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Abstract. Let Pk denote a path with k edges and λKn,n denote the λ-fold complete
bipartite graph with both parts of size n. In this paper, we obtain the necessary and
sufficient conditions for λKn,n to have a balanced Pk-decomposition. We also obtain the
directed version of this result.
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1. Introduction and preliminaries

Let D be a family of edge-disjoint subgraphs of a multigraph H . If every edge of

H appears in some member of D , then D is a decomposition of H . A decomposition

D of a multigraph H is balanced if each vertex of H belongs to the same number

of members in D . For a multigraph G, a decomposition D of a multigraph H is a

G-decomposition of H , if every member of D is isomorphic to G. For multidigraphs

G and H , the following terms are similarly defined: a decomposition of H , a balanced

decomposition of H and a G-decomposition of H .

Let G be a multigraph. We use the symbol G∗ to denote the multidigraph obtained

from G by replacing each edge e by two arcs with opposite directions. For a positive

integer λ, λG denotes the multigraph obtained from G by replacing each edge e by

λ edges each of which has the same endvertices as e. For a multidigraph G, λG is

similarly defined. For a positive integer k, let Pk denote a path with k edges, and
−→
Pk

a directed path with k arcs. Let Kn denote the complete graph on n vertices, and

Kn1,n2
the complete bipartite graph with parts of sizes n1, n2, respectively.

The balanced Pk-decomposition problem of λKn was solved by Huang [3] and Hung

and Mendelsohn [2], [4], independently. The balanced
−→
Pk-decomposition problem of

K∗

n for even k was solved by Bermond [1], [2]. Furthermore, Yu [6] obtained a
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necessary and sufficient condition for Pk-factorization of λKn,n (the Pk-factorization

is a special type of the balanced Pk-decomposition). Recently, Shyu [5] settled the

Pk-decomposition problem of λKn,n with the sole exception of λ = 3, n = 15 and

k = 27. In this paper the balanced Pk-decomposition of λKn,n and the balanced
−→
Pk-decomposition of λK∗

n,n are investigated. We obtain the following results:

Theorem 2.6. λKn,n has a balanced Pk-decomposition if and only if k 6 2n− 1

and (k + 1)λn ≡ 0 (mod 2k).

Theorem 2.7. λK∗

n,n has a balanced
−→
Pk-decomposition if and only if k 6 2n− 1

and λn ≡ 0 (mod k).

2. Balanced Pk-decompositions of λKn,n

In this section we investigate the balanced Pk-decomposition of λKn,n. A multi-

graph G is r-regular if each vertex of G is incident with r edges. Obviously λKn,n

is λn-regular. We begin with a necessary condition for the existence of a balanced

decomposition.

Proposition 2.1 [1; pp. 45–46]. Suppose that G is a multigraph of order n1, size

e1, and H is a multigraph of order n2, size e2. If H has a balanced G-decomposition

then n1e2 ≡ 0 (mod n2e1).

The above proposition implies a necessary condition for a regular multigraph to

have a balanced decomposition.

Corollary 2.2. Suppose that G is a multigraph of order n1, size e1. If an r-regular

multigraph has a balanced G-decomposition, then n1r ≡ 0 (mod 2e1).

Now a necessary condition for a regular multigraph to have a balanced path de-

composition follows.

Corollary 2.3. If an r-regular multigraph has a balanced Pk-decomposition, then

(k + 1)r ≡ 0 (mod 2k).

For our discussions in this section, we introduce the following terms and notations.

For a positive integer n and an integer k, the notation k (mod n) denotes the integer

l with 0 6 l 6 n − 1 and l ≡ k (mod n). For example, 22 (mod 5), 23 (mod 5),

24 (mod 5), 25 (mod 5), 26 (mod 5) denote 2, 3, 4, 0, 1, respectively. Let (A, B)

be the bipartition of the bipartite graph λKn,n where A = {a0, a1, . . . , an−1} and
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B = {b0, b1, . . . , bn−1}. The subscripts of ai and bj will always be taken modulo n.

For any edge aibj (0 6 i, j 6 n − 1) in λKn,n, the label of aibj is (j − i) (mod n).

Thus the label of aibj is j− i if 0 6 i 6 j 6 n−1, and is j− i+n if 0 6 j < i 6 n−1.

Note that all the λ edges joining ai and bj have the same label.

Let G be a multigraph. For x, y ∈ V (G) with x 6= y, we use mG(x, y) to denote

the number of edges joining x and y in G. If xy is an edge of G, mG(x, y) is called

the multiplicity of the edge xy in G.

Let G be a subgraph of λKn,n with vertex set V (G) and edge set E(G), and

let r be a nonnegative integer. Then G + r denotes the subgraph of λKn,n with

vertex set {ai+r : ai ∈ V (G)} ∪ {bj+r : bj ∈ V (G)} and edge set {ai+rbj+r with

multiplicity µij : aibj ∈ E(G) with multiplicity µij}. Further G+r denotes the sub-

graph of λKn,n with vertex set {ai : ai ∈ V (G)} ∪ {bj+r : bj ∈ V (G)} and edge set

{aibj+r with multiplicity µij : aibj ∈ E(G) with multiplicity µij}.

Suppose that G1, G2, . . . , Gt are subgraphs of a multigraph. We use G1+G2+. . .+

Gt to denote the multigraph S with vertex set V (S) =
t⋃

i=1

V (Gi), and for x, y ∈

V (S) with x 6= y, mS(x, y) =
t∑

i=1

mGi
(x, y) (in case x or y is not in V (Gi), we let

mGi
(x, y) = 0). The graph G1+G2+. . .+Gt is called the edge sum of G1, G2, . . . , Gt,

and is also denoted by
t∑

i=1

Gi.

Lemma 2.4. Suppose that Q is a subgraph of λKn,n containing k edges which

have the respective labels a (mod n), (a+1) (mod n), (a+2) (mod n), . . . , (a+k−1)

(mod n). Let t be a positive integer with tk 6 λn. Then
t−1∑
i=0

Q+ik is a subgraph

of λKn,n containing tk edges which have the respective labels a (mod n), (a + 1)

(mod n), (a + 2) (mod n), . . . , (a + tk − 1) (mod n).

P r o o f. Let G be the multigraph
t−1∑
i=0

Q+ik. Since each Q+ik (i = 0, 1, . . . , t− 1)

is a subgraph of λKn,n, G is a subgraph of tλKn,n. Further, since each Q+ik (i =

0, 1, . . . , t − 1) contains k edges, G contains tk edges. The fact that the edges of Q

have labels a (mod n), (a+1) (mod n), . . . , (a+k−1) (mod n) implies that the edges

of Q+k have labels (a+k) (mod n), (a+k+1) (mod n), . . . , (a+2k−1) (mod n), the

edges of Q+2k have labels (a + 2k) (mod n), (a + 2k + 1) (mod n), . . . , (a + 3k − 1)

(mod n), . . ., and the edges of Q+(t−1)k have labels (a + (t − 1)k) (mod n), (a +

(t − 1)k + 1) (mod n), . . . , (a + tk − 1)(modn). Thus the edges of G have labels a

(mod n), (a + 1) (mod n), . . . , (a + tk − 1) (mod n). Now we show that G is in fact

a subgraph of λKn,n. In G, there are either ⌊tk/n⌋ or ⌈tk/n⌉ edges (multiplicities

being considered) with labels i for each i = 0, 1, 2, . . . , n − 1. Thus each edge in G

has multiplicity 6 ⌈tk/n⌉ 6 λ, which implies that G is a subgraph of λKn,n. �
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Lemma 2.5. Suppose that G is a subgraph of λKn,n containing exactly λi edges

(multiplicities are counted) with label i, i = 0, 1, . . . , n − 1. Then
n−1∑
r=0

(G + r) is a

subgraph of λKn,n with the property that each edge with label i has multiplicity λi.

P r o o f. Let S =
n−1∑
r=0

(G + r). Suppose that e is an edge with label i. Let

e = akbk+i, for some 0 6 k 6 n − 1. Then

mS(ak, bk+i) =
n−1∑

r=0

mG+r(ak, bk+i) =
n−1∑

r=0

mG(ak−r, bk+i−r) = λi.

Thus each edge in S with label i has multiplicity λi. Since λi 6 λ, S is a subgraph

of λKn,n. �

Letting λ0 = λ1 = λ2 = . . . = λn−1 = λ in Lemma 2.5, we have

Lemma 2.6. Suppose that G is a subgraph of λKn,n containing exactly λ edges

(multiplicities being counted) with labels i, i = 0, 1, . . . , n − 1. Then
n−1∑
r=0

(G + r) =

λKn,n.

The following lemma is trivial.

Lemma 2.7. Let G be a subgraph of λKn,n, and let G have v vertices in A =

{a0, a1, . . . , an−1}. Suppose thatG, G+1, G+2, . . . , G+(n−1) are distinct subgraphs

of λKn,n. Let F = {G + r : r = 0, 1, 2, . . . , n − 1}. Then for each a ∈ A, a belongs

to v members in F . �

Now we prove the main result of this section.

Theorem 2.8. λKn,n has a balanced Pk-decomposition if and only if k 6 2n− 1

and (k + 1)λn ≡ 0 (mod 2k).

P r o o f. (Necessity) The required inequality is trivial. The required congruence

relation follows from Corollary 2.3 since λKn,n is a λn-regular multigraph.

(Sufficiency) The assumption (k + 1)λn ≡ 0 (mod 2k) implies λn ≡ 0 (mod k). Let

λn = pk where p is a positive integer. We distinguish two cases: Case 1. k is odd,

Case 2. k is even.

C a s e 1. k is odd.

Let Q be the walk b k−1

2

a k−1

2

b k+1

2

a k−3

2

b k+3

2

a k−5

2

. . . bk−2a1bk−1a0. Since
k+1
2 6 n,

we see that the vertices b k−1

2

, b k+1

2

, b k+3

2

, . . . , bk−2, bk−1 are distinct, and so are the

vertices a k−1

2

, a k−3

2

, a k−5

2

, . . . , a1, a0. Thus Q is a path of length k. We see that Q
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consists of edges with labels 0, 1, 2, . . . , (k − 1) (mod n). Let G be the edge sum

Q + Q+k + Q+2k + . . . + Q+(p−1)k. By Lemma 2.4, G is a subgraph of λKn,n

consisting of edges with labels 0, 1, 2, . . . , (pk − 1) (mod n), and hence with labels

0, 1, 2, . . . , (λn − 1) (mod n). Thus for each i ∈ {0, 1, . . . , n − 1}, G contains exactly

λ edges (multiplicities being counted) with label i. Thus

λKn,n =
n−1∑

r=0

(G + r) (by Lemma 2.6)

=
n−1∑

r=0

((Q + Q+k + . . . + Q+(p−1)k) + r)

=
n−1∑

r=0

((Q + r) + (Q+k + r) + . . . + (Q+(p−1)k + r)).

Thus λKn,n can be decomposed into the following paths of length k : Q+ik + r

(i = 0, 1, . . . , p − 1; r = 0, 1, . . . , n − 1). Let F = {Q+ik + r : i = 0, 1, . . . , p − 1; r =

0, 1, . . . , n − 1}. Then F is a Pk-decomposition of λKn,n. Now we check that the

decomposition F is balanced. Since Q has k+1
2 vertices in A, so does each Q+ik

(i = 1, 2, . . . , p − 1). By Lemma 2.7, for each a ∈ A, a belongs to pk+1
2 members

in F . Similarly, since Q has k+1
2 vertices in B, for each b ∈ B, b belongs to pk+1

2

members in F . Thus F is balanced.

C a s e 2. k is even.

Since (k + 1)λn ≡ 0 (mod 2k) and λn = pk, we have (k + 1)p ≡ 0 (mod 2), which

implies p ≡ 0 (mod 2). Let Q be the walk a k
2
b k

2
a k

2
−1b k

2
+1a k

2
−2b k

2
+2 . . . a1bk−1a0.

Since k 6 2n − 1 and k is even, we have k
2 + 1 6 n, which implies that the vertices

a k
2
, a k

2
−1, a k

2
−2, . . . , a1, a0 are distinct, and so are the vertices b k

2
, b k

2
+1, b k

2
+2, . . . ,

bk−1. Hence Q is a path of length k. We see that Q consists of edges with labels

0, 1, 2, . . . , (k − 1) (mod n). Since pk = λn, we have p

2k 6 λn. By Lemma 2.4,

Q + Q+k + Q+2k + . . . , Q+( p

2
−1)k is a subgraph of λKn,n of which the edges have

labels 0, 1, 2, . . . , (p

2k − 1) (mod n).

Let R be the walk b( p
2
+ 1

2
)k−1a k

2
−1b( p

2
+ 1

2
)ka k

2
−2 . . . b( p

2
+1)k−2a0b( p

2
+1)k−1. Then

R is a path of length k consisting of edges with labels p

2k (mod n), (p

2k + 1)

(mod n), (p
2k + 2) (mod n), . . . , ((p

2 + 1)k − 1) (mod n). Again, by Lemma 2.4,

R + R+k + R+2k + . . . , R+( p
2
−1)k is a subgraph of λKn,n the edges of which have

labels p
2k (mod n), (p

2k + 1) (mod n), (p
2k + 2) (mod n), . . . , (pk − 1) (mod n).

Let G = Q + Q+k + Q+2k + . . . + Q+( p

2
−1)k + R + R+k + R+2k + . . . + R+( p

2
−1)k.

Then the edges in G are with labels 0, 1, . . . , (pk − 1) (mod n). Since pk = λn, G

993



contains exactly λ edges with label i for each i = 0, 1, 2, . . . , n − 1. Thus

λKn,n =

n−1∑

r=0

(G + r) (by Lemma 2.6)

=

n−1∑

r=0

((Q + Q+k + . . . + Q+( p

2
−1)k + R + R+k + . . . + R+( p

2
−1)k) + r)

=
n−1∑

r=0

((Q + r) + (Q+k + r) + . . . + (Q+( p

2
−1)k + r)

+ (R + r) + (R+k + r) + . . . + (R+( p
2
−1)k + r)).

Hence λKn,n is decomposed into the following paths of length k : Q+ik + r (i =

0, 1, . . . , p
2−1; r = 0, 1, . . . , n−1), and R+ik+r (i = 0, 1, . . . , p

2−1; r = 0, 1, . . . , n−1).

Let F1 = {Q+ik + r : i = 0, 1, . . . , p

2 − 1; r = 0, 1, . . . , n− 1}, F2 = {R+ik + r : i =

0, 1, . . . , p
2−1; r = 0, 1, . . . , n−1}, and let F = F1∪F2. Then F is a Pk-decomposition

of λKn,n. Now we check that the decomposition F is balanced. Since Q has k
2 + 1

vertices in A and k
2 vertices in B, by an argument similar to Case 1, for each a ∈ A,

a belongs to p

2 (k
2 + 1) members in F1, and for each b ∈ B, b belongs to p

2
k
2 members

in F1. Similarly, since R has k
2 vertices in A and k

2 + 1 vertices in B, for each a ∈ A,

a belongs to p

2
k
2 members in F2, and for each b ∈ B, b belongs to p

2 (k
2 + 1) members

in F2. Consequently, for each x ∈ A∪B, x belongs to p
2 (k+1) members in F . Hence

F is balanced. �

3. Balanced
→

Pk-decompositions of λK∗

n,n

In this section we investigate the balanced
→

Pk-decompositions of λK∗

n,n. We intro-

duce some terms and notations which are similar to those in Section 2. Let (A, B)

be the bipartition of λK∗

n,n where A = {a0, a1, . . ., an−1} and B = {b0, b1, . . . , bn−1},

and the subscripts of ai and bj will always be taken modulo n. Now label the

arcs in λK∗

n,n. First, assign labels 0, 1, 2, . . . , n − 1 to arcs of the form
−−→
aibj . For

0 6 i, j 6 n − 1, the label of
−−→
aibj is (j − i) (mod n). Next we assign labels

0, 1, 2, . . . , n − 1 to arcs of the form
−−→
bjai by the following rule: when the label of

−−→
aibj is t, assign

−−→
bjai the label t. For example in 3K∗

6,6, the labels of
−−→
a2b4 and

−−→
a3b1

are 2 and 4, respectively, and the labels of
−−→
b4a2 and

−−→
b1a3 are 2 and 4, respectively.

Suppose that G is a multidigraph. For x, y ∈ V (G) with x 6= y, we use mG(x, y)

to denote the number of arcs from x to y in G. If −→xy is an arc of G, mG(x, y) is

called the multiplicity of −→xy in G.
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Let G be a subdigraph of λK∗

n,n with vertex set V (G) and arc set E(G), and

let r be a nonnegative integer. Then G + r denotes the subdigraph of λK∗

n,n with

vertex set {ai+r : ai ∈ V (G)} ∪ {bj+r : bj ∈ V (G)} and arc set {
−−−−−→
ai+rbj+r with

multiplicity µij :
−−→
aibj ∈ E(G) with multiplicity µij} ∪ {

−−−−−→
bj+rai+r with multiplicity

̺ji :
−−→
bjai ∈ E(G) with multiplicity ̺ji}. Further, G+r denotes the subdigraph of

λK∗

n,n with vertex set {ai : ai ∈ V (G)} ∪ {bj+r : bj ∈ V (G)} and arc set {
−−−→
aibj+r

with multiplicity µij :
−−→
aibj ∈ E(G) with multiplicity µij}∪ {

−−−→
bj+rai with multiplicity

̺ji :
−−→
bjai ∈ E(G) with multiplicity ̺ji}.

Suppose that G1, G2, . . . , Gt are subdigraphs of a multidigraph. We use G1 +

G2 + . . . + Gt to denote the multidigraph S with vertex set V (S) =
t⋃

i=1

V (Gi), and

for x, y ∈ V (S) with x 6= y, mS(x, y) =
t∑

i=1

mGi
(x, y) (in case x or y is not in V (Gi),

we let mGi
(x, y) = 0). The graph G1 + G2 + . . . + Gt is called the arc sum of

G1, G2, . . . , Gt, and is also denoted by
t∑

i=1

Gi.

Now consider the balanced
−→
Pk-decomposition of λK∗

n,n. The following three lem-

mas being similar to Lemmas 2.5–2.7, we omit the proofs.

Lemma 3.1. LetG be a subdigraph of λK∗

n,n. Suppose that for α = 0, 1, . . . , n−1,

0, 1, . . . , n − 1, G contains exactly λα arcs (multiplicities being counted) with label

α where λα 6 λ. Then
n−1∑
r=0

(G + r) is a subdigraph of λK∗

n,n with the property that

each arc with label α has multiplicity λα.

Letting λα = λ for α = 0, 1, . . . , n − 1, 0, 1, . . . , n − 1 in Lemma 3.1, we have

Lemma 3.2. Suppose that G is a subdigraph of λK∗

n,n. For α = 0, 1, . . . , n − 1,

0, 1, . . . , n − 1, G contains exactly λ arcs (multiplicities being counted) with label α.

Then
n−1∑
r=0

(G + r) = λK∗

n,n.

Lemma 3.3. Let G be a subdigraph of λK∗

n,n, and let G have v vertices in

A = {a0, a1, . . . , an−1}. Suppose that G, G + 1, G + 2, . . . , G + (n − 1) are distinct

subdigraphs of λK∗

n,n. Let F = {G+ r : r = 0, 1, 2, . . . , n− 1}. Then for each a ∈ A,

a belongs to v members in F .

Now we prove the main result of this section.
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Theorem 3.4. λK∗

n,n has a balanced
−→
Pk-decomposition if and only if k 6 2n− 1

and λn ≡ 0 (mod k).

P r o o f. (Necessity) The required inequality is trivial. Now we prove the required

congruence relation. Removing the directions from the arcs of directed paths in the

balanced
−→
Pk-decomposition of λK∗

n,n, we obtain a balanced Pk-decomposition of

2λKn,n. By the necessity condition of Theorem 2.8, (k + 1)2λn ≡ 0 (mod 2k), and

hence λn ≡ 0 (mod k).

(Sufficiency) Let λn = pk where p is a positive integer. We distinguish two cases:

Case 1. 2k | (k + 1)λn, Case 2. 2k ∤ (k + 1)λn.

C a s e 1. 2k | (k + 1)λn.

Since k 6 2n − 1, by Theorem 2.8 there exists a balanced Pk-decomposition of

λKn,n. Replacing each edge in λKn,n by two arcs with opposite directions, we obtain

λK∗

n,n, and any Pk in λKn,n becomes two
−→
Pk’s with opposite directions in λK∗

n,n.

Thus we obtain a balanced
−→
Pk-decomposition of λK∗

n,n.

C a s e 2. 2k ∤ (k + 1)λn.

Since λn = pk and 2k ∤ (k + 1)λn, we have 2 ∤ (k + 1)p, which implies that p is

odd and k is even.

Let Q be the directed walk a k
2
b k

2
a k

2
−1b k

2
+1a k

2
−2b k

2
+2 . . . a1bk−1a0. Since

k
2 + 1 6

n, we see that the vertices a k
2
, a k

2
−1, a k

2
−2, . . . , a1, a0 are distinct, and so are the

vertices b k
2
, b k

2
+1, b k

2
+2, . . . , bk−1. Hence Q is a directed path of length k. We

see that the arcs of Q have labels 0, 1, 2, 3, . . . , (k − 2) (mod n), (k − 1) (mod n),

the arcs of Q+k have labels k (mod n), (k + 1) (mod n), . . ., (2k − 2) (mod n),

(2k − 1) (mod n), the arcs of Q+2k have labels 2k (mod n), (2k + 1) (mod n), . . .,

(3k−2) (mod n), (3k − 1) (mod n), . . ., and the arcs of Q+(p−1)k have labels (p−1)k

(mod n), ((p − 1)k + 1) (mod n), . . ., (pk−2) (mod n), (pk − 1) (mod n). Thus the

arcs of Q + Q+k + Q+2k + . . . + Q+(p−1)k have labels 0, 1, 2, 3, . . . , (pk − 2) (mod n),

(pk − 1) (mod n).

Let R be the directed walk b k
2
−1a k

2
−1b k

2
a k

2
−2 . . . bk−2a0bk−1. Then R is a directed

path of length k. We see that the arcs of R have labels 0, 1, 2, 3, . . . , (k − 2) (mod n),

(k − 1) (mod n), the arcs of R+k have labels k (mod n), (k + 1) (mod n), . . . ,

(2k − 2) (mod n), (2k − 1) (mod n), the arcs of R+2k have labels 2k (mod n),

(2k + 1) (mod n), . . . , (3k − 2) (mod n), (3k − 1) (mod n), . . ., and the arcs of

R+(p−1)k have labels (p − 1)k (mod n), ((p−1)k+1) (mod n), . . . , (pk − 2) (mod n),

(pk − 1) (mod n). Thus the arcs of R + R+k + R+2k + . . . + R+(p−1)k have labels

0, 1, 2, 3, . . . , (pk − 2) (mod n), (pk − 1) (mod n).

Let G = Q + Q+k + Q+2k + . . . + Q+(p−1)k + R + R+k + R+2k + . . . + R+(p−1)k.

From above we see that the arcs in G have labels 0, 1, . . . , (pk − 1) (mod n) and

996



0, 1, . . . , (pk − 1) (mod n). Since pk = λn, G contains exactly λ edges with label α

for each α = 0, 1, . . . n − 1, 0, 1, . . . , n − 1. Thus

λK∗

n,n =
n−1∑

r=0

(G + r) (by Lemma 3.2)

=
n−1∑

r=0

((Q + Q+k + . . . + Q+(p−1)k + R + R+k + . . . + R+(p−1)k) + r)

=
n−1∑

r=0

((Q + r) + (Q+k + r) + . . . + (Q+(p−1)k + r)

+ (R + r) + (R+k + r) + . . . + (R+(p−1)k + r).

Hence λK∗

n,n is decomposed into the following directed paths of length k : Q+ik+r

(i = 0, 1, . . . , p−1; r = 0, 1, . . . , n−1), R+ik+r (i = 0, 1, . . . , p−1; r = 0, 1, . . . , n−1).

Let F1 = {Q+ik + r : i = 0, 1, . . . , p − 1; r = 0, 1, . . . , n − 1}, F2 = {R+ik + r : i =

0, 1, . . . , p− 1; r = 0, 1, . . . , n − 1}, and F = F1 ∪ F2. Then F is a
−→
Pk-decomposition

of λK∗

n,n. Now we check that the decomposition F is balanced. Since Q has k
2 + 1

vertices in A and k
2 vertices in B, by Lemma 3.3, for each a ∈ A, a belongs to p(k

2 +1)

members in F1, and for each b ∈ B, b belongs to pk
2 members in F1. Similarly, since

R has k
2 vertices in A and k

2 + 1 vertices in B, for each a ∈ A, a belongs to pk
2

members in F2, and for each b ∈ B, b belongs to p(k
2 + 1) members in F2. Thus for

each x ∈ A ∪ B, x belongs to p(k + 1) members in F . Hence F is balanced. �
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