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LOEWY COINCIDENT ALGEBRA AND QF -3 ASSOCIATED

GRADED ALGEBRA
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Abstract. We prove that an associated graded algebra RG of a finite dimensional algebra
R is QF (= selfinjective) if and only if R is QF and Loewy coincident. Here R is said to
be Loewy coincident if, for every primitive idempotent e, the upper Loewy series and the
lower Loewy series of Re and eR coincide.

QF -3 algebras are an important generalization of QF algebras; note that Auslander
algebras form a special class of these algebras. We prove that for a Loewy coincident
algebra R, the associated graded algebra RG is QF -3 if and only if R is QF -3.
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Introduction

Let K be a field and R a finite dimensional K-algebra; denote its Jacobson radical

by J . Given a left R-module X , the chain

X ⊃ JX ⊃ . . . ⊃ J̺X

of its submodules is called the upper Loewy series of X . On the other hand, the

chain of the right annihilators

X = r(J̺+1 : X) ⊃ r(J̺ : X) ⊃ r(J̺−1 : X) ⊃ . . . ⊃ r(J1 : X),

where r(J i : X) = {x ∈ X ; J ix = 0} for i = 1, 2, . . . , ̺, is called the lower Loewy

series of X .
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If the upper Loewy series and the lower Loewy series of X coincide, we shall say

that X satisfies the Loewy coincidence condition. For a right R-module, we shall

apply the same definitions.

We shall say that R is a left Loewy coincident algebra if every primitive left ideal

satisfies the Loewy coincidence condition. That is, R is left Loewy coincident if and

only if for every primitive idempotent e of R, J̺+1−ie = r(J i)e for i = 1, 2, . . . , ̺,

where J̺e 6= 0 but J̺+1e = 0.

A left and right Loewy coincident algebra is called simply a Loewy coincident

algebra.

In [5], the author has proved that the associated graded algebra RG is quasi-

Frobenius if and only if R is Loewy coincident and quasi-Frobenius. It is well known

that R is quasi-Frobenius (abbreviated to QF ) if and only if R is selfinjective.

Let us point out that R and RG have very different structures even if R is com-

mutative (cf. Example 2.2 in [5]).

In this paper we will extend our consideration to QF -3 associated graded algebras.

For the definition of QF -3 algebras, see Thrall [6] and Tachikawa [4]. Note that

Auslander algebras are a special class of QF -3 algebras; recall that an Auslander

algebra is the endomorphism algebra of the direct sum of all indecomposable modules

over an algebra of finite representation type (Auslander [1]).

In §2, we shall prove that if R is a Loewy coincident algebra, then the associated

graded algebra RG is QF -3 if and only if R is QF -3.

1. Socle condition and Loewy coincidence condition

Let R be an algebra with Jacobson radical J of nilpotency n + 1. Let us denote

the associated graded ring of R by RG (= R/J ⊕ J/J2 ⊕ . . . ⊕ Jn−1/Jn ⊕ Jn).

We shall say that a positive integer ̺ is the Loewy length of a left R-module X if

J̺X 6= 0 but J̺+1X = 0.

Then for a left R-module X of the Loewy length ̺ the associated graded left

RG-module XG is defined as a (formal) direct sum

X/JX ⊕ JX/J2X ⊕ . . . ⊕ J̺−1X/J̺X ⊕ J̺X

with the following operation by RG : rGxG =
n
∑

j=0

∑̺

k=0

(rjxk + Jj+k+1X), where rG =

n
∑

j=0

(rj +Jj+1) ∈ RG with rj ∈ Jj and xG =
∑̺

k=0

(xk +Jk+1X) ∈ XG with xk ∈ JkX .

In this case, since J̺+1X = 0, J̺X and Rad(RG)̺XG can be identified as additive

groups. Furthermore, we can identify J̺X and Rad(RG)̺XG as RG-modules. In

order to indicate this identification, we use the notation RG
J̺X .
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We know that the socle Soc(X) of X can be defined by

Soc(X) = r(J : X), where r(J : X) = {x ∈ X ; Jx = 0}.

Similarly, we can define the socle of the left RG-module XG by Soc(XG) =

r(Rad(RG) : XG) =
{

∑̺

k=0

(xk + Jk+1X) ; xk ∈ JkX and Jxk ⊆ Jk+2X for

0 6 k 6 ̺ − 1
}

.

Now, let us consider the submodule of XG consisting of the elements
∑̺

k=0

(yk +

Jk+1X), where yk ∈ Soc(X) ∩ JkX . We denote this submodule by soc(XG). It is

clear that RG
J̺X ⊂ soc(XG) ⊂ Soc(XG) ⊂ XG.

Let us point out that if RG
J̺X = soc(XG), then J̺X = Soc(X). Indeed, for

x ∈ Soc(X) denote by j the positive integer such that x ∈ JjX \ Jj+1X . Then

x + Jj+1X ∈ soc(XG) and it follows from RG
J̺X = soc(XG) that there exists

y ∈ J̺X such that y + J̺+1 = x + Jj+1. But this implies j = ̺ and x = y. Hence

Soc(X) ⊆ J̺X , which means J̺X = Soc(X).

We say that a left R-module X satisfies the socle condition with respect to XG if

RG
J̺X = soc(XG) = Soc(XG). Moreover,we say that a left R-module X satisfies

the Loewy coincidence condition if J iX = Soc̺+1−i(X) (= r(J̺+1−i; X) = {x ∈

X ; J̺+1−ix = 0}) for i = 1, 2, . . . , ̺. Here of course Soc1(X) = Soc(X). Then we

can formulate the following statement.

Lemma 1.1. Let X be a left R-module. Then the following statements (i) and

(ii) are equivalent:

(i) X satisfies the socle condition with respect to XG.

(ii) X satisfies the Loewy coincidence condition.

P r o o f. (i) ⇒ (ii): Let ̺ be the Loewy length of X and assume that Socs(X) =

J̺+1−sX for s > 1. For s = 1, the assumption is satisfied. For, as mentioned earlier,

the condition (i), viz. RG
J̺X = soc(XG) implies J̺X = Soc(X).

Suppose now that Socs+1(X) 6= J̺−sX . Since Socs+1(X) ⊇ J̺−sX , there is an

element x ∈ X such that x ∈ Socs+1(X) but x 6∈ J̺−sX . Let l be a positive integer

such that x ∈ J lX\J l+1X . Then l is uniquely determined, l < ̺−s and Jx ⊆ J l+1X .

In this case we know that Jx 6⊂ J l+2X . Indeed, suppose that Jx ⊆ J l+2X . Then

x + J l+1X ∈ Soc(XG) = soc(XG) = RG
J̺X by (i). Hence we have l = ̺, which is

a contradiction to l < ̺ − s.

On the other hand, x ∈ Socs+1(X) implies Js+1x = Js(Jx) = 0 and hence Jx ⊆

Socs(X) = J̺+1−sX . However, J̺+1−sX ⊆ J l+2X because J̺+1−sX ⊂ J l+1X
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but J̺+1−sX 6= J l+1X . Hence, we have Jx ⊆ J l+2X , which contradicts again

Jx 6⊂ J l+2X .

Consequently, we conclude that Socs+1(X) = J̺−sX . Now by induction on s we

can complete the proof of (i) ⇒ (ii).

(ii) ⇒ (i): Since ̺ is the Loewy length of X , it follows immediately from (ii) that

J̺X = Soc(X), which yields RG
J̺X = soc(XG).

Suppose that there is an element x ∈ J tX\J t+1X such that x+J t+1X ∈ Soc(XG)

and x 6∈ Soc(X)(= J̺X). Then t < ̺ and Jx ∈ J t+2X . However, (ii) implies that

J t+2X = Soc̺+1−(t+2)(X) and hence J̺−t−1Jx = J̺−tx = 0. Thus, x ∈ Soc̺−t(X).

Again by (ii), we have Soc̺−t(X) = J̺+1−(̺−t)X = J t+1X and hence x ∈ J t+1X .

However,this contradicts x ∈ J tX \ J t+1X . Consequently, Soc(XG) ⊆ soc(XG). �

In view of Morita equivalence [2], we can assume, without loss of generality, that all

algebras are basic. Let e be a primitive idempotent of the ring R. Then e+J ∈ R/J

is a primitive idempotent of RG that will be briefly denoted by eG.

We have a ring isomorphism R/J ≃ RG/ Rad(RG) and by this isomorphism e

corresponds to eG. Therefore we can identify the simple left R-module Re/Je and

the simple left RG-module RGeG/ Rad(RG)eG. We note that this identification can

be extended to semisimple R-modules and semisimple RG-modules.

Now, if we apply Lemma 1.1 for X = Re then we obtain immediately the following

theorem.

Theorem 1.2. Let ̺ be the Loewy length of Re. Then Soc(RGeG) = Soc(Re) =

N̺e if and only if Re satisfies the Loewy coincidence condition.

An algebra R is said to be left (or right) QF -2 if Soc(Re) (or Soc(eR)) is simple

for every primitive idempotent e (cf. [6]).

As J̺e = Soc(Re) if Soc(Re) is simple, we have immediately

Corollary 1.3. RG is left QF -2 if and only if R is left QF -2 and left Loewy

coincident.

P r o o f. If RG is QF -2, then for every primitive idempotent eG, Soc(RGeG)

is simple. Hence Rad(RG)̺eG = J̺e = Soc(Re) = Soc(RGeG). Therefore by

Lemma 1.1, the Loewy coincidence condition holds for every primitive ideal Re.

It follows that R is QF -2.

If R is QF -2 and if the coincidence condition holds for every primitive ideal Re,

then by Lemma 1.1 the socle condition for RGeG holds and RGeG has a simple socle.

Hence RG is QF -2. �
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By T.Nakayama [3], an algebra R is QF (=quasi-Frobenius) if and only if the

following conditions (i) and (ii) are satisfied:

(i) For all primitive idempotents ei, i = 1, 2, . . . , m, we have r(J)ei = l(J)ei and

eil(J) = eir(J), and they are simple left and right R-modules, where r(J) and l(J)

denote the right and left annihilators of J , respectively.

(ii) There is a permutation π on {1, 2, . . . , m} such that r(J)ei ≃ Reπ(i)/Jeπ(i).

Therefore R is QF if and only if R is a left and right QF -2 algebra with r(J) =

l(J) having the above permutation π. Hence, Corollary 1.3 yields immediately the

following theorem.

Theorem 1.4. RG is QF if and only if R is QF and Loewy coincident.

(Cf. Theorem 1.7 of [5].)

2. QF -3 Associated graded algebras

In what follows we assume that R is an algebra over a field K and D(R)

(= HomK(R, K)) is the dual module of R. For a left R-module X , D(X) =

HomK(X, K) is the right R-module defined by (ϕr)(x) = ϕ(rx) for ϕ from

HomK(X, K), r ∈ R and x ∈ X . Similarly for a right R-module the dual module is

defined to be a left R-module.

D(R) is an R-bimodule and it is well known that

RHomK(KXR, KK) ≃ RHomR(XR, RD(R)R)

for a right R-module X and

HomK(RYK , KK)R ≃ HomR(RY, RD(R)R)R

for a left R-module Y .

Furthermore, RD(R) (orD(R)R) is an injective cogenerator in R-mod (or mod-R),

where R-mod (or mod-R) denotes the category of finitely generated left (or right)

R-modules. It is important that HomR(−, RD(R)R) induces the Morita duality

between R-mod and mod-R (cf. [2]).

For a primitive idempotent e, we have D(Re/Je) ≃ eR/eJ and D(Re) ≃

E(eR/eJ), which is the injective hull of simple module eR/eJ . Moreover, by

the duality, the upper (or lower) Loewy series of a left R-module RX is transformed

to the lower (or upper) Loewy series of the right R-module D(X)R.

From now on we assume that R is a Loewy coincident algebra. Then the injective

indecomposable moduleD(Re)R (or RD(eR)) for any primitive idempotent e satisfies

the Loewy coincidence condition.
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Let us consider the associated graded algebra RG of R. Then

D(RGeG)RG
≃ E(eGRG/eG rad(RG))

and by an earlier remark and Lemma 1.1 it satisfies the socle condition for

[GD(Re)]RG
, i.e.

D(Re)J̺
RG

= soc(GD(Re))RG
= Soc(GD(Re))RG

,

where ̺ is the Loewy length of D(Re). As Soc(GD(Re)) is isomorphic to

Soc(D(RGeG)), GD(Re) can be imbedded into D(RGeG) as a right RG-module.

But the composition lengths of GD(Re) and D(RGeG) are the same as the compo-

sition length of D(Re)R (= the composition length of RRe). Therefore we get that

GD(Re)RG
≃ D(RGeG)RG

.

Proposition 2.1. If the algebra R is Loewy coincident, then GD(Re)RG
and

RG
D(eR)G are indecomposable injective for every primitive idempotent e.

Following Thrall [6] an algebra R is said to be QF -3 if R has a unique minimal

faithful left R-module Q. It is well-known that Q is a direct sum of indecomposable

projective and injective left ideals (i.e., injective primitive left ideals).

Let us assume that R is QF -3. Then using mutually non-isomorphic primitive

idempotents ei, 1 6 i 6 m we have a direct sum decomposition RR ≃
m
⊕

i=l+1

Rei ⊕Q,

where Q ≃
l

⊕

i=1

Rei and l 6 m.

Since, for i 6 l, Rei is injective, there exists a primitive right ideal ekR such that

Rei ≃ D(ekR). By Proposition 2.1, RGeiG
(≃ D(ekR)G) is an injective ideal of RG.

Hence every indecomposable direct summand of QG is a projective and injective left

RG-module.

Since RQ is faithful, Soc(Rej), j > l, is imbedded into a direct sum of copies of

Soc(Q). On the other hand, since R is Loewy coincident, the socle condition holds

for RGejG
, j > l and every indecomposable direct summand of QG, which is an

injective left RG-module, and hence RGejG
, j > l, is imbedded into a direct sum of

copies of RG
QG. It follows that RG

QG is faithful.

Conversely, assume RG is QF -3. By Proposition 2.1, RGeiG
is injective if and

only if RRei is injective and thus, by the socle condition, Soc(RGeiG
) ≃ Soc(RGejG

)

if and only if Soc(Rei) ≃ Soc(Rej) for 1 6 i, j 6 m. Therefore R is QF -3.

Consequently, the following theorem holds.
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Theorem 2.2. Let the algebra R be Loewy coincident. Then the associated

graded algebra RG of R is QF -3 if and only if R is QF -3.

We like to point out that all results in this paper hold for Artin algebras in the

sense of Auslander [1], i.e. for algebras that are finitely generated over artinian com-

mutative rings.
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