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Abstract. Let C[0, T ] denote the space of real-valued continuous functions on the interval
[0, T ] with an analogue wϕ of Wiener measure and for a partition 0 = t0 < t1 < . . . < tn <

tn+1 = T of [0, T ], let Xn : C[0, T ] → Rn+1 and Xn+1 : C[0, T ] → Rn+2 be given by
Xn(x) = (x(t0), x(t1), . . . , x(tn)) and Xn+1(x) = (x(t0), x(t1), . . . , x(tn+1)), respectively.
In this paper, using a simple formula for the conditional wϕ-integral of functions on

C[0, T ] with the conditioning function Xn+1, we derive a simple formula for the conditional
wϕ-integral of the functions with the conditioning function Xn. As applications of the
formula with the function Xn, we evaluate the conditional wϕ-integral of the functions of

the form Fm(x) =
∫ T
0
(x(t))m dt for x ∈ C[0, T ] and for any positive integer m. Moreover,

with the conditioning Xn, we evaluate the conditional wϕ-integral of the functions in a
Banach algebra Swϕ which is an analogue of the Cameron and Storvick’s Banach algebra S .
Finally, we derive the conditional analytic Feynman wϕ-integrals of the functions in Swϕ .

Keywords: analogue of Wiener measure, Cameron-Martin translation theorem, condi-
tional analytic Feynman wϕ-integral, conditional Wiener integral, Kac-Feynman formula,
simple formula for conditional wϕ-integral

MSC 2010 : 28C20

1. Introduction and preliminaries

Let C0[0, T ] be the space of real-valued continuous functions x on [0, T ] with

x(0) = 0. It is well-known that the space C0[0, T ] is equipped with the Wiener

measure which is a probability measure. On the space, Yeh introduced an inversion

formula that a conditional expectation can be found by a Fourier-transform ([11]).

As applications of the formula he obtained very useful results including the Kac-

Feynman integral equation and the conditional Cameron-Martin translation theo-

rem using the inversion formula ([12], [13]). But Yeh’s inversion formula is very

complicated in its applications when the conditioning function is vector-valued.

431



Let τ : 0 = t0 < t1 < . . . < tn < tn+1 = T be a partition of the interval [0, T ].

In [9], Park and Skoug derived a simple formula for conditional Wiener integrals on

C0[0, T ] with the conditioning function Xτ : C0[0, T ] → R
n+1 given by

Xτ (x) = (x(t1), . . . , x(tn), x(tn+1)).

This formula expresses the conditional Wiener integrals directly in terms of ordinary

Wiener integrals. Using the formula, they generalized the Kac-Feynman formula

and obtained a Cameron-Martin type translation theorem for conditional Wiener

integrals.

On the other hand, let C[0, T ] denote the space of real-valued continuous functions

on the interval [0, T ]. Im and Ryu introduced a probability measure wϕ on (C[0, T ],

B(C[0, T ])) where B(C[0, T ]) denotes Borel σ-algebra on C[0, T ] and ϕ is a prob-

ability measure on (R,B(R)) ([7], [10]). This measure space is a generalization of

the Wiener space. In [7], they derived a translation theorem of wϕ-integral, which

corresponds to the Cameron-Martin’s translation theorem on the Wiener space ([2]).

And also, Im and Ryu evaluated the conditional wϕ-integral of functions of the form

(1.1) Fm(x) =

∫ T

0

(x(t))m dt (m = 1, 2)

on C[0, T ] with the conditioning function Xn : C[0, T ] → R
n+1 given by

(1.2) Xn(x) = (x(t0), x(t1), . . . , x(tn))

and Xn+1 : C[0, T ] → R
n+2 given by

(1.3) Xn+1(x) = (x(t0), x(t1), . . . , x(tn), x(tn+1)),

and derived a translation theorem of conditional wϕ-integral when the conditioning

function is X(x) = x(T ). But their methods were complicated in the proofs.

In [5], the author derived a simple formula for the conditional wϕ-integral of the

functions on C[0, T ] with the vector-valued conditioning function Xn+1 given by

(1.3). This formula expresses the conditional wϕ-integral directly in terms of non-

conditional wϕ-integral. As applications of the formula, he evaluated the conditional

wϕ-integrals of the functions given by (1.1) for any positive integer m and using the

translation theorem of wϕ-integral in [7], he also derived a translation theorem for

the conditional wϕ-integral of functions on C[0, T ]. But, there are no known simple

formulas for the conditional wϕ-integral with the conditioning function Xn given by

(1.2).
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In this paper, using the simple formula ([5]) for the conditional wϕ-integral of the

functions on C[0, T ] with the conditioning function Xn+1, we derive a simple formula

for the conditional wϕ-integral of the functions with the conditioning function Xn.

As applications of the formula with the function Xn, we evaluate the conditional wϕ-

integrals of the functions Fm given by (1.1) for any positive integer m. Moreover,

on C[0, T ], we evaluate the conditional wϕ-integrals of the functions in a Banach

algebra Swϕ
which is an analogue of the Cameron and Storvick’s Banach algebra S

in [3]. And then, we evaluate the conditional analytic Feynman wϕ-integrals of the

functions in the Banach algebra Swϕ
.

Throughout this paper, let C and C+ denote the set of complex numbers and that

of complex numbers with positive real parts, respectively.

Now, we begin with introducing the probability space (C[0, T ],B(C[0, T ]), wϕ).

For a positive real T , let C = C[0, T ] be the space of all real-valued continuous func-

tions on the closed interval [0, T ] with the supremum norm. For ~t = (t0, t1, . . . , tn)

with 0 = t0 < t1 < . . . < tn 6 T , let J~t : C[0, T ] → R
n+1 be the function given by

J~t(x) = (x(t0), x(t1), . . . , x(tn)).

For Bj (j = 0, 1, . . . , n) in B(R), the subset J−1
~t

( n
∏

j=0

Bj

)

of C[0, T ] is called an

interval and let I be the set of all such intervals. For a probability measure ϕ on

(R,B(R)), we let

mϕ

[

J−1
~t

( n
∏

j=0

Bj

)]

=

∫

B0

∫

n∏

j=1

Bj

Wn(~t;u0, u1, . . . , un)d(u1, . . . , un) dϕ(u0),

where

(1.4) Wn(~t;u0, u1, . . . , un) =

[ n
∏

j=1

1

2π(tj − tj−1)

]1/2

exp

{

−
1

2

n
∑

j=1

(uj − uj−1)
2

tj − tj−1

}

.

It can be shown that B(C[0, T ]), the Borel σ-algebra of C[0, T ], coincides with the

smallest σ-algebra generated by I and there exists a unique probability measure wϕ

on (C[0, T ],B(C[0, T ])) such that wϕ(I) = mϕ(I) for all I in I ([7], [10], [14]). This

measure wϕ is called an analogue of Wiener measure associated with the probability

measure ϕ.

By the change of variable theorem, we can easily prove the following theorem.
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Theorem 1.1 ([7, Lemma 2.1]). If f : R
n+1 → C is a Borel measurable function

then we have

∫

C

f(x(t0), x(t1), . . . , x(tn)) dwϕ(x)

∗
=

∫

R

∫

Rn

f(u0, u1, . . . , un)Wn(~t;u0, u1, . . . , un) d(u1, . . . , un) dϕ(u0)

where
∗
= means that if either side exists then both sides exist and they are equal.

Let {ek : k = 1, 2, . . .} be a complete orthonormal subset of L2[0, T ] such that each

ek is of bounded variation. For f in L2[0, T ] and x in C[0, T ], we let

(f, x) = lim
n→∞

∫ T

0

[ n
∑

k=1

ek(t)

∫ T

0

f(s)ek(s) ds

]

dx(t)

if the limit exists. (f, x) is called the Paley-Wiener-Zygmund integral of f according

to x.

Applying Theorem 3.5 in [7], we can easily prove the following theorem.

Theorem 1.2. Let {h1, h2, . . . , hn} be an orthonormal system of L2[0, T ]. For

i = 1, 2, . . . , n, let Zi(x) = (hi, x). Then Z1, Z2, . . . , Zn are independent and each Zi

has the standard normal distribution. Moreover, if f : R
n → R is Borel measurable,

then we have

∫

C

f(Z1(x), Z2(x), . . . , Zn(x)) dwϕ(x)

∗
=

( 1

2π

)n/2
∫

Rn

f(u1, u2, . . . , un) exp

{

−
1

2

n
∑

j=1

u2
j

}

d(u1, u2, . . . , un),

where
∗
= means that if either side exists then both sides exist and they are equal.

Let F : C[0, T ] → C be integrable and let X be a random vector on C[0, T ]. Then,

we have the conditional expectation E[F |X ] of F given X from a well-known proba-

bility theory ([8]). Further, there exists a PX -integrable complex-valued function ψ

on the value space of X such that E[F |X ](x) = (ψ ◦X)(x) for wϕ-a.e. x ∈ C[0, T ],

where PX is the probability distribution of X on the value space of X . The function

ψ is called the conditional wϕ-integral of F givenX and it is also denoted by E[F |X ].
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2. Simple formulas for conditional wϕ-integrals

In this section, we derive a simple formula for the conditional wϕ-integrals of the

functions on C[0, T ] with the conditioning function Xn given by (1.2).

For a given partition 0 = t0 < t1 < . . . < tn < tn+1 = T of [0, T ] and for x in

C[0, T ], define the polygonal function [x] on [0, T ] by

[x](t) = x(tj−1) +
t− tj−1

tj − tj−1
(x(tj) − x(tj−1)), tj−1 6 t 6 tj , j = 1, . . . , n+ 1.

Similarly, for ~ξn+1 = (ξ0, ξ1, . . . , ξn+1) ∈ R
n+2, define the polygonal function [~ξn+1]

on [0, T ] by

[~ξn+1](t) = ξj−1 +
t− tj

tj − tj−1
(ξj − ξj−1), tj−1 6 t 6 tj−1, j = 1, . . . , n+ 1.

Then both [x] and [~ξn+1] are continuous on [0, T ], their graphs are line segments on

each subinterval [tj−1, tj ] and [x](tj) = x(tj) and [~ξn+1](tj) = ξj at each tj .

To derive the desired simple formula, we begin with letting for tj−1 6 t 6 tj

(2.1) Γj(t) =
(tj − t)(t− tj−1)

tj − tj−1

and

(2.2) Xj(t, x) = x(t) − [x](t), x ∈ C[0, T ]

for each j = 1, . . . , n+ 1.

The following theorem gives an interesting observation for the process x(t)− [x](t)

on [0, T ]×C[0, T ]. In fact, x(t) − [x](t) is a Brownian bridge motion on each subin-

terval and the detailed proof is given as in Theorem 2.4 of [5].

Theorem 2.1. For each j = 1, . . . , n+ 1, let Xj be given by (2.2). Then, Xj is a

Brownian bridge motion process on [tj−1, tj ]. Moreover, for t ∈ (tj−1, tj), Xj(t, ·) is

normally distributed with mean 0 and variance Γj(t) which is given by (2.1).

Using Theorem 2.1, we can prove the following theorem which plays the key role

in deriving the desired simple formula. We emphasize that the proof of the theorem

is different from Theorem 1 of [9].
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Theorem 2.2 ([5, Theorem 2.6]). Let Yn+1 : C[0, T ] → R
n+2 be given by

Yn+1(x) = (x(t0), x(t1) − x(t0), . . . , x(tn+1) − x(t0)).

Then the processes {x(t) − [x](t) : 0 6 t 6 T } and Yn+1 are stochastically indepen-

dent.

Using Theorem 2.2, we can prove the following theorem. The detailed proof is

given as in Theorem 2.8 of [5].

Theorem 2.3. Let Xn+1 : C[0, T ] → R
n+2 be given by

(2.3) Xn+1(x) = (x(t0), x(t1), . . . , x(tn+1)).

Then the processes {x(t) − [x](t) : 0 6 t 6 T } and Xn+1 are stochastically indepen-

dent.

Applying the same method used in the proof of Theorem 2 of [9] with an aid of

Problem 4 in [1, p. 216], we have the following theorem from Theorem 2.3.

Theorem 2.4. Let F : C[0, T ] → C be integrable and Xn+1 be given by (2.3) of

Theorem 2.3. Then for a Borel subset B of Rn+2 we have

∫

X−1

n+1
(B)

F (x) dwϕ(x) =

∫

B

E[F (x− [x] + [~ξn+1])] dPXn+1
(~ξn+1)

where PXn+1
is the probability distribution of Xn+1 on (Rn+2,B(Rn+2)). Moreover,

by the definition of the conditional wϕ-integral, we have for PXn+1
-a.e. ~ξn+1 ∈ R

n+2

(2.4) E[F |Xn+1](~ξn+1) = E[F (x − [x] + [~ξn+1])].

Note that both [x](t0) = x(t0) and [~ξn+1](t0) = ξ0 need not be 0 in Theorem 2.4.

In the following theorem, we derive the desired simple formula by removing the

component x(tn+1) in the conditioning function Xn+1 given by (2.3).
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Theorem 2.5. Let Xn : C[0, T ] → R
n+1 be given by

(2.5) Xn(x) = (x(t0), x(t1), . . . , x(tn))

and Xn+1 by (2.3). Moreover let F be defined and integrable on C[0, T ] and PXn
be

a probability distribution of Xn on (Rn+1,B(Rn+1)). Then for any Borel subset B

of Rn+1, we have
∫

X−1
n (B)

F (x) dwϕ(x) =
[ 1

2π(T − tn)

]1/2
∫

B

∫

R

E[F (x− [x] + [~ξn+1])]

× exp
{

−
(ξn+1 − ξn)2

2(T − tn)

}

dξn+1 dPXn
(~ξn)

where ~ξn = (ξ0, ξ1, . . . , ξn) and ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1). Hence we have by

Theorem 2.4 and the definition of the conditional wϕ-integral

E[F |Xn](~ξn)(2.6)

=
[ 1

2π(T − tn)

]1/2
∫

R

E[F (x− [x] + [~ξn+1])] exp
{

−
(ξn+1 − ξn)2

2(T − tn)

}

dξn+1

=
[ 1

2π(T − tn)

]1/2
∫

R

E[F |Xn+1](~ξn+1) exp
{

−
(ξn+1 − ξn)2

2(T − tn)

}

dξn+1

for PXn
-a.e. ~ξn ∈ R

n+1.

P r o o f. Let PXn+1
be the probability distribution of Xn+1 on (Rn+2,B(Rn+2)).

Then for any Borel subset B of Rn+1, we have X−1
n (B) = X−1

n+1(B × R) so that we

also have by Theorem 2.4
∫

X−1
n (B)

F (x) dwϕ(x) =

∫

X−1

n+1
(B×R)

F (x) dwϕ(x)

=

∫

B×R

E[F |Xn+1](~ξn+1) dPXn+1
(~ξn+1)

=

∫

B×R

E[F (x− [x] + [~ξn+1])] dPXn+1
(~ξn+1).

By Theorem 1.1 and Fubini’s theorem, we have
∫

X−1
n (B)

F (x) dwϕ(x) =

∫

R

∫

Rn

χB(~ξn)

[
∫

R

E[F (x− [x] + [~ξn+1])]Wn+1((t0, . . . , tn+1);

ξ0, . . . , ξn, ξn+1) dξn+1

]

d(ξ1, . . . , ξn) dϕ(ξ0)

=
[ 1

2π(T − tn)

]1/2
∫

B

∫

R

E[F (x− [x] + [~ξn+1])]

× exp
{

−
(ξn+1 − ξn)2

2(T − tn)

}

dξn+1 dPXn
(~ξn)
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where χB denotes the indicator function of B and Wn+1 is given by (1.4) replacing

n by n+ 1. Now, the proof is completed. �

For a function F : C[0, T ] → C and λ > 0, let Fλ(x) = F (λ−1/2x) and Xλ
n+1(x) =

Xn+1(λ
−1/2x), Xλ

n(x) = Xn(λ−1/2x), where Xn+1 and Xn are given by (2.3) and

(2.5), respectively. Suppose that E[Fλ] exists for each λ > 0. By the definition of

conditional wϕ-integral and (2.4), we have

E[Fλ|Xλ
n+1](

~ξn+1) = E[F (λ−1/2(x− [x]) + [~ξn+1])]

for PXλ
n+1
-a.e. ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1) ∈ R

n+2, where PXλ
n+1
is the probability

distribution of Xλ
n+1 on (Rn+2,B(Rn+2)). For ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R

n+1 and

ξn+1 ∈ R, let ~ξλ
n+1 = (λ1/2ξ0, λ

1/2ξ1, . . . , λ
1/2ξn, ξn+1). Then we have by (2.6) and

the change of variable theorem

E[Fλ|Xλ
n ](~ξn) =

[ 1

2π(T − tn)

]1/2
∫

R

E[Fλ(x− [x] + [~ξλ
n+1])](2.7)

× exp
{

−
(ξn+1 − λ1/2ξn)2

2(T − tn)

}

dξn+1

=
[ λ

2π(T − tn)

]1/2
∫

R

E[F (λ−1/2(x− [x]) + [~ξn+1])]

× exp
{

−
λ(ξn+1 − ξn)2

2(T − tn)

}

dξn+1

for PXλ
n
-a.e. ~ξn, where PXλ

n
is the probability distribution ofXλ

n on (Rn+1,B(Rn+1)).

If E[F (λ−1/2(x − [x]) + [~ξn+1])] has the analytic extension J
∗
λ(F )(~ξn+1) on C+ as a

function of λ, then it is called the conditional analytic Wiener wϕ-integral of F given

Xn+1 with parameter λ and denoted by

Eanwλ [F |Xn+1](~ξn+1) = J∗
λ(F )(~ξn+1)

for ~ξn+1 ∈ R
n+2. Moreover, if for a non-zero real q, Eanwλ [F |Xn+1](~ξn+1) has a

limit as λ approaches to −iq through C+, then it is called the conditional analytic

Feynman wϕ-integral of F given Xn+1 with parameter q and denoted by

Eanfq [F |Xn+1](~ξn+1) = lim
λ→−iq

Eanwλ [F |Xn+1](~ξn+1).

Similar definitions are understood with (2.7) if we replace Xn+1 by Xn.
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3. Evaluations of conditional wϕ-integrals

Throughout the remainder of this paper, let Xn+1 and Xn be given by (2.3) and

(2.5), respectively. Moreover, let PXn+1
and PXn

denote the probability distributions

of Xn+1 and Xn on the Borel σ-algebras of R
n+2 and R

n+1, respectively.

We now evaluate the conditional wϕ-integrals of the functions on C[0, T ] as ap-

plications of (2.4). For this purpose, we modify the result of [5, Theorem 3.1] in the

following theorem.

Theorem 3.1. Let Fm(x) =
∫ T

0 (x(t))m dt (m ∈ N) for x ∈ C[0, T ] and suppose

that
∫

R
|u|m dϕ(u) < ∞. Then Fm is wϕ-integrable. Moreover, E[Fm|Xn+1](~ξn+1)

exists for PXn+1
-a.e. ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1) ∈ R

n+2 and it is given by

E[Fm|Xn+1](~ξn+1) =

n+1
∑

j=1

[ m
2

]
∑

k=0

m−2k
∑

l=0

m!(l + k)!(tj − tj−1)
k+1ξm−2k−l

j−1 (ξj − ξj−1)
l

2kl!(m− 2k − l)!(l + 2k + 1)!

where [ · ] denotes the greatest integer function.

P r o o f. Using Theorem 2.4 directly or by Theorem 3.1 in [5], we can prove for

PXn+1
-a.e. ~ξn+1 ∈ R

n+2

E[Fm|Xn+1](~ξn+1) =
n+1
∑

j=1

[ m
2

]
∑

k=0

m!

2kk!(m− 2k)!
(3.1)

×

∫ tj

tj−1

([~ξn+1](t))
m−2k(Γj(t))

k dt

where Γj(t) is given by (2.1). For j = 1, . . . , n+ 1 and k = 0, . . . , [m
2 ], we have

∫ tj

tj−1

([~ξn+1](t))
m−2k(Γj(t))

k dt

=

∫ tj

tj−1

(ξj − ξj−1

tj − tj−1
(t− tj−1) + ξj−1

)m−2k((tj − t)(t− tj−1)

tj − tj−1

)k

dt

=

m−2k
∑

l=0

(

m− 2k

l

)

(tj − tj−1)
−l−k(ξj − ξj−1)

lξm−2k−l
j−1

×

∫ tj

tj−1

(tj − t)k(t− tj−1)
l+k dt
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by the binomial expansion. For l = 0, . . . ,m− 2k, we now have by repeated applica-

tions of the integration by parts formula

∫ tj

tj−1

(tj − t)k(t− tj−1)
l+k dt

=
k

l + k + 1

∫ tj

tj−1

(tj − t)k−1(t− tj−1)
l+k+1 dt

...

=
k!

(l + k + 1)(l + k + 2) . . . (l + 2k)

∫ tj

tj−1

(t− tj−1)
l+2k dt

=
k!

(l + k + 1)(l + k + 2) . . . (l + 2k)(l + 2k + 1)
(tj − tj−1)

l+2k+1

so that we have

E[Fm|Xn+1](~ξn+1)

=

n+1
∑

j=1

[ m
2

]
∑

k=0

m!

2kk!(m− 2k)!

m−2k
∑

l=0

(

m− 2k

l

)

(tj − tj−1)
−l−k(ξj − ξj−1)

lξm−2k−l
j−1

×
k!(tj − tj−1)

l+2k+1

(l + k + 1)(l + k + 2) . . . (l + 2k)(l + 2k + 1)

=

n+1
∑

j=1

[ m
2

]
∑

k=0

m−2k
∑

l=0

m! (l + k)! (tj − tj−1)
k+1ξm−2k−l

j−1 (ξj − ξj−1)
l

2kl!(m− 2k − l)!(l + 2k + 1)!

which is the desired result. �

In the following example, we evaluate E[Fm|Xn+1] (m = 1, 2, 3) as special cases

of Theorem 3.1.

Example 3.1. For m = 1, 2, 3, let Fm(x) =
∫ T

0 (x(t))m dt for x ∈ C[0, T ] and

suppose that
∫

R
|u|m dϕ(u) <∞. Then for PXn+1

-a.e. ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1) ∈

R
n+2, we have by Theorem 3.1

E[F1|Xn+1](~ξn+1) =
1

2

n+1
∑

j=1

(tj − tj−1)(ξj + ξj−1)

which can be also obtained by an application of Corollary 4.5 in [7]. We also have

E[F2|Xn+1](~ξn+1) =
1

6

n+1
∑

j=1

(tj − tj−1)(tj − tj−1 + 2ξ2j + 2ξjξj−1 + 2ξ2j−1)
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which is the result given by Corollary 4.10 of [7]. Moreover we have

E[F3|Xn+1](~ξn+1)

=
1

4

n+1
∑

j=1

(tj − tj−1)[(tj − tj−1)(ξj + ξj−1) + ξ3j + ξ2j ξj−1 + ξjξ
2
j−1 + ξ3j−1].

Remark 3.1. The results of Example 3.1 are also given by Example 3.3 in [5].

We emphasize that the evaluations of Example 3.1 depend on Theorem 3.1, but the

evaluations of Example 3.3 in [5] depend on (3.1).

Now we evaluate the conditional wϕ-integral E[Fm|Xn] of Fm which is given as in

Theorem 3.1.

Theorem 3.2. Under the conditions and notations given as in Theorem 3.1, we

have for PXn
-a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R

n+1

E[Fm|Xn](~ξn) =

n
∑

j=1

[ m
2

]
∑

k=0

m−2k
∑

l=0

m!(l + k)!(tj − tj−1)
k+1ξm−2k−l

j−1 (ξj − ξj−1)
l

2kl!(m− 2k − l)!(l+ 2k + 1)!

+

[ m
2

]
∑

k=0

[ m−2k
2

]
∑

l=0

m!(2l+ k)!ξm−2k−2l
n (T − tn)l+k+1

2l+kl!(m− 2k − 2l)!(2l+ 2k + 1)!
.

P r o o f. For convenience let

K =

n
∑

j=1

[ m
2

]
∑

k=0

m−2k
∑

l=0

m!(l + k)!(tj − tj−1)
k+1ξm−2k−l

j−1 (ξj − ξj−1)
l

2kl!(m− 2k − l)!(l + 2k + 1)!
.

By Theorems 2.5 and 3.1, we have

E[Fm|Xn](~ξn) =
[ 1

2π(T − tn)

]1/2
∫

R

E[Fm(x− [x] + [~ξn+1])]

× exp
{

−
(ξn+1 − ξn)2

2(T − tn)

}

dξn+1

= K +

[ m
2

]
∑

k=0

m−2k
∑

l=0

m!(l + k)!(T − tn)k+1ξm−2k−l
n

2kl!(m− 2k − l)!(l + 2k + 1)!

×
[ 1

2π(T − tn)

]1/2
∫

R

(ξn+1 − ξn)l exp
{

−
(ξn+1 − ξn)2

2(T − tn)

}

dξn+1
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where ~ξn+1 = (ξ0, ξ1, . . . , ξn, ξn+1). Let v = ξn+1 − ξn. By the change of variable

theorem, we have

E[Fm|Xn](~ξn) = K +

[ m
2

]
∑

k=0

m−2k
∑

l=0

m!(l + k)!(T − tn)k+1

2kl!(m− 2k − l)!(l + 2k + 1)!

× ξm−2k−l
n

[ 1

2π(T − tn)

]1/2
∫

R

vl exp

{

−
v2

2(T − tn)

}

dv

= K + 2

[ m
2

]
∑

k=0

[ m−2k
2

]
∑

l=0

m!(2l+ k)!(T − tn)k+1

2k(2l)!(m− 2k − 2l)!(2l+ 2k + 1)!

× ξm−2k−2l
n

[ 1

2π(T − tn)

]1/2
∫ ∞

0

v2l exp
{

−
v2

2(T − tn)

}

dv

replacing l by 2l. Let u = 1
2v

2/(T − tn). Again, we have by the change of variable

theorem

E[Fm|Xn](~ξn) = K +

[ m
2

]
∑

k=0

[ m−2k
2

]
∑

l=0

m!(2l+ k)!(T − tn)k+1

2k(2l)!(m− 2k − 2l)!(2l+ 2k + 1)!

× ξm−2k−2l
n 2l(T − tn)l

(1

π

)1/2
∫ ∞

0

u(2l+1)/2−1 exp{−u} du

= K +

[ m
2

]
∑

k=0

[ m−2k
2

]
∑

l=0

2lm!(2l + k)!

2k(2l)!(m− 2k − 2l)!(2l+ 2k + 1)!

× (T − tn)l+k+1ξm−2k−2l
n

(1

π

)1/2

Γ
(2l+ 1

2

)

= K +

[ m
2

]
∑

k=0

[ m−2k
2

]
∑

l=0

m!(2l + k)!(T − tn)l+k+1ξm−2k−2l
n

2k+ll!(m− 2k − 2l)!(2l+ 2k + 1)!

where Γ denotes the gamma function. Now the proof is completed. �

In the following example, we evaluate E[Fm|Xn] (m = 1, 2, 3) as applications of

Theorem 3.2.

Example 3.2. For m = 1, 2, 3, let Fm(x) =
∫ T

0
(x(t))m dt for x ∈ C[0, T ] and

suppose that
∫

R
|u|m dϕ(u) < ∞. Moreover, let Z1(x) = T−1F1(x) and Z2(x) =

n+1
∑

j=1

(tj−tj−1)
−1

∫ tj

tj−1
x(t) dt for x ∈ C[0, T ]. Then for PXn

-a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈

R
n+1, we have

E[F1|Xn](~ξn) =
1

2

n
∑

j=1

(tj − tj−1)(ξj + ξj−1) + (T − tn)ξn.
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Hence we have

E[Z1|Xn](~ξn) =
1

2T

n
∑

j=1

(tj − tj−1)(ξj + ξj−1) +
1

T
(T − tn)ξn

and

E[Z2|Xn](~ξn) =
1

2

n
∑

j=1

(ξj + ξj−1) + ξn

which are also given by Theorems 4.3 and 4.6 in [7], respectively. Further, we have

E[F2|Xn](~ξn) =
1

6

n
∑

j=1

(tj − tj−1)(tj − tj−1 + 2ξ2j + 2ξjξj−1 + 2ξ2j−1)

+ (T − tn)ξ2n +
1

2
(T − tn)2

which is also given by Theorem 4.8 in [7]. Finally, we have

E[F3|Xn](~ξn) =
1

4

n
∑

j=1

(tj − tj−1)[(tj − tj−1)(ξj + ξj−1) + ξ3j + ξ2j ξj−1 + ξjξ
2
j−1 + ξ3j−1]

+

1
∑

k=0

[ 3−2k
2

]
∑

l=0

3!(2l+ k)!(T − tn)l+k+1ξ3−2k−2l
n

2k+ll!(3 − 2k − 2l)!(2l+ 2k + 1)!

=
1

4

n
∑

j=1

(tj − tj−1)[(tj − tj−1)(ξj + ξj−1) + ξ3j + ξ2j ξj−1 + ξjξ
2
j−1 + ξ3j−1]

+ (T − tn)ξ3n +
3

2
(T − tn)2ξn.

Now, we generalize the result of Example 4 in [9], which is also considered by

Chang and Chang ([4]).

Theorem 3.3. Let F (x) = exp{
∫ T

0
x(t) dt} for x ∈ C[0, T ]. Then, for a.e.

y ∈ C[0, T ], we have

lim
‖τ‖→0

E[F (x)|x(t0) = y(t0), x(t1) = y(t1), . . . , x(tn) = y(tn)] = F (y)

where τ : 0 = t0 < t1 < . . . < tn < tn+1 = T is any partition of the interval [0, T ].

P r o o f. For a.e. y ∈ C[0, T ], we have by Theorem 2.5

E[F (x)|x(t0) = y(t0), x(t1) = y(t1), . . . , x(tn) = y(tn)]

= exp

{

1

2

n
∑

j=1

(tj − tj−1)(y(tj−1) + y(tj))

}
∫

C

exp

{
∫ T

0

(x(t) − [x](t)) dt

}

dwϕ(x)

×
[ 1

2π(T − tn)

]1/2
∫

R

exp
{1

2
(T − tn)(y(tn) + ξn+1) −

(ξn+1 − y(tn))2

2(T − tn)

}

dξn+1
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where [x] is the polygonal function of x given by τ . Then by the change of variable

theorem, we have

E[F (x)|x(t0) = y(t0), x(t1) = y(t1), . . . , x(tn) = y(tn)]

= exp

{

1

2

n
∑

j=1

(tj − tj−1)(y(tj−1) + y(tj)) + (T − tn)y(tn)

}

×

[
∫

C

exp

{
∫ T

0

(x(t) − [x](t)) dt

}

dwϕ(x)

]

×

[

[ 1

2π(T − tn)

]1/2
∫

R

exp
{1

2
(T − tn)v −

v2

2(T − tn)

}

dv

]

= exp

{

1

2

n
∑

j=1

(tj − tj−1)(y(tj−1) + y(tj)) + (T − tn)y(tn)

}

exp
{(T − tn)3

8

}

×

∫

C

exp

{
∫ T

0

(x(t) − [x](t)) dt

}

dwϕ(x).

Letting ‖τ‖ → 0, we have the theorem because lim
‖τ‖→0

(x(t) − [x](t)) = 0 for x ∈

C[0, T ]. �

4. Translation theorems for conditional wϕ-integrals

In this section, we derive a translation theorem for conditional wϕ-integrals, which

is a generalization of Theorem 4 of [9].

Let h ∈ L2[0, T ], α ∈ R and let x0(t) =
∫ t

0
h(s) ds + α for 0 6 t 6 T . Let ϕα be

a measure on (R,B(R)) such that ϕα(B) = ϕ(B + α) for B ∈ B(R). Moreover, let

Ewϕ
and Ewϕα

denote the conditional wϕ-integral and the conditional wϕα
-integral,

respectively. The following theorems are translation theorems for the conditional

wϕ-integrals.

Theorem 4.1 ([5, Theorem 4.2]). Let Xn+1 be given by (2.3). Moreover, let F

be defined and wϕ-integrable on C[0, T ]. Then we have for PXn+1
-a.e. ~ξn+1 = (ξ0,

ξ1, . . . , ξn+1) ∈ R
n+2

Ewϕ
[F |Xn+1](~ξn+1)

= exp

{n+1
∑

j=1

x0(tj) − x0(tj−1)

tj − tj−1

[

(ξj − ξj−1) −
1

2
(x0(tj) − x0(tj−1))

]

}

× Ewϕα
[F (x0 + ·)J |Xn+1](ξ0 − x0(t0), ξ1 − x0(t1), . . . , ξn+1 − x0(tn+1))

where t0 = 0, tn+1 = T and J(x) = exp{− 1
2 [‖h‖2

2 + 2(h, x)]} for x ∈ C[0, T ].
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Theorem 4.2 ([7, Theorem 5.4]). Let X : C[0, T ] → R be defined by X(x) =

x(T ). Then, under the assumptions and notations given as in Theorem 4.1, we have

for a.e. ξ ∈ R

Ewϕ
[F |X ](ξ) = Ewϕ

[F (x0 + ·)J |X ](ξ − x0(T ))

∫

R

exp
{

−
(ξ − x0(T ) − ξ0)

2

2T

}

dϕ(ξ0)

×

[
∫

R

exp

{

−
(ξ − ξ0)

2

2T

}

dϕ(ξ0)

]−1

.

Theorem 4.3. Let Xτ : C[0, T ] → R be defined by Xτ (x) = (x(t0), x(T )), where

t0 = 0. Then, under the assumptions and notations given as in Theorem 4.2, we

have for a.e. ξ ∈ R

Ewϕ
[F |X ](ξ) =

( 1

2πT

)1/2
∫

R

exp

{

1

T

∫ T

0

h(s) ds
[

(ξ − ξ0) −
1

2

∫ T

0

h(s) ds
]

}

× Ewϕα
[F (x0 + ·)J |Xτ ](ξ0 − α, ξ − x0(T )) exp

{

−
(ξ0 − ξ)2

2T

}

dϕ(ξ0)

= Ewϕ
[F (x0 + ·)J |X ](ξ − x0(T ))

∫

R

exp
{

−
(ξ − x0(T ) − ξ0)

2

2T

}

dϕ(ξ0)

×

[
∫

R

exp
{

−
(ξ − ξ0)

2

2T

}

dϕ(ξ0)

]−1

.

P r o o f. For a Borel subset B of R, we have by Theorem 1.1 and Fubini’s

theorem
∫

X−1(B)

F (x) dwϕ(x) =

∫

X−1
τ (R×B)

F (x) dwϕ(x) =

∫

R×B

E[F |Xτ ](~ξ) dPXτ
(~ξ)

=
( 1

2πT

)1/2
∫

B

∫

R

E[F |Xτ ](~ξ) exp
{

−
(ξ0 − ξ)2

2T

}

dϕ(ξ0) dξ

where ~ξ = (ξ0, ξ) and PXτ
is the probability distribution of Xτ on (R2,B(R2)). By

the definition of conditional expectation and Theorem 4.1, we also have for a.e. ξ ∈ R

Ewϕ
[F |X ](ξ) =

( 1

2πT

)1/2
∫

R

exp

{

1

T

∫ T

0

h(s) ds

[

(ξ − ξ0) −
1

2

∫ T

0

h(s) ds

]}

× Ewϕα
[F (x0 + ·)J |Xτ ](ξ0 − α, ξ − x0(T )) exp

{

−
(ξ0 − ξ)2

2T

}

dϕ(ξ0)

which is the first equality in the theorem. The second equality in the theorem

immediately follows from Theorem 4.2. �

Combining Theorems 2.5 and 4.1, we have the following theorem.
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Theorem 4.4. Let Xn be given by (2.5). Under the assumptions and notations

given as in Theorem 4.1, we have for PXn
-a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R

n+1

Ewϕ
[F |Xn](~ξn)

=
[ 1

2π(T − tn)

]
1
2

exp

{ n
∑

j=1

x0(tj) − x0(tj−1)

tj − tj−1

[

(ξj − ξj−1) −
1

2
(x0(tj) − x0(tj−1))

]

}

×

∫

R

Ewϕα
[F (x0 + ·)J |Xn+1](ξ0 − x0(t0), ξ1 − x0(t1), . . . ,

ξn − x0(tn), ξn − x0(tn) + v) exp
{

−
v2

2(T − tn)

}

dv.

P r o o f. By Theorems 2.5 and 4.1, we have for PXn
-a.e. ~ξn ∈ R

n+1

Ewϕ
[F |Xn](~ξn)

=
[ 1

2π(T − tn)

]
1
2

exp

{ n
∑

j=1

(x0(tj) − x0(tj−1))(ξj − ξj−1)

tj − tj−1
−

n+1
∑

j=1

(x0(tj) − x0(tj−1))
2

2(tj − tj−1)

}

×

∫

R

Ewϕα
[F (x0 + ·)J |Xn+1](ξ0 − x0(t0), ξ1 − x0(t1), . . . , ξn − x0(tn), ξn+1 − x0(T ))

× exp
{

−
(ξn+1 − ξn)2

2(T − tn)
+
x0(T ) − x0(tn)

T − tn
(ξn+1 − ξn)

}

dξn+1

=
[ 1

2π(T − tn)

]
1
2

exp

{ n
∑

j=1

(x0(tj) − x0(tj−1))

tj − tj−1

[

(ξj − ξj−1) −
1

2
(x0(tj) − x0(tj−1))

]

}

×

∫

R

Ewϕα
[F (x0 + ·)J |Xn+1](ξ0 − x0(t0), ξ1 − x0(t1), . . . , ξn − x0(tn), ξn+1 − x0(T ))

× exp
{

−
[(ξn+1 − ξn) − (x0(T ) − x0(tn))]2

2(T − tn)

}

dξn+1

where tn+1 = T . Let v = (ξn+1 − ξn) − (x0(T ) − x0(tn)). Then by the change of

variable theorem, we have the theorem as desired. �

Letting α = 0 in the result of Theorem 4.4, we have the following corollary since

ϕα = ϕ.
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Corollary 4.1. Under the assumptions and notations given as in Theorem 4.4

with one exception α = 0, we have x0(t) =
∫ t

0 h(s) ds for t ∈ [0, T ] and

Ewϕ
[F |Xn](~ξn)

=
[ 1

2π(T − tn)

]
1
2

exp

{ n
∑

j=1

(x0(tj) − x0(tj−1))

tj − tj−1

[

(ξj − ξj−1) −
1

2
(x0(tj) − x0(tj−1))

]

}

×

∫

R

Ewϕ
[F (x0 + ·)J |Xn+1](ξ0 − x0(t0), ξ1 − x0(t1), . . . ,

ξn − x0(tn), ξn − x0(tn) + v) exp
{

−
v2

2(T − tn)

}

dv

for PXn
-a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R

n+1.

Suppose that V is a nonnegative continuous function on R satisfying the condition
∫

R

V (ξ) exp
{

−
ξ2

2t

}

dξ <∞

for every t > 0. For ξj−1, ξj ∈ R and 0 = t0 < tj−1 < tj , let

U(ξj−1, ξj , tj−1, tj) =
[ 1

2π(tj − tj−1)

]1/2

exp
{

−
(ξj − ξj−1)

2

2(tj − tj−1)

}

× Ewϕ

[

exp

{

−

∫ tj

tj−1

V (x(s)) ds

}

∣

∣

∣
x(t0) = 0, x(tj−1) = ξj−1, x(tj) = ξj

]

.

By (4.6) in [9] and Theorem 2.4, it is not difficult show that for a.e. (ξ1, . . . , ξn+1) ∈

R
n+1

Ewϕ

[

exp

{

−

∫ T

0

V (x(s)) ds

}

∣

∣

∣
x(t0) = ξ0, x(t1) = ξ1, . . . , x(tn+1) = ξn+1

]

=

n+1
∏

j=1

[2π(tj − tj−1)]
1/2U(ξj−1, ξj , tj−1, tj) exp

{(ξj − ξj−1)
2

2(tj − tj−1)

}

where ξ0 = 0 and 0 = t0 < t1 < . . . < tn < tn+1 = T .

We are now ready to write out an expression for the multi-conditional expectation.

Indeed, by Theorem 2.5, we can write

Ewϕ

[

exp

{

−

∫ T

0

V (x(s)) ds

}

∣

∣

∣
x(t0) = ξ0, x(t1) = ξ1, . . . , x(tn) = ξn

]

=

[ n
∏

j=1

[2π(tj − tj−1)]
1/2 exp

{(ξj − ξj−1)
2

2(tj − tj−1)

}

U(ξj−1, ξj , tj−1, tj)

]

×

∫

R

U(ξn, ξn+1, tn, T ) dξn+1

for a.e. (ξ1, . . . , ξn) ∈ R
n.
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5. Evaluation of conditional analytic Feynman wϕ-integrals

In this section, we evaluate the conditional analytic Feynman wϕ-integrals of sev-

eral functions on C[0, T ].

In the following two theorems, we evaluate the conditional analytic Feynman wϕ-

integrals of the function Fm given as in Theorems 3.1 and 3.2. Using similar methods

in the proofs of Theorems 3.1 and 3.2, we can easily prove the theorems.

Theorem 5.1. Let Xn+1 be given by (2.3). Then, under the assumptions and

notations given as in Theorem 3.1, Eanwλ [Fm|Xn+1](~ξn+1) exists for λ ∈ C+ and

for PXn+1
-a.e. ~ξn+1 ∈ R

n+2. Moreover, for a non-zero real q, Eanfq [Fm|Xn+1](~ξn+1)

exists and it is given by

Eanfq [Fm|Xn+1](~ξn+1)

=

n+1
∑

j=1

[ m
2

]
∑

k=0

m−2k
∑

l=0

( i

q

)km!(l + k)!(tj − tj−1)
k+1ξm−2k−l

j−1 (ξj − ξj−1)
l

2kl!(m− 2k − l)!(l + 2k + 1)!
.

Theorem 5.2. Let Xn be given by (2.5). Then, under the assumptions and

notations given as in Theorem 3.2, Eanwλ [Fm|Xn](~ξn) exists for λ ∈ C+ and for

PXn
-a.e. ~ξn ∈ R

n+1. Moreover, for a non-zero real q, Eanfq [Fm|Xn](~ξn) exists and

it is given by

Eanfq [Fm|Xn](~ξn)

=

n
∑

j=1

[ m
2

]
∑

k=0

m−2k
∑

l=0

( i

q

)km!(l + k)!(tj − tj−1)
k+1ξm−2k−l

j−1 (ξj − ξj−1)
l

2kl!(m− 2k − l)!(l + 2k + 1)!

+

[ m
2

]
∑

k=0

[ m−2k
2

]
∑

l=0

( i

q

)k+lm!(2l+ k)!ξm−2k−2l
n (T − tn)l+k+1

2l+kl!(m− 2k − 2l)!(2l+ 2k + 1)!
.

Let M (L2[0, T ]) be the class of C-valued Borel measures of finite variation on

L2[0, T ] and let Swϕ
be the space of functions F of the form for σ ∈ M (L2[0, T ])

(5.1) F (x) =

∫

L2[0,T ]

exp{i(v, x)} dσ(v)

for x ∈ C[0, T ]. Let 0 = t0 < t1 < . . . < tn < tn+1 = T be a partition of the interval

[0, T ] and for v ∈ L2[0, T ] define the sectional average v of v by letting

(5.2) v(t) =
1

tj − tj−1

∫ tj

tj−1

v(s) ds
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on each subinterval (tj−1, tj] and by letting v(0) = 0 ([6]). Then, we have for

v ∈ L2[0, T ] and x ∈ C[0, T ]

(v, [x]) =

∫ T

0

v(t)d[x](t) =

n+1
∑

j=1

x(tj) − x(tj−1)

tj − tj−1

∫ tj

tj−1

v(t) dt(5.3)

=

n+1
∑

j=1

v(tj)(x(tj) − x(tj−1)) =

n+1
∑

j=1

∫ tj

tj−1

v(t)dx(t) = (v, x).

We are now ready to evaluate the conditional analytic Feynman wϕ-integrals of

the functions in Swϕ
.

Theorem 5.3. Let Xn+1 and F ∈ Swϕ
be given by (2.3) and (5.1), respec-

tively. Then, for λ ∈ C+, E
anwλ [F |Xn+1](~ξn+1) exists for PXn+1

-a.e. ~ξn+1 =

(ξ0, ξ1, . . . , ξn+1) ∈ R
n+2 and it is given by

Eanwλ [F |Xn+1](~ξn+1) =

∫

L2[0,T ]

exp

{

i

n+1
∑

j=1

v(tj)(ξj − ξj−1) −
1

2λ
‖v − v‖2

2

}

dσ(v)

where v is given by (5.2). Moreover, for a non-zero real q, Eanfq [F |Xn+1](~ξn+1)

exists and it is given by

Eanfq [F |Xn+1](~ξn+1) =

∫

L2[0,T ]

exp

{

i
n+1
∑

j=1

v(tj)(ξj − ξj−1) +
1

2qi
‖v − v‖2

2

}

dσ(v).

P r o o f. For λ > 0 and PXn+1
-a.e. ~ξn+1 ∈ R

n+2, we have by Fubini’s theorem

E[F (λ−1/2(x− [x]) + [~ξn+1])]

=

∫

L2[0,T ]

exp{i(v, [~ξn+1])}

∫

C

exp{iλ−1/2(v − v, x)} dwϕ(x) dσ(v)

by (5.3). Using the following well-known integration formula

(5.4)

∫

R

exp{−au2 + ibu} du =
(

π

a

)1/2

exp
{

−
b2

4a

}

for a ∈ C+ and any real b, we have

E[F (λ−1/2(x−[x])+[~ξn+1 ])] =

∫

L2[0,T ]

exp

{

i

n+1
∑

j=1

v(tj)(ξj−ξj−1)−
1

2λ
‖v−v‖2

2

}

dσ(v)

since (v − v, ·) is mean zero Gaussian with variance ‖v − v||22 by Theorem 1.2. By

Morera’s theorem and the dominated convergence theorem, we have the results. �
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Letting λ = 1 in the result of Theorem 5.3, we have the conditional wϕ-integral of

F in Swϕ
.

Corollary 5.1. Under the assumptions and notations given as in Theorem 5.3,

we have for PXn+1
-a.e. ~ξn+1 ∈ R

n+2

E[F |Xn+1](~ξn+1) =

∫

L2[0,T ]

exp

{

i
n+1
∑

j=1

v(tj)(ξj − ξj−1) −
1

2
‖v − v‖2

2

}

dσ(v).

Theorem 5.4. Let Xn and F ∈ Swϕ
be given by (2.5) and (5.1), respectively.

Then, for λ ∈ C+, E
anwλ [F |Xn](~ξn) exists for PXn

-a.e. ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R
n+1

and it is given by

Eanwλ [F |Xn](~ξn)

=

∫

L2[0,T ]

exp

{

i

n
∑

j=1

v(tj)(ξj − ξj−1) −
1

2λ
[‖v − v‖2

2 + (T − tn)[v(T )]2]

}

dσ(v)

where v is given by (5.2). Moreover, for a non-zero real q, Eanfq [F |Xn](~ξn) exists

and it is given by

Eanfq [F |Xn](~ξn)

=

∫

L2[0,T ]

exp

{

i

n
∑

j=1

v(tj)(ξj − ξj−1) +
1

2qi
[‖v − v‖2

2 + (T − tn)[v(T )]2]

}

dσ(v).

P r o o f. For notational convenience, let ~ξn = (ξ0, ξ1, . . . , ξn) ∈ R
n+1 and ~ξn+1 =

(ξ0, ξ1, . . . , ξn, ξn+1) for ξn+1 ∈ R. Moreover, let [~ξn+1] be the polygonal function of
~ξn+1. For λ > 0 and PXn

-a.e. ~ξn ∈ R
n+1, we have by Theorems 2.5 and 5.3

Kλ ≡
[ λ

2π(T − tn)

]1/2
∫

R

E[F (λ−1/2(x− [x]) + [~ξn+1])]

× exp
{

−
λ(ξn+1 − ξn)2

2(T − tn)

}

dξn+1

=
[ λ

2π(T − tn)

]1/2
∫

L2[0,T ]

exp

{

i

n
∑

j=1

v(tj)(ξj − ξj−1) −
1

2λ
‖v − v‖2

2

}

×

∫

R

exp
{

iv(T )(ξn+1 − ξn) −
λ(ξn+1 − ξn)2

2(T − tn)

}

dξn+1 dσ(v)
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by Fubini’s theorem where v is the sectional average of v given by (5.2). Let u =

ξn+1 − ξn. Then we have by the change of variable theorem

Kλ =
[ λ

2π(T − tn)

]1/2
∫

L2[0,T ]

exp

{

i

n
∑

j=1

v(tj)(ξj − ξj−1) −
1

2λ
‖v − v‖2

2

}

×

∫

R

exp
{

i[v(T )]u−
λu2

2(T − tn)

}

du dσ(v)

=

∫

L2[0,T ]

exp

{

i

n
∑

j=1

v(tj)(ξj − ξj−1) −
1

2λ
‖v − v‖2

2 −
(T − tn)[v(T )]2

2λ

}

dσ(v)

by (5.4). By Morera’s theorem and the dominated convergence theorem, we have

the results. �

Now, letting λ = 1 in the result of Theorem 5.4, we have the following corollary.

Corollary 5.2. Under the assumptions and notations given as in Theorem 5.4,

we have for PXn
-a.e. ~ξn ∈ R

n+1

E[F |Xn](~ξn)

=

∫

L2[0,T ]

exp

{

i

n
∑

j=1

v(tj)(ξj − ξj−1) −
1

2
[‖v − v‖2

2 + (T − tn)[v(T )]2]

}

dσ(v).
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