=1

q([ap,j , bp,j]) 6 δp.

Since
∞⋃

p=1
Np = N , it holds that N ⊂

∞⋃

p=1

∞⋃

j=1

[ap,j , bp,j ]
ei

ϕ . Since F is uniformly

differentiable on x ∈ ϕi([0, 1]) \ N , there exists {we} ∈ U s
L (X,Y )(KX , >) such that

for any x ∈ ϕi([0, 1]) \ N and for any ε ∈ KX there exists δ±x ∈ KR such that

|F (x±h)−F (x)∓f(x)(h)| 6 wεei
ϕ
(h) for any h ∈ X with 0 < h 6 δ±x εei

ϕ. Moreover,

ϕi([0, 1]) \ N ⊂
⋃

x∈ϕi([0,1])\N

[x − δ−x εei
ϕ, x + δ+

x εei
ϕ]e

i
ϕ .
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By Lemma 3.9 there exist Ik ⊂ [0, 1] (k = 1, . . . , K), xk ∈ ϕi(Ik) (k = 1, . . . , K1),

pK1+1 < . . . < pK and jK1+1 < . . . < jK such that

ϕi([0, 1]) ∩ [xk − δ−xk
εei

ϕ, xk + δ+
xk

εei
ϕ]e

i
ϕ = ϕi(Ik) (k = 1, . . . , K1),

ϕi([0, 1]) ∩ [apk,jk
, bpk,jk

]e
i
ϕ = ϕi(Ik) (k = K1 + 1, . . . , K),

[0, 1] =

K⋃

k=1

Ik.

Let αk be the left end of Ik and βk the right end of Ik. Order Ik according to

increasing αk and denote them by Ik’s again. Without loss of generality it may

be assumed that an Ik is not covered by the union of other Ik’s because the above

formulae are true even if Ik covered the union of other Ik’s is excepted. Then

0 = α1 < α2,

αk < βk−1 < αk+1 < βk (k = 2, . . . , K − 1),

βK−1 < βK = 1.

Let

γ0 = α1 = 0,

αk < γk−1 < βk−1, where

xk−1 < ϕi(γk−1) < xk if xk−1 < xk

and xk−1 > ϕi(γk−1) > xk if xk−1 > xk

(k = 2, . . . , K),

γK = βK = 1.

When ϕi([0, 1]) ∩ [apk,jk
, bpk,jk

]e
i
ϕ = ϕi(Ik), let xk satisfy apk,jk

< xk < bpk,jk
, for

instance, xk = 1
2 (apk,jk

+ bpk,jk
). Since F is absolutely continuous on Ep, we have

∑

k

(F (ϕi(γk)) − F (ϕi(γk−1))) > −
∞∑

p=1

2−pvεei
ϕ

= −vεei
ϕ
.

When ϕi([0, 1]) ∩ [xk − δ−xk
εei

ϕ, xk + δ+
xk

εei
ϕ]e

i
ϕ = ϕi(Ik), we consider the following

cases.

(Case I) K1 = 1:

Since ϕi(γ0) 6 x1 6 ϕi(γ1), it holds that 0 6 ϕi(γ1) − x1 6 δ+
x1

εei
ϕ and 0 6

x1 − ϕi(γ0) 6 δ−x1
εei

ϕ. Therefore

|F (ϕi(γ1)) − F (x1) − f(x1)(ϕ
i(γ1) − x1)| 6 wεei

ϕ
(ϕi(γ1) − x1),

|F (x1) − F (ϕi(γ0)) − f(x1)(x1 − ϕi(γ0))| 6 wεei
ϕ
(x1 − ϕi(γ0)).
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Since f(x1) > 0, it holds that

F (ϕi(γ1)) − F (ϕi(γ0)) > −wεei
ϕ
(ϕi(γ1) − ϕi(γ0)) > −wεei

ϕ
(ϕi(1) − ϕi(0)).

(Case II) K1 > 2:

(Case II-1) ϕi(γk−1) 6 xk 6 ϕi(γk):

Since 0 6 ϕi(γk) − xk 6 δ+
xk

εei
ϕ and 0 6 xk − ϕi(γk−1) 6 δ−xk

εei
ϕ, it holds that

|F (ϕi(γk)) − F (xk) − f(xk)(ϕi(γk) − xk)| 6 wεei
ϕ
(ϕi(γk) − xk),

|F (xk) − F (ϕi(γk−1)) − f(xk)(xk − ϕi(γk−1))| 6 wεei
ϕ
(xk − ϕi(γk−1)).

Since f(xk) > 0, it holds that

F (ϕi(γk)) − F (ϕi(γk−1)) > −wεei
ϕ
(ϕi(γk) − ϕi(γk−1)).

(Case II-2) ϕi(γk−1) < ϕi(γk) < xk:

Note that this case occurs in the case of k < K. Since 0 < xk − ϕi(γk) 6 δ−xk
εei

ϕ

and 0 < xk − ϕi(γk−1) 6 δ−xk
εei

ϕ, it holds that

|F (xk) − F (ϕi(γk)) − f(xk)(xk − ϕi(γk))| 6 wεei
ϕ
(xk − ϕi(γk)),

|F (xk) − F (ϕi(γk−1)) − f(xk)(xk − ϕi(γk−1))| 6 wεei
ϕ
(xk − ϕi(γk−1)).

Since f(xk) > 0, it holds that

F (ϕi(γk)) − F (ϕi(γk−1)) > −wεei
ϕ
(2xk − ϕi(γk) − ϕi(γk−1))

> −2wεei
ϕ
(ϕi(γk+1) − ϕi(γk−1)).

(Case II-3) xk < ϕi(γk−1) < ϕi(γk):

Note that this case occurs in the case of k > 1. Since 0 < ϕi(γk) − xk 6 δ+
xk

εei
ϕ

and 0 < ϕi(γk−1) − xk 6 δ+
xk

εei
ϕ, it holds that

|F (ϕi(γk)) − F (xk) − f(xk)(ϕi(γk) − xk)| 6 wεei
ϕ
(ϕi(γk) − xk),

|F (ϕi(γk−1)) − F (xk) − f(xk)(ϕi(γk−1) − xk)| 6 wεei
ϕ
(ϕi(γk−1) − xk).

Since f(xk) > 0, it holds that

F (ϕi(γk)) − F (ϕi(γk−1)) > −wεei
ϕ
(ϕi(γk) + ϕi(γk−1) − 2xk)

> −2wεei
ϕ
(ϕi(γk) − ϕi(γk−2)).
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In any (Case II-1), (Case II-2) or (Case II-3) we have

F (ϕi(γk)) − F (ϕi(γk−1))

>







−2wεei
ϕ
(ϕi(γk+1) − ϕi(γk−1)) if k = 1,

−2wεei
ϕ
(ϕi(γk+1) − ϕi(γk−2)) if 2 6 k 6 l − 1,

−2wεei
ϕ
(ϕi(γk) − ϕi(γk−2)) if k = K.

Summing up for k,

∑

k

(F (ϕi(γk)) − F (ϕi(γk−1))) > −6wεei
ϕ
(ϕi(1) − ϕi(0)).

Therefore in either (Case I) or (Case II) we have that F (ϕi(1)) − F (ϕi(0)) >

−6wεei
ϕ
(ϕi(1)−ϕi(0))−vεei

ϕ
. Since ε is arbitrary, by Lemma 2.1 we have F (ϕi(1))−

F (ϕi(0)) > 0. �

By Lemma 3.10 it can be proved that the Denjoy integral is well-defined.

Theorem 3.1. Let X be a vector lattice with unit, Y a complete vector lattice,

a, b ∈ D ∈ COX and let f : D −→ L (X, Y ) be Denjoy integrable on 〈a|b〉. Suppose

that X satisfies (M).

Then the Denjoy primitive of f is uniquely determined on 〈a|b〉.

P r o o f. Let F, G ∈ ACG
∗(D, Y )∩C(D, Y ) be two Denjoy primitives of f . We

shall show that (F − G)(a) = (F − G)(c) = (F − G)(b) for any c ∈ ϕ([0, 1]), where

ϕ ∈ CSSMP(a, b). Without loss of generality it may be assumed that there exists

a natural number i such that c = ϕ(i/rϕ). Then there exist null sets NF , NG such

that o-DF (ϕ(t)) = f(ϕ(t)) for any t ∈ [0, 1] \ ϕ−1(NF ) and o-DG(ϕ(t)) = f(ϕ(t))

for any t ∈ [0, 1] \ ϕ−1(NG). By Theorem 2.1 for any t ∈ [0, 1] \ ϕ−1(NF ∪ NG) we

have

o-D(F − G)(ϕ(t)) = o-DF (ϕ(t)) − o-DG(ϕ(t)) = f(ϕ(t)) − f(ϕ(t)) = 0.

Similarly o-D(G − F )(ϕ(t)) = 0. By Lemma 3.10

(F − G)(ϕi(0)) 6 (F − G)(ϕi(1)),

(G − F )(ϕi(0)) 6 (G − F )(ϕi(1)).

Thus

(F − G)
(

ϕ
( i − 1

rϕ

)

= (F − G)
(

ϕ
( i

rϕ

)))

.

Therefore (F − G)(a) = (F − G)(c) = (F − G)(b). �
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In general, integrals should satisfy the following conditions:

(1) Linearity of integrand, that is, the space consisting of integrable mappings is

linear and for any integrable mappings f , g and for any α, β ∈ R

∫

(αf + βg)(x) dx = α

∫

f(x) dx + β

∫

g(x) dx.

(2) Additivity of interval, that is, for any a, b, c ∈ D if f is integrable from a to b

and from b to c, then it is integrable from a to c and

∫ b

a

f(x) dx +

∫ c

b

f(x) dx =

∫ c

a

f(x) dx.

(3) Integrability on subinterval, that is, if f is integrable on an interval, then it is

also integrable on any subinterval of the interval.

For the Denjoy integral (1) is clear by Theorem 2.1 and Definition 3.10. (3) is

true by Remark 3.7 if X satisfies the principal projection property. (2) is not true

generally. Nonetheless, if f ∈ (D∗)(〈a|b〉, Y ) ∩ (D∗)(〈b|c〉, Y ) ∩ (D∗)(〈c|a〉, Y ), then

(2) is true.

4. Fundamental theorem of calculus

The following fundamental theorem of calculus is clear by Definition 3.10.

Theorem 4.1. Let X be a vector lattice with unit, Y a complete vector lattice

and a, b ∈ D ∈ COX . Suppose that X satisfies (M).

If o-DF (x) = f(x) for F ∈ ACG
∗(D, Y )∩C(D, Y ) and for almost every x ∈ 〈a|b〉,

then f is Denjoy integrable on 〈a|b〉 and for any x ∈ 〈a|b〉

F (x) = o-(D∗)

∫

f(x) dx.

Conversely, if F : 〈a|b〉 −→ Y is a Denjoy primitive of f , then it is differentiable

and o-DF (x) = f(x) for almost every x ∈ 〈a|b〉.
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