Czechoslovak Mathematical Journal

Hung-Chih Lee; Chiang Lin
Balanced path decomposition of $\lambda K_{n, n}$ and $\lambda K_{n, n}^{*}$

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 4, 989-997
Persistent URL: http://dml.cz/dmlcz/140530

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

BALANCED PATH DECOMPOSITION OF $\lambda K_{n, n}$ AND $\lambda K_{n, n}^{*}$
 Hung-Chif Lee, Taichung, Chiang Lin, Chung-Li

(Received April 24, 2008)

Abstract

Let P_{k} denote a path with k edges and $\lambda K_{n, n}$ denote the λ-fold complete bipartite graph with both parts of size n. In this paper, we obtain the necessary and sufficient conditions for $\lambda K_{n, n}$ to have a balanced P_{k}-decomposition. We also obtain the directed version of this result.

Keywords: path decomposition, balanced decomposition, complete bipartite graph
MSC 2010: 05C38, 05C70

1. Introduction and preliminaries

Let \mathscr{D} be a family of edge-disjoint subgraphs of a multigraph H. If every edge of H appears in some member of \mathscr{D}, then \mathscr{D} is a decomposition of H. A decomposition \mathscr{D} of a multigraph H is balanced if each vertex of H belongs to the same number of members in \mathscr{D}. For a multigraph G, a decomposition \mathscr{D} of a multigraph H is a G-decomposition of H, if every member of \mathscr{D} is isomorphic to G. For multidigraphs G and H, the following terms are similarly defined: a decomposition of H, a balanced decomposition of H and a G-decomposition of H.

Let G be a multigraph. We use the symbol G^{*} to denote the multidigraph obtained from G by replacing each edge e by two arcs with opposite directions. For a positive integer $\lambda, \lambda G$ denotes the multigraph obtained from G by replacing each edge e by λ edges each of which has the same endvertices as e. For a multidigraph $G, \lambda G$ is similarly defined. For a positive integer k, let P_{k} denote a path with k edges, and $\overrightarrow{P_{k}}$ a directed path with k arcs. Let K_{n} denote the complete graph on n vertices, and $K_{n_{1}, n_{2}}$ the complete bipartite graph with parts of sizes n_{1}, n_{2}, respectively.

The balanced P_{k}-decomposition problem of λK_{n} was solved by Huang [3] and Hung and Mendelsohn [2], [4], independently. The balanced $\overrightarrow{P_{k}}$-decomposition problem of K_{n}^{*} for even k was solved by Bermond [1], [2]. Furthermore, Yu [6] obtained a
necessary and sufficient condition for P_{k}-factorization of $\lambda K_{n, n}$ (the P_{k}-factorization is a special type of the balanced P_{k}-decomposition). Recently, Shyu [5] settled the P_{k}-decomposition problem of $\lambda K_{n, n}$ with the sole exception of $\lambda=3, n=15$ and $k=27$. In this paper the balanced P_{k}-decomposition of $\lambda K_{n, n}$ and the balanced $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n}^{*}$ are investigated. We obtain the following results:

Theorem 2.6. $\lambda K_{n, n}$ has a balanced P_{k}-decomposition if and only if $k \leqslant 2 n-1$ and $(k+1) \lambda n \equiv 0(\bmod 2 k)$.

Theorem 2.7. $\lambda K_{n, n}^{*}$ has a balanced $\overrightarrow{P_{k}}$-decomposition if and only if $k \leqslant 2 n-1$ and $\lambda n \equiv 0(\bmod k)$.

2. BALANCED P_{k}-DECOMPOSITIONS OF $\lambda K_{n, n}$

In this section we investigate the balanced P_{k}-decomposition of $\lambda K_{n, n}$. A multigraph G is r-regular if each vertex of G is incident with r edges. Obviously $\lambda K_{n, n}$ is λn-regular. We begin with a necessary condition for the existence of a balanced decomposition.

Proposition 2.1 [$1 ;$ pp. 45-46]. Suppose that G is a multigraph of order n_{1}, size e_{1}, and H is a multigraph of order n_{2}, size e_{2}. If H has a balanced G-decomposition then $n_{1} e_{2} \equiv 0\left(\bmod n_{2} e_{1}\right)$.

The above proposition implies a necessary condition for a regular multigraph to have a balanced decomposition.

Corollary 2.2. Suppose that G is a multigraph of order n_{1}, size e_{1}. If an r-regular multigraph has a balanced G-decomposition, then $n_{1} r \equiv 0\left(\bmod 2 e_{1}\right)$.

Now a necessary condition for a regular multigraph to have a balanced path decomposition follows.

Corollary 2.3. If an r-regular multigraph has a balanced P_{k}-decomposition, then $(k+1) r \equiv 0(\bmod 2 k)$.

For our discussions in this section, we introduce the following terms and notations. For a positive integer n and an integer k, the notation $k(\bmod n)$ denotes the integer l with $0 \leqslant l \leqslant n-1$ and $l \equiv k(\bmod n)$. For example, $22(\bmod 5), 23(\bmod 5)$, $24(\bmod 5), 25(\bmod 5), 26(\bmod 5)$ denote $2,3,4,0,1$, respectively. Let (A, B) be the bipartition of the bipartite graph $\lambda K_{n, n}$ where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and
$B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$. The subscripts of a_{i} and b_{j} will always be taken modulo n. For any edge $a_{i} b_{j}(0 \leqslant i, j \leqslant n-1)$ in $\lambda K_{n, n}$, the label of $a_{i} b_{j}$ is $(j-i)(\bmod n)$. Thus the label of $a_{i} b_{j}$ is $j-i$ if $0 \leqslant i \leqslant j \leqslant n-1$, and is $j-i+n$ if $0 \leqslant j<i \leqslant n-1$. Note that all the λ edges joining a_{i} and b_{j} have the same label.

Let G be a multigraph. For $x, y \in V(G)$ with $x \neq y$, we use $m_{G}(x, y)$ to denote the number of edges joining x and y in G. If $x y$ is an edge of $G, m_{G}(x, y)$ is called the multiplicity of the edge $x y$ in G.

Let G be a subgraph of $\lambda K_{n, n}$ with vertex set $V(G)$ and edge set $E(G)$, and let r be a nonnegative integer. Then $G+r$ denotes the subgraph of $\lambda K_{n, n}$ with vertex set $\left\{a_{i+r}: a_{i} \in V(G)\right\} \cup\left\{b_{j+r}: b_{j} \in V(G)\right\}$ and edge set $\left\{a_{i+r} b_{j+r}\right.$ with multiplicity $\mu_{i j}: a_{i} b_{j} \in E(G)$ with multiplicity $\left.\mu_{i j}\right\}$. Further G_{+r} denotes the subgraph of $\lambda K_{n, n}$ with vertex set $\left\{a_{i}: a_{i} \in V(G)\right\} \cup\left\{b_{j+r}: b_{j} \in V(G)\right\}$ and edge set $\left\{a_{i} b_{j+r}\right.$ with multiplicity $\mu_{i j}: a_{i} b_{j} \in E(G)$ with multiplicity $\left.\mu_{i j}\right\}$.

Suppose that $G_{1}, G_{2}, \ldots, G_{t}$ are subgraphs of a multigraph. We use $G_{1}+G_{2}+\ldots+$ G_{t} to denote the multigraph S_{t} with vertex set $V(S)=\bigcup_{i=1}^{t} V\left(G_{i}\right)$, and for $x, y \in$ $V(S)$ with $x \neq y, m_{S}(x, y)=\sum_{i=1}^{t} m_{G_{i}}(x, y)$ (in case x or $\begin{gathered}i=1 \\ y\end{gathered}$ is not in $V\left(G_{i}\right)$, we let $\left.m_{G_{i}}(x, y)=0\right)$. The graph $G_{1}+G_{2}+\ldots+G_{t}$ is called the edge sum of $G_{1}, G_{2}, \ldots, G_{t}$, and is also denoted by $\sum_{i=1}^{t} G_{i}$.

Lemma 2.4. Suppose that Q is a subgraph of $\lambda K_{n, n}$ containing k edges which have the respective labels $a(\bmod n),(a+1)(\bmod n),(a+2)(\bmod n), \ldots,(a+k-1)$ $(\bmod n)$. Let t be a positive integer with $t k \leqslant \lambda n$. Then $\sum_{i=0}^{t-1} Q_{+i k}$ is a subgraph of $\lambda K_{n, n}$ containing tk edges which have the respective labels $a(\bmod n),(a+1)$ $(\bmod n),(a+2)(\bmod n), \ldots,(a+t k-1)(\bmod n)$.

Proof. Let G be the multigraph $\sum_{i=0}^{t-1} Q_{+i k}$. Since each $Q_{+i k}(i=0,1, \ldots, t-1)$ is a subgraph of $\lambda K_{n, n}, G$ is a subgraph of $t \lambda K_{n, n}$. Further, since each $Q_{+i k}(i=$ $0,1, \ldots, t-1)$ contains k edges, G contains $t k$ edges. The fact that the edges of Q have labels $a(\bmod n),(a+1)(\bmod n), \ldots,(a+k-1)(\bmod n)$ implies that the edges of Q_{+k} have labels $(a+k)(\bmod n),(a+k+1)(\bmod n), \ldots,(a+2 k-1)(\bmod n)$, the edges of $Q_{+2 k}$ have labels $(a+2 k)(\bmod n),(a+2 k+1)(\bmod n), \ldots,(a+3 k-1)$ $(\bmod n), \ldots$, and the edges of $Q_{+(t-1) k}$ have labels $(a+(t-1) k)(\bmod n),(a+$ $(t-1) k+1)(\bmod n), \ldots,(a+t k-1)(\bmod n)$. Thus the edges of G have labels a $(\bmod n),(a+1)(\bmod n), \ldots,(a+t k-1)(\bmod n)$. Now we show that G is in fact a subgraph of $\lambda K_{n, n}$. In G, there are either $\lfloor t k / n\rfloor$ or $\lceil t k / n\rceil$ edges (multiplicities being considered) with labels i for each $i=0,1,2, \ldots, n-1$. Thus each edge in G has multiplicity $\leqslant\lceil t k / n\rceil \leqslant \lambda$, which implies that G is a subgraph of $\lambda K_{n, n}$.

Lemma 2.5. Suppose that G is a subgraph of $\lambda K_{n, n}$ containing exactly λ_{i} edges (multiplicities are counted) with label $i, i=0,1, \ldots, n-1$. Then $\sum_{r=0}^{n-1}(G+r)$ is a subgraph of $\lambda K_{n, n}$ with the property that each edge with label i has multiplicity λ_{i}.

Proof. Let $S=\sum_{r=0}^{n-1}(G+r)$. Suppose that e is an edge with label i. Let $e=a_{k} b_{k+i}$, for some $0 \leqslant k \leqslant n-1$. Then

$$
m_{S}\left(a_{k}, b_{k+i}\right)=\sum_{r=0}^{n-1} m_{G+r}\left(a_{k}, b_{k+i}\right)=\sum_{r=0}^{n-1} m_{G}\left(a_{k-r}, b_{k+i-r}\right)=\lambda_{i} .
$$

Thus each edge in S with label i has multiplicity λ_{i}. Since $\lambda_{i} \leqslant \lambda, S$ is a subgraph of $\lambda K_{n, n}$.

Letting $\lambda_{0}=\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n-1}=\lambda$ in Lemma 2.5, we have
Lemma 2.6. Suppose that G is a subgraph of $\lambda K_{n, n}$ containing exactly λ edges (multiplicities being counted) with labels $i, i=0,1, \ldots, n-1$. Then $\sum_{r=0}^{n-1}(G+r)=$ $\lambda K_{n, n}$.

The following lemma is trivial.

Lemma 2.7. Let G be a subgraph of $\lambda K_{n, n}$, and let G have v vertices in $A=$ $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$. Suppose that $G, G+1, G+2, \ldots, G+(n-1)$ are distinct subgraphs of $\lambda K_{n, n}$. Let $F=\{G+r: r=0,1,2, \ldots, n-1\}$. Then for each $a \in A$, a belongs to v members in F.

Now we prove the main result of this section.

Theorem 2.8. $\lambda K_{n, n}$ has a balanced P_{k}-decomposition if and only if $k \leqslant 2 n-1$ and $(k+1) \lambda n \equiv 0(\bmod 2 k)$.

Proof. (Necessity) The required inequality is trivial. The required congruence relation follows from Corollary 2.3 since $\lambda K_{n, n}$ is a λn-regular multigraph.
(Sufficiency) The assumption $(k+1) \lambda n \equiv 0(\bmod 2 k)$ implies $\lambda n \equiv 0(\bmod k)$. Let $\lambda n=p k$ where p is a positive integer. We distinguish two cases: Case $1 . k$ is odd, Case 2. k is even.

Case 1. k is odd.
Let Q be the walk $b_{\frac{k-1}{2}} a_{\frac{k-1}{2}} b_{\frac{k+1}{2}} a_{\frac{k-3}{2}} b_{\frac{k+3}{2}} a_{\frac{k-5}{2}} \ldots b_{k-2} a_{1} b_{k-1} a_{0}$. Since $\frac{k+1}{2} \leqslant n$, we see that the vertices $b_{\frac{k-1}{2}}, b_{\frac{k+1}{2}}, b_{\frac{k+3}{2}}, \ldots, b_{k-2}, b_{k-1}$ are distinct, and so are the vertices $a_{\frac{k-1}{2}}, a_{\frac{k-3}{2}}, a_{\frac{k-5}{2}}, \ldots, a_{1}, a_{0}$. Thus Q is a path of length k. We see that Q
consists of edges with labels $0,1,2, \ldots,(k-1)(\bmod n)$. Let G be the edge sum $Q+Q_{+k}+Q_{+2 k}+\ldots+Q_{+(p-1) k}$. By Lemma 2.4, G is a subgraph of $\lambda K_{n, n}$ consisting of edges with labels $0,1,2, \ldots,(p k-1)(\bmod n)$, and hence with labels $0,1,2, \ldots,(\lambda n-1)(\bmod n)$. Thus for each $i \in\{0,1, \ldots, n-1\}, G$ contains exactly λ edges (multiplicities being counted) with label i. Thus

$$
\begin{aligned}
\lambda K_{n, n} & =\sum_{r=0}^{n-1}(G+r) \quad(\text { by Lemma } 2.6) \\
& =\sum_{r=0}^{n-1}\left(\left(Q+Q_{+k}+\ldots+Q_{+(p-1) k}\right)+r\right) \\
& =\sum_{r=0}^{n-1}\left((Q+r)+\left(Q_{+k}+r\right)+\ldots+\left(Q_{+(p-1) k}+r\right)\right) .
\end{aligned}
$$

Thus $\lambda K_{n, n}$ can be decomposed into the following paths of length k : $Q_{+i k}+r$ $(i=0,1, \ldots, p-1 ; r=0,1, \ldots, n-1)$. Let $F=\left\{Q_{+i k}+r: i=0,1, \ldots, p-1 ; r=\right.$ $0,1, \ldots, n-1\}$. Then F is a P_{k}-decomposition of $\lambda K_{n, n}$. Now we check that the decomposition F is balanced. Since Q has $\frac{k+1}{2}$ vertices in A, so does each $Q_{+i k}$ $(i=1,2, \ldots, p-1)$. By Lemma 2.7, for each $a \in A, a$ belongs to $p \frac{k+1}{2}$ members in F. Similarly, since Q has $\frac{k+1}{2}$ vertices in B, for each $b \in B, b$ belongs to $p \frac{k+1}{2}$ members in F. Thus F is balanced.

Case 2. k is even.
Since $(k+1) \lambda n \equiv 0(\bmod 2 k)$ and $\lambda n=p k$, we have $(k+1) p \equiv 0(\bmod 2)$, which implies $p \equiv 0(\bmod 2)$. Let Q be the walk $a_{\frac{k}{2}} b_{\frac{k}{2}} a_{\frac{k}{2}-1} b_{\frac{k}{2}+1} a_{\frac{k}{2}-2} b_{\frac{k}{2}+2} \ldots a_{1} b_{k-1} a_{0}$. Since $k \leqslant 2 n-1$ and k is even, we have $\frac{k}{2}+1 \leqslant n$, which implies that the vertices $a_{\frac{k}{2}}, a_{\frac{k}{2}-1}, a_{\frac{k}{2}-2}, \ldots, a_{1}, a_{0}$ are distinct, and so are the vertices $b_{\frac{k}{2}}, b_{\frac{k}{2}+1}, b_{\frac{k}{2}+2}, \ldots$, b_{k-1}. Hence Q is a path of length k. We see that Q consists of edges with labels $0,1,2, \ldots,(k-1)(\bmod n)$. Since $p k=\lambda n$, we have $\frac{p}{2} k \leqslant \lambda n$. By Lemma 2.4, $Q+Q_{+k}+Q_{+2 k}+\ldots, Q_{+\left(\frac{p}{2}-1\right) k}$ is a subgraph of $\lambda K_{n, n}$ of which the edges have labels $0,1,2, \ldots,\left(\frac{p}{2} k-1\right)(\bmod n)$.

Let R be the walk $b_{\left(\frac{p}{2}+\frac{1}{2}\right) k-1} a_{\frac{k}{2}-1} b_{\left(\frac{p}{2}+\frac{1}{2}\right) k} a_{\frac{k}{2}-2} \ldots b_{\left(\frac{p}{2}+1\right) k-2} a_{0} b_{\left(\frac{p}{2}+1\right) k-1}$. Then R is a path of length k consisting of edges with labels $\frac{p}{2} k(\bmod n),\left(\frac{p}{2} k+1\right)$ $(\bmod n),\left(\frac{p}{2} k+2\right)(\bmod n), \ldots,\left(\left(\frac{p}{2}+1\right) k-1\right)(\bmod n) . \quad$ Again, by Lemma 2.4, $R+R_{+k}+R_{+2 k}+\ldots, R_{+\left(\frac{p}{2}-1\right) k}$ is a subgraph of $\lambda K_{n, n}$ the edges of which have labels $\frac{p}{2} k(\bmod n),\left(\frac{p}{2} k+1\right)(\bmod n),\left(\frac{p}{2} k+2\right)(\bmod n), \ldots,(p k-1)(\bmod n)$.

Let $G=Q+Q_{+k}+Q_{+2 k}+\ldots+Q_{+\left(\frac{p}{2}-1\right) k}+R+R_{+k}+R_{+2 k}+\ldots+R_{+\left(\frac{p}{2}-1\right) k}$. Then the edges in G are with labels $0,1, \ldots,(p k-1)(\bmod n)$. Since $p k=\lambda n, G$
contains exactly λ edges with label i for each $i=0,1,2, \ldots, n-1$. Thus

$$
\begin{aligned}
\lambda K_{n, n}= & \sum_{r=0}^{n-1}(G+r) \quad(\text { by Lemma } 2.6) \\
= & \sum_{r=0}^{n-1}\left(\left(Q+Q_{+k}+\ldots+Q_{+\left(\frac{p}{2}-1\right) k}+R+R_{+k}+\ldots+R_{+\left(\frac{p}{2}-1\right) k}\right)+r\right) \\
= & \sum_{r=0}^{n-1}\left((Q+r)+\left(Q_{+k}+r\right)+\ldots+\left(Q_{+\left(\frac{p}{2}-1\right) k}+r\right)\right. \\
& \left.+(R+r)+\left(R_{+k}+r\right)+\ldots+\left(R_{+\left(\frac{p}{2}-1\right) k}+r\right)\right)
\end{aligned}
$$

Hence $\lambda K_{n, n}$ is decomposed into the following paths of length $k: Q_{+i k}+r(i=$ $\left.0,1, \ldots, \frac{p}{2}-1 ; r=0,1, \ldots, n-1\right)$, and $R_{+i k}+r\left(i=0,1, \ldots, \frac{p}{2}-1 ; r=0,1, \ldots, n-1\right)$.

Let $F_{1}=\left\{Q_{+i k}+r: i=0,1, \ldots, \frac{p}{2}-1 ; r=0,1, \ldots, n-1\right\}, F_{2}=\left\{R_{+i k}+r: i=\right.$ $\left.0,1, \ldots, \frac{p}{2}-1 ; r=0,1, \ldots, n-1\right\}$, and let $F=F_{1} \cup F_{2}$. Then F is a P_{k}-decomposition of $\lambda K_{n, n}$. Now we check that the decomposition F is balanced. Since Q has $\frac{k}{2}+1$ vertices in A and $\frac{k}{2}$ vertices in B, by an argument similar to Case 1 , for each $a \in A$, a belongs to $\frac{p}{2}\left(\frac{k}{2}+1\right)$ members in F_{1}, and for each $b \in B, b$ belongs to $\frac{p}{2} \frac{k}{2}$ members in F_{1}. Similarly, since R has $\frac{k}{2}$ vertices in A and $\frac{k}{2}+1$ vertices in B, for each $a \in A$, a belongs to $\frac{p}{2} \frac{k}{2}$ members in F_{2}, and for each $b \in B, b$ belongs to $\frac{p}{2}\left(\frac{k}{2}+1\right)$ members in F_{2}. Consequently, for each $x \in A \cup B, x$ belongs to $\frac{p}{2}(k+1)$ members in F. Hence F is balanced.

3. BALANCED $\overrightarrow{P_{k}}$-DECOMPOSITIONS OF $\lambda K_{n, n}^{*}$

In this section we investigate the balanced \vec{P}_{k}-decompositions of $\lambda K_{n, n}^{*}$. We introduce some terms and notations which are similar to those in Section 2. Let (A, B) be the bipartition of $\lambda K_{n, n}^{*}$ where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$, and the subscripts of a_{i} and b_{j} will always be taken modulo n. Now label the arcs in $\lambda K_{n, n}^{*}$. First, assign labels $0,1,2, \ldots, n-1$ to arcs of the form $\overrightarrow{a_{i} b_{j}}$. For $0 \leqslant i, j \leqslant n-1$, the label of $\overrightarrow{a_{i} b_{j}}$ is $(j-i)(\bmod n)$. Next we assign labels $\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}$ to arcs of the form $\overrightarrow{b_{j} a_{i}}$ by the following rule: when the label of $\overrightarrow{a_{i} b_{j}}$ is t, assign $\overrightarrow{b_{j} a_{i}}$ the label \bar{t}. For example in $3 K_{6,6}^{*}$, the labels of $\overrightarrow{a_{2} b_{4}}$ and $\overrightarrow{a_{3} b_{1}}$ are 2 and 4 , respectively, and the labels of $\overrightarrow{b_{4} a_{2}}$ and $\overrightarrow{b_{1} a_{3}}$ are $\overline{2}$ and $\overline{4}$, respectively.

Suppose that G is a multidigraph. For $x, y \in V(G)$ with $x \neq y$, we use $m_{G}(x, y)$ to denote the number of arcs from x to y in G. If $\overrightarrow{x y}$ is an arc of $G, m_{G}(x, y)$ is called the multiplicity of $\overrightarrow{x y}$ in G.

Let G be a subdigraph of $\lambda K_{n, n}^{*}$ with vertex set $V(G)$ and arc set $E(G)$, and let r be a nonnegative integer. Then $G+r$ denotes the subdigraph of $\lambda K_{n, n}^{*}$ with vertex set $\left\{a_{i+r}: a_{i} \in V(G)\right\} \cup\left\{b_{j+r}: b_{j} \in V(G)\right\}$ and arc set $\left\{\overrightarrow{a_{i+r} b_{j+r}}\right.$ with multiplicity $\mu_{i j}: \overrightarrow{a_{i} b_{j}} \in E(G)$ with multiplicity $\left.\mu_{i j}\right\} \cup\left\{\overrightarrow{b_{j+r} a_{i+r}}\right.$ with multiplicity $\varrho_{j i}: \overrightarrow{b_{j} a_{i}} \in E(G)$ with multiplicity $\left.\varrho_{j i}\right\}$. Further, G_{+r} denotes the subdigraph of $\lambda K_{n, n}^{*}$ with vertex set $\left\{a_{i}: a_{i} \in V(G)\right\} \cup\left\{b_{j+r}: b_{j} \in V(G)\right\}$ and arc set $\left\{\overrightarrow{a_{i} b_{j+r}}\right.$ with multiplicity $\mu_{i j}: \overrightarrow{a_{i} b_{j}} \in E(G)$ with multiplicity $\left.\mu_{i j}\right\} \cup\left\{\overrightarrow{b_{j+r} a_{i}}\right.$ with multiplicity $\varrho_{j i}: \overrightarrow{b_{j} a_{i}} \in E(G)$ with multiplicity $\left.\varrho_{j i}\right\}$.

Suppose that $G_{1}, G_{2}, \ldots, G_{t}$ are subdigraphs of a multidigraph. We use $G_{1}+$ $G_{2}+\ldots+G_{t}$ to denote the multidigraph S with vertex set $V(S)=\bigcup_{i=1}^{t} V\left(G_{i}\right)$, and for $x, y \in V(S)$ with $x \neq y, m_{S}(x, y)=\sum_{i=1}^{t} m_{G_{i}}(x, y)$ (in case x or y is not in $V\left(G_{i}\right)$, we let $\left.m_{G_{i}}(x, y)=0\right)$. The graph $G_{1}+G_{2}+\ldots+G_{t}$ is called the arc sum of $G_{1}, G_{2}, \ldots, G_{t}$, and is also denoted by $\sum_{i=1}^{t} G_{i}$.

Now consider the balanced $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n}^{*}$. The following three lemmas being similar to Lemmas 2.5-2.7, we omit the proofs.

Lemma 3.1. Let G be a subdigraph of $\lambda K_{n, n}^{*}$. Suppose that for $\alpha=0,1, \ldots, n-1$, $\overline{0}, \overline{1}, \ldots, \overline{n-1}, G$ contains exactly λ_{α} arcs (multiplicities being counted) with label α where $\lambda_{\alpha} \leqslant \lambda$. Then $\sum_{r=0}^{n-1}(G+r)$ is a subdigraph of $\lambda K_{n, n}^{*}$ with the property that each arc with label α has multiplicity λ_{α}.

Letting $\lambda_{\alpha}=\lambda$ for $\alpha=0,1, \ldots, n-1, \overline{0}, \overline{1}, \ldots, \overline{n-1}$ in Lemma 3.1, we have

Lemma 3.2. Suppose that G is a subdigraph of $\lambda K_{n, n}^{*}$. For $\alpha=0,1, \ldots, n-1$, $\overline{0}, \overline{1}, \ldots, \overline{n-1}, G$ contains exactly λ arcs (multiplicities being counted) with label α. Then $\sum_{r=0}^{n-1}(G+r)=\lambda K_{n, n}^{*}$.

Lemma 3.3. Let G be a subdigraph of $\lambda K_{n, n}^{*}$, and let G have v vertices in $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$. Suppose that $G, G+1, G+2, \ldots, G+(n-1)$ are distinct subdigraphs of $\lambda K_{n, n}^{*}$. Let $F=\{G+r: r=0,1,2, \ldots, n-1\}$. Then for each $a \in A$, a belongs to v members in F.

Now we prove the main result of this section.

Theorem 3.4. $\lambda K_{n, n}^{*}$ has a balanced $\overrightarrow{P_{k}}$-decomposition if and only if $k \leqslant 2 n-1$ and $\lambda n \equiv 0(\bmod k)$.

Proof. (Necessity) The required inequality is trivial. Now we prove the required congruence relation. Removing the directions from the arcs of directed paths in the balanced $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n}^{*}$, we obtain a balanced P_{k}-decomposition of $2 \lambda K_{n, n}$. By the necessity condition of Theorem $2.8,(k+1) 2 \lambda n \equiv 0(\bmod 2 k)$, and hence $\lambda n \equiv 0(\bmod k)$.
(Sufficiency) Let $\lambda n=p k$ where p is a positive integer. We distinguish two cases: Case 1. $2 k \mid(k+1) \lambda n$, Case $2.2 k \nmid(k+1) \lambda n$.

Case $1.2 k \mid(k+1) \lambda n$.
Since $k \leqslant 2 n-1$, by Theorem 2.8 there exists a balanced P_{k}-decomposition of $\lambda K_{n, n}$. Replacing each edge in $\lambda K_{n, n}$ by two arcs with opposite directions, we obtain $\lambda K_{n, n}^{*}$, and any P_{k} in $\lambda K_{n, n}$ becomes two $\overrightarrow{P_{k}}$'s with opposite directions in $\lambda K_{n, n}^{*}$. Thus we obtain a balanced $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n}^{*}$.

Case $2.2 k \nmid(k+1) \lambda n$.
Since $\lambda n=p k$ and $2 k \nmid(k+1) \lambda n$, we have $2 \nmid(k+1) p$, which implies that p is odd and k is even.

Let Q be the directed walk $a_{\frac{k}{2}} b_{\frac{k}{2}} a_{\frac{k}{2}-1} b_{\frac{k}{2}+1} a_{\frac{k}{2}-2} b_{\frac{k}{2}+2} \ldots a_{1} b_{k-1} a_{0}$. Since $\frac{k}{2}+1 \leqslant$ n, we see that the vertices $a_{\frac{k}{2}}, a_{\frac{k}{2}-1}, a_{\frac{k}{2}-2}, \ldots, a_{1}, a_{0}$ are distinct, and so are the vertices $b_{\frac{k}{2}}, b_{\frac{k}{2}+1}, b_{\frac{k}{2}+2}, \ldots, b_{k-1}$. Hence Q is a directed path of length k. We see that the arcs of Q have labels $0, \overline{1}, 2, \overline{3}, \ldots,(k-2)(\bmod n), \overline{(k-1)(\bmod n)}$, the arcs of Q_{+k} have labels $k(\bmod n), \overline{(k+1)(\bmod n)}, \ldots,(2 k-2)(\bmod n)$, $\overline{(2 k-1)(\bmod n)}$, the arcs of $Q_{+2 k}$ have labels $2 k(\bmod n), \overline{(2 k+1)(\bmod n)}, \ldots$, $(3 k-2)\left(\overline{\bmod n), \overline{(3 k-1)(\bmod n)}}, \ldots\right.$, and the arcs of $Q_{+(p-1) k}$ have labels $(p-1) k$ $(\bmod n), \overline{((p-1) k+1)(\bmod n)}, \ldots,(p k-2)(\bmod n), \overline{(p k-1)(\bmod n)}$. Thus the arcs of $Q+Q_{+k}+Q_{+2 k}+\ldots+Q_{+(p-1) k}$ have labels $0, \overline{1}, 2, \overline{3}, \ldots,(p k-2)(\bmod n)$, $\overline{(p k-1)(\bmod n)}$.

Let R be the directed walk $b_{\frac{k}{2}-1} a_{\frac{k}{2}-1} b_{\frac{k}{2}} a_{\frac{k}{2}-2} \ldots b_{k-2} a_{0} b_{k-1}$. Then R is a directed path of length k. We see that the arcs of R have labels $\overline{0}, 1, \overline{2}, 3, \ldots, \overline{(k-2)(\bmod n)}$, $(k-1)(\bmod n)$, the arcs of R_{+k} have labels $\overline{k(\bmod n)},(k+1)(\bmod n), \ldots$, $\overline{(2 k-2)(\bmod n)},(2 k-1)(\bmod n)$, the arcs of $R_{+2 k}$ have labels $\overline{2 k(\bmod n)}$, $(2 k+1)(\bmod n), \ldots, \overline{(3 k-2)(\bmod n)},(3 k-1)(\bmod n), \ldots$, and the arcs of $R_{+(p-1) k}$ have labels $\overline{(p-1) k(\bmod n)},((p-1) k+1)(\bmod n), \ldots, \overline{(p k-2)(\bmod n)}$, $(p k-1)(\bmod n)$. Thus the arcs of $R+R_{+k}+R_{+2 k}+\ldots+R_{+(p-1) k}$ have labels $\overline{0}, 1, \overline{2}, 3, \ldots, \overline{(p k-2)(\bmod n)},(p k-1)(\bmod n)$.

Let $G=Q+Q_{+k}+Q_{+2 k}+\ldots+Q_{+(p-1) k}+R+R_{+k}+R_{+2 k}+\ldots+R_{+(p-1) k}$. From above we see that the arcs in G have labels $0,1, \ldots,(p k-1)(\bmod n)$ and
$\overline{0}, \overline{1}, \ldots, \overline{(p k-1)(\bmod n)}$. Since $p k=\lambda n, G$ contains exactly λ edges with label α for each $\alpha=0,1, \ldots n-1, \overline{0}, \overline{1}, \ldots, \overline{n-1}$. Thus

$$
\begin{aligned}
\lambda K_{n, n}^{*}= & \sum_{r=0}^{n-1}(G+r) \quad(\text { by Lemma 3.2 }) \\
= & \sum_{r=0}^{n-1}\left(\left(Q+Q_{+k}+\ldots+Q_{+(p-1) k}+R+R_{+k}+\ldots+R_{+(p-1) k}\right)+r\right) \\
= & \sum_{r=0}^{n-1}\left((Q+r)+\left(Q_{+k}+r\right)+\ldots+\left(Q_{+(p-1) k}+r\right)\right. \\
& +(R+r)+\left(R_{+k}+r\right)+\ldots+\left(R_{+(p-1) k}+r\right)
\end{aligned}
$$

Hence $\lambda K_{n, n}^{*}$ is decomposed into the following directed paths of length k : $Q_{+i k}+r$ $(i=0,1, \ldots, p-1 ; r=0,1, \ldots, n-1), R_{+i k}+r(i=0,1, \ldots, p-1 ; r=0,1, \ldots, n-1)$.

Let $F_{1}=\left\{Q_{+i k}+r: i=0,1, \ldots, p-1 ; r=0,1, \ldots, n-1\right\}, F_{2}=\left\{R_{+i k}+r: i=\right.$ $0,1, \ldots, p-1 ; r=0,1, \ldots, n-1\}$, and $F=F_{1} \cup F_{2}$. Then F is a $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n}^{*}$. Now we check that the decomposition F is balanced. Since Q has $\frac{k}{2}+1$ vertices in A and $\frac{k}{2}$ vertices in B, by Lemma 3.3, for each $a \in A, a$ belongs to $p\left(\frac{k}{2}+1\right)$ members in F_{1}, and for each $b \in B, b$ belongs to $p \frac{k}{2}$ members in F_{1}. Similarly, since R has $\frac{k}{2}$ vertices in A and $\frac{k}{2}+1$ vertices in B, for each $a \in A, a$ belongs to $p \frac{k}{2}$ members in F_{2}, and for each $b \in B, b$ belongs to $p\left(\frac{k}{2}+1\right)$ members in F_{2}. Thus for each $x \in A \cup B, x$ belongs to $p(k+1)$ members in F. Hence F is balanced.

Acknowledgment. The authors are grateful to the referee for helpful comments which improved the readability of this paper.

References

[1] J.-C. Bermond: Cycles dans les graphes et G-configurations. Thesis, University of Paris XI (Orsay), Paris, 1975.
[2] J. Bosák: Decompositions of Graphs. Kluwer, Dordrecht, Netherlands, 1990.
[3] C. Huang: On Handcuffed designs. Dept. of C. and O. Research Report CORR75-10, University of Waterloo.
[4] S. H. Y. Hung and N.S. Mendelsohn: Handcuffed designs. Discrete Math. 18 (1977), 23-33.
[5] T.-W. Shyu: Path decompositions of $\lambda K_{n, n}$. Ars Comb. 85 (2007), 211-219.
[6] M.-L. Yu: On path factorizations of complete multipartite graphs. Discrete Math. 122 (1993), 325-333.

Authors' addresses: Hung-Chih Lee, Department of Information Technology, Ling Tung University, Taichung, Taiwan, e-mail: birdy@mail.ltu.edu.tw; Chiang Lin, Department of Mathematics, National Central University, Chung-Li, Taiwan, e-mail: lchiang @math.ncu.edu.tw.

