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SPECIAL ISOMORPHISMS OF F [x1, . . . , xn] PRESERVING GCD

AND THEIR USE

Ladislav Skula, Brno

(Received February 25, 2008)

Abstract. On the ring R = F [x1, . . . , xn] of polynomials in n variables over a field F

special isomorphisms A’s of R into R are defined which preserve the greatest common
divisor of two polynomials. The ring R is extended to the ring S : = F [[x1, . . . , xn]]

+ and
the ring T : = F [[x1, . . . , xn]] of generalized polynomials in such a way that the exponents
of the variables are non-negative rational numbers and rational numbers, respectively. The
isomorphisms A’s are extended to automorphisms B’s of the ring S. Using the property that
the isomorphisms A’s preserve GCD it is shown that any pair of generalized polynomials
from S has the greatest common divisor and the automorphisms B’s preserve GCD . On
the basis of this Theorem it is proved that any pair of generalized polynomials from the
ring T = F [[x1, . . . , xn]] has a greatest common divisor.

Keywords: polynomials in several variables over field, generalized polynomials in several
variables over field, isomorphism of the ring of polynomials, automorphism of the ring of
generalized polynomials, greatest common divisor of generalized polynomials

MSC 2010 : 13F20, 13A05

0. Introduction

In this paper special isomorphisms A = A(m1, . . . ,mn) (m1, . . . ,mn are positive

integers) of the integral domain R = F [x1, . . . , xn] of polynomials over a field F in

the indeterminates x1, . . . , xn into R are defined and it is shown (Theorem 2.4) that

these isomorphisms preserve the greatest common divisor of two polynomials from R.

The integral domain R = F [x1, . . . , xn] is extended to the integral domain S =

F [[x1, . . . , xn]]+ and T = F [[x1, . . . , xn]] of generalized polynomials in such a way

Published results were acquired using the subsidization of the Ministry of Education,
Youth and Sports of the Czech Republic, research plan MSM0021630518 “Simulation
modelling of mechatronic systems”.
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that the exponents of the indeterminates are non-negative rational numbers and

rational numbers, respectively.

Each isomorphism A = A(m1, . . . ,mn) is extended in the natural way to the

automorphism B = B(m1, . . . ,mn) of the ring S and, using Theorem 2.4, we prove

(Theorem 3.4) that any pair of generalized polynomials from S has a greatest common

divisor (GCD) in S and the automorphism B preserves GCD.

In conclusion, the GCD-Existence Theorem (Theorem 4.6) is shown for the

ring T = F [[x1, . . . , xn]] by applying the previous theorem to the ring S =

F [[x1, . . . , xn]]+.

Investigation of this topic is motivated by the concept of derivative and integral

of real order (the order is a real number) appearing in engineering applications [1],

[3]. This will be described in greater detail in the paper [4], which is being prepared.

0.1. Notation.

Throughout this paper, F denotes a field and R = F [x1, . . . , xn] the integral

domain of polynomials over the field F in the indeterminates x1, . . . , xn (n is a

positive integer).

It is well known that R = F [x1, . . . , xn] is a unique factorization domain (UFD)

and, therefore, any pair of elements of R has a greatest common divisor (GCD). The

group of units U(R) of the ring R equals the group F ∗ of non-zero elements of the

field F . If f ∈ R, f 6= 0, then we can write f uniquely (after possible relabeling) in

the form

f =

N∑

i=1

tiαi,

where N is a positive integer, t1, . . . , tN ∈ F ∗ and α1, . . . , αN are mutually different

monomials in F [x1, . . . , xn]. We call the monomial αi (1 6 i 6 N) a monomial of

the polynomial f .

A ring will designate an integral domain.

If R is a ring, then U(R) denotes the group of units of R and R∗ := R \ {0R}.

For a, b ∈ R

a |
R

b

denotes element a dividing element b in the ring R.

If the pair (a, b) has a greatest common divisor (GCD) in the ring R, then it

is determined uniquely up to a multiple of a unit of the ring R. For the sake of

simplicity and without danger of misunderstanding we will denote it by (a, b)R.

In addition, we use the following common notation:

N,N0,Q,Q
+ is the set of all positive integers and non negative integers,

rational numbers, non-negative rational numbers, respectively.
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In this paper, only the basic notions and theorems of commutative algebra are

used, which are presented for example in the books [2], [5].

1. Special isomorphisms of the ring F [x1, . . . , xn]

Notation 1.1. Let m1, . . . ,mn be positive integers. If α = xu1

1 . . . xun
n (u1, . . . ,

un ∈ N0) is a monomial in the ring R = F [x1, . . . , xn], put

A(α) = A(m1, . . . ,mn)(α) = xm1u1

1 . . . xmnun

n .

Clearly, if α, β are monomials in R, then

A(α · β) = A(α) · A(β).

We extend the mapping a to an isomorphism from the ring R to itself as follows: If

f =

N∑

i=1

tiαi ∈ R

(N ∈ N, tj ∈ F , αj is a monomial in R, 1 6 j 6 N), we put

A(f) = A(m1, . . . ,mn)(f) =

N∑

j=1

tjA(αj).

It is easy to see that the value of A(f) does not depend on the expression
N∑

j=1

tjαj

and then A = A(m1, . . . ,mn) is an isomorphism from the ring R to itself.

We put

A = A(F ) = {A = A(m1, . . . ,mn) : m1, . . . ,mn ∈ N}.

Remark. An isomorphism A = A(m1, . . . ,mn) from A can be characterized as

the isomorphism A from the ring R to itself with the properties:

A(t) = t for each t ∈ F

and

A(xi) = xmi

i for each 1 6 i 6 n.

For the composition ◦ of the isomorphisms from A, we have
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Proposition 1.2. Let a1, . . . , an, b1, . . . , bn be positive integers. Then

A(a1, . . . , an) ◦A(b1, . . . , bn) = A(a1b1, . . . , anbn),

therefore (A, ◦) is a commutative monoid with a unity A(1, . . . , 1) which satisfies the

cancellation law.

Notation 1.3. Let p be a prime. The symbol

P = P (p) = P (p, F ) = F [xp
1, x2, . . . , xn]

will denote the set of all f ∈ R that can be expressed in the form

f =

N∑

j=1

tjαj

where N ∈ N, tj ∈ F , αj =
n∏

i=1

x
aij

i , aij ∈ N0, p | a1j , 1 6 j 6 N , 1 6 i 6 n.

Obviously, P is a subring of R and P is the image of the isomorphism A(p,

1, . . . , 1) ∈ A; P = A(p, 1 . . . , 1)(R).

Proposition 1.4. Let p be a prime and charF = p. Let A = A(p, 1, . . . , 1) ∈ A.

Then, for each relatively prime f, g ∈ R, we have

(A(f), A(g))R = 1R.

P r o o f. Assume that d ∈ R, d |
R

A(f) and d |
R

A(g). Then there exists h, l ∈ R

such that dh = A(f) and dl = A(g). It follows that

dphp = A(fp), dplp = A(gp).

Since charF = p, we have dp, hp, lp ∈ P (p) and, applying the isomorphism A−1, we

get

fp = A−1(dp) · A−1(hp), gp = A−1(dp) · A−1(lp).

Since (fp, gp)R = 1R, the polynomial A
−1(dp) is a unit of R, therefore A−1(dp) =

t ∈ F ∗ and dp = A(t) = t ∈ U(R). The result follows. �
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Notation 1.5. Let f = f(x1, . . . , xn) ∈ R and f =
N∑

j=1

tjαj , where N ∈ N,

1 6 i 6 n, 1 6 j 6 N . We define for τ ∈ F the polynomial f(τx1, . . . , xn) ∈ R as

follows:

f(τx1, . . . , xn) :=

N∑

j=1

tjτ
a1jαj .

In addition we need the following lemma, which can be proved by the usual tech-

nique.

Lemma 1.6. Let f = f(x1, . . . , xn), g = g(x1, . . . , xn) ∈ R and h = fg =

h(x1, . . . , xn) ∈ R. Then, for τ ∈ F , we have

f(τx1, . . . , xn)g(τx1, . . . , xn) = h(τx1, . . . , xn).

2. The splitting field of the polynomial xp−1 + xp−2 + . . .+ x+ 1

Assumptions and notation 2.1. In this section we assume that p is a prime,

charF 6= p and E is the splitting field of the polynomial ϕ(x) := xp−1 +xp−2 + . . .+

x+ 1 over F .

Clearly

F [xp
1, x2, . . . , xn] = P (p, F ) = F [x1, . . . , xn] ∩ P (p,E)(1)

= R ∩ P (p,E) = F [x1, . . . , xn] ∩ E[xp
1, x2, . . . , xn].

Let ε ∈ E be a root of ϕ(x) in the field E. Then ε 6= 1, εi (1 6 i 6 p − 1) are

different roots of the polynomial ϕ(x) and the extension E ⊇ F is Galois.

The Galois group of the extension E ⊇ F will be denoted gal(E : F ) = Γ. We

have, for each σ ∈ Γ,

(2) {σ(εi) : 1 6 i 6 p− 1} = {εi : 1 6 i 6 p− 1}.

We put for h ∈ E[x1, . . . , xn], h =
N∑

i=1

uiαi, ui ∈ E, αi a monomial in E[x1, . . . , xn]

and σ ∈ Γ:

σ(h) =

N∑

i=1

σ(ui)αi.
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(Note that the value σ(h) does not depend upon the expression
N∑

i=1

uiαi.) Thus σ is

an automorphism of the ring E[x1, . . . , xn] and we have

(3) F [x1, . . . , xn] = {h ∈ E[x1, . . . , xn] : σ(h) = h for each σ ∈ Γ}.

Furthermore

if χ ∈ E[x1, . . . , xn], then χ ∈ P (p,E) = E[xp
1, x2, . . . , xn](4)

if and only if χ(x1, . . . , xn) = χ(εx1, . . . , xn).

Lemma 2.2. Let h ∈ F [x1, . . . , xn] and h(i) = h(εix1, . . . , xn) for each 0 6 i 6

p− 1. Then

p−1∏

i=0

h(i) ∈ P (p, F ) = F [xp
1, x2, . . . , xn].

P r o o f. Put χ = χ(x1, . . . , xn) =
p−1∏
i=0

h(i). Then χ ∈ E[x1, . . . , xn]. Using

Lemma 1.6 for the ring E[x1, . . . , xn] yields

χ(εx1, . . . , xn) =

p−1∏

i=0

h(εi+1x1, . . . , xn) =

p−1∏

i=0

h(εix1, . . . , xn) = χ(x1, . . . , xn),

therefore χ ∈ P (p,E) by (4).

Assume σ ∈ Γ. Then, according to (2),

σ(χ) =

p−1∏

i=0

σ(h(εix1, . . . , xn)) =

p−1∏

i=0

h(εix1, . . . , xn) = χ

and, by (3), χ ∈ F [x1, . . . , xn]. Hence χ ∈ P (p,E) ∩R = P (p, F ) by (1). �

Remark. The monoids (A(F ), ◦) and (A(E), ◦) are isomorphic, where the iso-

morphism from A(E) onto A(F ) is the restriction of isomorphisms from A(E) to the

domain F [x1, . . . , xn].
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Proposition 2.3. Let A = A(p, 1, . . . , 1) ∈ A(F ), f, g ∈ R with (f, g)R = 1R.

Then

(A(f), A(g))R = 1R.

P r o o f. In view of the previous remark we can consider A as an element ofA(E).

Suppose that d ∈ R, d |
R

A(f) and d |
R

A(g). Then there exist l, h ∈ R such that

dl = A(f) and dh = A(g). Put d(i) = d(εix1, . . . , xn), l(i) = l(εix1, . . . , xn), h(i) =

h(εix1, . . . , xn) for each 0 6 i 6 p− 1 and

δ =

p−1∏

i=0

d(i), λ =

p−1∏

i=0

l(i), χ =

p−1∏

i=0

h(i).

Using Lemma 1.6 then yields

d(i)l(i) = A(f)(εix1, . . . , xn) = A(f),

d(i)h(i) = A(g)(εix1, . . . , xn) = A(g),

therefore

δλ = A(fp), δχ = A(gp).

By Lemma 2.2 δ, λ, χ ∈ P (p, F ) = A(R), hence

A−1(δ)A−1(λ) = fp, A−1(δ)A−1(χ) = gp.

Since f , g are coprime in R, we get A−1(δ) ∈ U(R) = t ∈ F ∗, therefore δ =

AA−1(δ) = A(t) = t ∈ U(R). This concludes the proof. �

Remark. The proof of Proposition 2.3 affords also a proof of Proposition 1.4

(under the assumption charF = p). In fact, Proposition 1.4 can be considered as

a special case of Proposition 2.3. Then the splitting field E of the polynomial ϕ(x)

over F equals F and we can put ε = 1 the only root of ϕ(x) = (x− 1)p−1. However,

for the sake of greater clearness, the case charF = p is presented separately.

Theorem 2.4. Let A = A(m1, . . . ,mn) ∈ A (m1, . . . ,mn ∈ N) and f, g ∈ R =

F [x1, . . . , xn]. Then

A((f, g)R) = (A(f), A(g))R.

P r o o f. I. Suppose that (f, g)R = 1R. By Proposition 1.4 and 2.3, we get the

assertion for A = A(p, 1, . . . , 1) ∈ A where p is a prime. Since a monomial in the

ring R does not depend on the order of indeterminates, the formula (A(f), A(g))R =

1R is also valid for A = A(1, . . . , 1, p, 1, . . . , 1) ∈ A.
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Let m1, . . . ,mn ∈ N, m = m1 . . .mn 6= 1 and m = pa1

1 . . . pak

k be the canonical

decomposition of m into primes. Using Proposition 1.2, we can prove Theorem 2.4

for coprime f , g by induction on a1 + . . .+ ak.

II. General case. Assume that (f, g)R = d. Then there exist l, h ∈ R such that

f = dl, g = dh and (l, h)R = 1R. Then A(f) = A(d)A(l), A(g) = A(d)A(h) and,

since A(h), A(l) are coprime by part I, the result follows. �

3. The ring F [[x1, . . . , xn]]+

Definition 3.1. The notion of a polynomial over the field F in the indetermi-

nates x1, . . . , xn will be generalized to the notion of a generalized polynomial over

the field F in the indeterminates x1, . . . , xn with non-negative rational exponents

in such a way that the powers of indeterminates are non-negative rational numbers

and, therefore, the monomials have the form

xa1

1 . . . xan

n , where a1, . . . , an ∈ Q
+.

The set of all such generalized polynomials will be denoted F [[x1, . . . , xn]]+ and

considered with the operations + and · defined in the same way as for “ordinary”

polynomials from F [x1, . . . , xn]. It can easily be proved for the generalized polyno-

mials that

F [[x1, . . . , xn]]+ = (F [[x1, . . . , xn]]+,+, ·)

is an integral domain, whose subring is the ring R = F [x1, . . . , xn]. For the sake of

simplicity, we put

S := (F [[x1, . . . , xn]]+,+, ·).

Definition 3.2. An isomorphism A = A(m1, . . . ,mn) ∈ A (m1, . . . ,mn ∈ N)

from R into R will be extended in the natural way to an automorphism B =

B(m1, . . . ,mn) of the ring S, more exactly, we put, for a monomial β = x
β1

1 . . . xβn
n

(b1, . . . , bn ∈ Q+) in S,

B(β) = B(m1, . . . ,mn)(β) = xb1m1

1 . . . xbnmn

n

and

B(f) = B(m1, . . . ,mn)(f) =
N∑

j=1

tjB(βj)

for f =
N∑

j=1

tjβj ∈ S (N ∈ N, tj ∈ F , βj is a monomial in S, 1 6 j 6 N).

The symbol B will denote the set {B = B(m1, . . . ,mn) : m1, . . . ,mn ∈ N}. It is

easy to show the following assertion:
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Proposition 3.3.

(a) For a1, . . . , an, b1, . . . , bn ∈ N, B(a1, . . . , an), B(b1, . . . , bn) ∈ B we have

B(a1, . . . , an) ◦B(b1, . . . , bn) = B(a1b1, . . . , anbn).

(b) (B, ◦) is a commutative monoid with the unity B(1, . . . , 1) satisfying the can-

cellation law which is isomorphic to the monoid (A, ◦). This isomorphism is the

restriction of the automorphisms from B to the domain R = F [x1, . . . , xn].

(c) If f1, . . . , fk ∈ S (k ∈ N), then there exists B ∈ B such that

B(f1), . . . B(fk) ∈ R.

Now we will use the automorphisms from B and Theorem 2.4 to prove the GCD-

Existence Theorem for the ring S.

Theorem 3.4. Each pair of generalized polynomials from the ring S = F [[x1, . . . ,

xn]]+ has a greatest common divisor in S.

If f, g ∈ S and B ∈ B are such that B(f), B(g) ∈ R = F [x1, . . . , xn], then

B−1((B(f), B(g))R) = (f, g)S .

P r o o f. Assume that B ∈ B with B(f), B(g) ∈ R (such B ∈ B exists by

Proposition 3.3 (c)). Let d = (B(f), B(g))R and w = B−1(d). We will show that

w is a greatest common divisor of {f, g} in S.

Since d |
R

B(f), d |
R

B(g), we have w |
S

f , w |
S

g, therefore w is a common divisor of f

and g in S. Suppose that h ∈ S with h |
S

f , h |
S

g. Then there exist u, v ∈ S such that

hu = f , hv = g. By Proposition 3.3 (c), there exists C ∈ B with C(h), C(u), C(v) ∈

R, thus

BC(h) |
R

BC(f) and BC(h) |
R

BC(g).

We get from Theorem 2.4

(BC(f), BC(g))R = (CB(f), CB(g))R = C((B(f), B(g))R) = C(d)

and then BC(h) |
R

C(d). Thus there exists r ∈ R with r · BC(h) = C(d). Applying

the automorphism (BC)−1 of the ring S, we get (BC)−1(r) · h = B−1(d) = w and

h |
S

w, which is what we wanted to prove. �
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Corollary 3.5. If f, g ∈ S = F [[x1, . . . , xn]]+ and C ∈ B, then

(C(f), C(g))S = C((f, g)S).

In other words, the automorphisms of the ring S from B preserve the greatest com-

mon divisor of pairs of elements from S.

P r o o f. By Proposition 3.3 (c), there exists B ∈ B with BC(f), BC(g) ∈ R.

Using Theorem 3.4, we obtain

BC((f, g)S) = (BC(f), BC(g))R = B((C(f), C(g))S),

which proves that

C((f, g)S) = (C(f), C(g))S .

�

4. The ring F [[x1, . . . , xn]]

Definition 4.1. Similarly to a generalized polynomial with non-negative rational

exponents in Definition 3.1, we will define a generalized polynomial over the field F

in the indeterminates x1, . . . , xn with rational exponents. The monomials have the

form

xa1

1 . . . xan

n , where a1, . . . , an ∈ Q.

F [[x1, . . . , xn]] will denote the set of all such generalized polynomials with rational

exponents and the operations + and · are defined on this set in the same way as

in the case of “ordinary” polynomials. It can be proved that F [[x1, . . . , xn]] :=

(F [[x1, . . . , xn]],+, ·) is an integral domain, which, for the sake of simplicity, will be

denoted T . Then

R = F [x1, . . . , xn] ⊆ S = F [[x1, . . . , xn]]+ ⊆ T = F [[x1, . . . , xn]],

where the inclusion ⊆ is considered to be a subring.

In addition, we define the lexicographic order 6 of monomials in F [[x1, . . . , xn]] in

the usual way (under the assumption that the indeterminates x1, . . . , xn are linearly

ordered.)

Suppose that f =
N∑

i=1

tiαi ∈ T ∗, where N ∈ N, ti ∈ F ∗ (1 6 i 6 N) and α1, . . . , αn

are mutually different monomials in T . Let 1 6 u, v 6 N such that αi < αu for each

1 6 i 6 N , i 6= u and αv < αi for each 1 6 i 6 N , i 6= v. We call the monomial

term tuαu, tvαv the highest term in f , the lowest term in f , respectively writing

αu = ht(f), αv = lt(f).
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It is easy to see (as for “ordinary” polynomials):

Proposition 4.2. If f, g ∈ F [[x1, . . . , xn]], f 6= 0, g 6= 0, then

ht(fg) = ht(f) · ht(g), lt(fg) = lt(f) · lt(g).

Proposition 4.3.

U(F [[x1, . . . , xn]]) = {tα : t ∈ F ∗, α is a monomial in F [[x1, . . . , xn]]}.

P r o o f. Suppose f ∈ T . If f = tα where t ∈ F ∗ and α is a monomial in

F [[x1, . . . , xn]] then, obviously, f ∈ U(T ) (f−1 = t−1α−1).

Let f ∈ U(T ) and f =
N∑

i=1

tiαi where N ∈ N, ti ∈ F ∗ and αi is a monomial in T

for each 1 6 i 6 N . Let αN < αN−1 . . . < α1 in the lexicographic order of the

monomials.

Assume thatN > 2 and ϕ = uα, ψ = vβ are the highest term in f−1 and the lowest

term in f−1, respectively (u, v ∈ F ∗, α, β are monomials in T ). By Proposition 4.2,

we have

1 = ht(f · f−1) = ht(f) · ht(f−1) = ut1αα1,

1 = lt(f · f−1) = lt(f) · lt(f−1) = vtNβαN ,

therefore αα1 = βαN . However (since α1 > αN and α > β), we have αα1 > βαN ,

which is a contradiction. Thus N = 1 and the result follows. �

Proposition 4.4. Let f, g ∈ S = F [[x1, . . . , xn]]+, f 6= 0, g 6= 0 and δ ∈ T =

F [[x1, . . . , xn]]. If δ |
T

f and δ |
T

g, then there exists ε ∈ U(T ) such that

εδ ∈ S, εδ |
S

f, εδ |
S

g.

P r o o f. There exist α, β ∈ T ∗ with αδ = f and βδ = g. Let

δ =

J∑

j=1

tjδj , α =

K∑

k=1

ukαk, β =

L∑

l=1

vlβl,
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where J,K,L ∈ N, tj , uk, vl ∈ F ∗ for each 1 6 j 6 J , 1 6 k 6 K, 1 6 l 6 L, and

δ1, . . . , δJ are different monomials in T , α1, . . . , αK are different monomials in T , and

β1, . . . , βL are also different monomials in T . Let

δj =

n∏

ν=1

xd(j,ν)
ν , αk =

n∏

ν=1

xa(k,ν)
ν , βl =

n∏

ν=1

xb(l,ν)
ν

where d(j, ν), a(k, ν), b(l, ν) ∈ Q, 1 6 j 6 J , 1 6 k 6 K, 1 6 l 6 L, 1 6 ν 6 n.

Suppose now that 1 6 ν 6 n is fixed and the monomials in T are lexicographically

ordered under the assumption xν > xµ for each 1 6 µ 6 n, µ 6= ν. Let d(ν) be the

exponent of xν in the lowest term lt(δ) in the generalized polynomial δ. Then

(5) d(ν) 6 d(j, ν) for each 1 6 j 6 J.

By Proposition 4.2, lt(f) = lt(α) · lt(δ), therefore the exponent of xν in lt(f) is

less than or equal to d(ν) + a(k, ν) for each 1 6 k 6 K. Consequently, (f ∈ S)

(6) 0 6 d(ν) + a(k, ν) for each 1 6 k 6 K.

Analogously

(7) 0 6 d(ν) + b(l, ν) for each 1 6 l 6 L.

Put ε =
n∏

ν=1
x
−d(ν)
ν . Summarizing (5), (6), (7), and 4.3 we have ε ∈ U(T ) and

εδj =
n∏

ν=1

xd(j,ν)−d(ν)
ν ∈ S for each 1 6 j 6 J,

ε−1αk =

n∏

ν=1

xd(ν)+a(k,ν)
ν ∈ S for each 1 6 k 6 K,

ε−1βl =

n∏

ν=1

xd(ν)+b(l,ν)
ν ∈ S for each 1 6 l 6 L,

which implies εδ ∈ S, ε−1α ∈ S, ε−1β ∈ S. Since (εδ)(ε−1α) = f and (εδ)(ε−1β) =

g, we get εδ |
S

f and εδ |
S

g, which is what we wanted to prove. �

Before stating and proving the GCD-Existence Theorem for the integral domain

T = F [[x1, . . . , xn]], we prove a general theorem for rings satisfying the property

given in Proposition 4.4.
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Theorem 4.5. Let S be a subring of an integral domain T and let, for any

f, g ∈ S∗, δ ∈ T , the following implication be valid:

δ |
T

f, δ |
T

g ⇒ ∃ ε ∈ U(T ) such that εδ |
S

f, εδ |
S

g.

Then we have

if l, h ∈ S and d = (l, h)S , then d = (l, h)T .

P r o o f. Assume that l, h ∈ S∗ and d = (l, h)S . Since d |
S

l, d |
S

h, we see that d |
T

l,

d |
T

h as well.

Let δ ∈ T , δ |
T

l and δ |
T

h. By the assumption of the Theorem, there exists ε ∈ U(T )

such that εδ ∈ S, εδ |
S

l and εδ |
S

h. This yields εδ |
S

d, thus d = (l, h)T and we are done.

�

Theorem 4.6. In the integral domain T = F [[x1, . . . , xn]], each pair of elements

has a greatest common divisor.

If f, g ∈ T and η ∈ U(T ) with ηf, ηg ∈ S = F [[x1, . . . , xn]]+, then (f, g)T =

(ηf, ηg)S .

P r o o f. Let f, g ∈ T and let η ∈ U(T ) with ηf, ηg ∈ S (obviously such η exists).

By Theorem 3.4, there exists a greatest common divisor d of ηf , ηg in S.

Setting S = S and T = T and applying Theorem 4.5 (the assumption of The-

orem 4.5 is valid by Proposition 4.4), we obtain d = (ηf, ηg)T . Thus d = (f, g)T .

This completes the proof. �
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