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1. Introduction and Results

In this paper, the term “meromorphic” will always mean meromorphic in the

complex plane C. Let f and g be two nonconstant meromorphic functions, and let

a be a complex number. We say that f and g share a IM (ignoring multiplicity) when

f − a and g − a have the same zeros. If f − a and g − a have the same zeros with

the same multiplicity, we say that f and g share a CM (counting multiplicity). It is

assumed that the reader is familiar with the standard notations of value distribution

theory that can be found, for instance, in [3], [7], [8]. We denote by S(r, f) any

function satisfying

S(r, f) = o(T (r, f))

as r → ∞, possibly outside a set of finite measure.

In addition, we shall also use the following notation.

For a positive integer k, we denote by Nk(r, 1/(f − a)) the counting function for

zeros of f−a with multiplicities at least k, and by Nk(r, 1/(f−a)) the corresponding
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one for which multiplicity is not counted. Set

Nk

(

r,
1

f − a

)

= N
(

r,
1

f − a

)

+ N2

(

r,
1

f − a

)

+ . . . + Nk

(

r,
1

f − a

)

.

Let f and g share a IM. We denote by N11(r, 1/(f − a)) the counting function for

the common simple zeros of both f − a and g − a, by NL(r, 1/(f − a)) the counting

function for the zeros of both f−a and g−a about which f−a has larger multiplicity

than g − a, with multiplicity being not counted.

In 2002, Fang [1] proved the following uniqueness theorems.

Theorem A. Let f(z) and g(z) be two nonconstant entire functions, and let

n, k be two positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM,

then either f(z) = t g(z) for a constant t such that tn = 1 or f(z) = c1e
cz and

g(z) = c2e
−cz, where c, c1 and c2 are constants satisfying (−1)k(c1c2)

n(nc)2k = 1.

Theorem B. Let f(z) and g(z) be two nonconstant entire functions, and let

n, k be two positive integers with n > 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k)

share 1 CM, then f(z) ≡ g(z).

Recently, Zhang and Lin [10] proved the following results, which generalize and

improve Theorem A and B.

Theorem C. Let f(z) and g(z) be two nonconstant entire functions, and let n,

m, k be three positive integers with n > 2k + m∗ + 4, and let λ, µ be constants such

that |λ| + |µ| 6= 0. If [fn(µfm + λ)](k) and [gn(µgm + λ)](k) share 1 CM, then

(i) when λµ 6= 0, then f(z) ≡ g(z);

(ii) when λµ = 0, then either f(z) = t g(z) for a constant t such that tn+m
∗

= 1 or

f(z) = c1e
cz and g(z) = c2e

−cz

for three constants c, c1 and c2 satisfying

(−1)kλ2(c1c2)
n+m

∗

[(n + m∗)c]2k = 1,

or

(−1)kµ2(c1c2)
n+m

∗

[(n + m∗)c]2k = 1,

where m∗ = 0 if µ = 0, and m∗ = m if µ 6= 0.
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Theorem D. Let f(z) and g(z) be two nonconstant entire functions, and let

n, m, k be three positive integers with n > 2k + m + 4. If [fn(f − 1)m](k) and

[gn(g − 1)m](k) share 1 CM, then either f(z) ≡ g(z), or f(z) and g(z) satisfy the

algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ωn
1 (ω1 − 1)m − ωn

2 (ω2 − 1)m.

Remark 1. The conclusion (i) in Theorem C is incomplete. In fact, if λµ 6= 0

and both m, n are even integers then for f(z) ≡ −g(z) the hypotheses of Theorem C

are still satisfied.

We rewrite Theorem C as follows.

Theorem C′. Let f(z) and g(z) be two nonconstant entire functions, and let n,

m, k be three positive integers with n > 2k + m∗ + 4, and let λ, µ be such constants

that |λ| + |µ| 6= 0. If [fn(µfm + λ)](k) and [gn(µgm + λ)](k) share 1 CM, then

(i) when λµ 6= 0, then f(z) ≡ h g(z) for a constant h such that hn = 1 and

hn+m = 1;

(ii) when λµ = 0, then either f(z) = t g(z) for a constant t such that tn+m
∗

= 1 or

f(z) = c1e
cz and g(z) = c2e

−cz,

for three constants c, c1 and c2 satisfying

(−1)kλ2(c1c2)
n+m

∗

[(n + m∗)c]2k = 1

or

(−1)kµ2(c1c2)
n+m

∗

[(n + m∗)c]2k = 1,

where m∗ = 0 if µ = 0, and m∗ = m if µ 6= 0.

P r o o f. We only need to prove the conclusion (i). As the proof of Theorem C

in [10], we have fn(µfm + λ) = gn(µgm + λ) (see (3.29), p. 947, [10]). For the case

λµ 6= 0, set h = f/g. It follows that

(∗) (hn+m − 1)gm +
λ

µ
(hn − 1) = 0.

Suppose that h is nonconstant. Then

(∗∗) gm = −
λ

µ

hn − 1

hn+m − 1
.

Since g is entire, we see from (∗∗) that each zero of hn+m − 1 must be a zero of

hn − 1, and hence of hm − 1. Let α1, α2, . . . , αn+m be distinct roots of zn+m = 1,

and β1, β2, . . . , βm be distinct roots of z
m = 1. Thus

n+m
∑

i=1

N
(

r,
1

h − αi

)

6

m
∑

i=1

N
(

r,
1

h − βi

)

.
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By Nevanlinna first and second fundamental theorems, we have

(n + m − 2)T (r, h) 6

n+m
∑

i=1

N
(

r,
1

h − αi

)

+ S(r, h)

6

m
∑

i=1

N
(

r,
1

h − βi

)

+ S(r, h) 6 mT (r, h) + S(r, h),

that is,

(n − 2)T (r, h) 6 S(r, h),

which is impossible since n > 2k + m + 4. Hence h is a constant. The conclusion (i)

follows from (∗) and the fact that g is a nonconstant entire function. �

Next we explain the notion of weighted sharing of a value.

Definition 1. Let k be a nonnegative integer or infinity. For a complex num-

ber a, we denote by Ek(a, f) the set of all a-points of f , where an a-point of multiplic-

ity m is countedm-times if m 6 k and (k+1)-times if m > k. If Ek(a, f) = Ek(a, g),

we say that f and g share the value a with weight k.

We write f and g share (a, k)meaning that f and g share the value a with weight k.

Obviously, f and g share (a, k) means that z0 is a zero of f − a with multiplicity m

(6 k) if and only if it is a zero of g − a with multiplicity m (6 k) and z0 is a zero of

f − a with multiplicity m (> k) if and only if it is a zero of g − a with multiplicity n

(> k) where n is not necessarily equal to m.

Clearly, if f and g share (a, k), then f and g share (a, p) for any integer 0 6 p 6 k.

We also note that f and g share (a, 0) or (a,∞) if and only if f and g share a IM or

CM, respectively. So, the weighted sharing is indeed a scaling between IM and CM.

Remark 2. Fujimoto [2] used an idea similar to the above under the name of

“truncated multiplicity” in connection with meromorphic maps of Cn into PN (C).

Lahiri [4], [5] was the first to give the above simplified definition and successfully

apply the idea to the uniqueness problems of meromorphic functions under the name

“weighted sharing”.

In this paper, we shall use the idea of weighted sharing of values and prove the

following results, which improve and extend Theorems A–D.

Theorem 1. Let f(z) and g(z) be two nonconstant entire functions, and let n,

m, k, l be four positive integers and λ, µ constants such that |λ| + |µ| 6= 0. Suppose

that [fn(µfm +λ)](k) and [gn(µgm +λ)](k) share (1, l). If l = 2 and n > 2k +m∗ +4

or if l = 1 and n > 3k + 2m∗ + 6 or if l = 0 and n > 5k + 4m∗ + 7, where m∗ = 0 if

µ = 0 and m∗ = m if µ 6= 0, then the conclusion of Theorem C′ holds.
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Theorem 2. Let f(z) and g(z) be two nonconstant entire functions, and let n,

m, k be three positive integers. Suppose that [fn(f − 1)m](k) and [gn(g − 1)m](k)

share (1, l). If l = 2 and n > 2k + m + 4 or if l = 1 and n > 3k + 2m + 6 or if l = 0

and n > 5k + 4m + 7, then the conclusion of Theorem D holds.

From Theorem 1, we obtain the following corollary, which is a result of Zhang and

Lü [9].

Corollary 1. Let f(z) and g(z) be two nonconstant transcendental entire func-

tions, and let n, k, l be three positive integers. Suppose that [fn](k) and [gn](k) share

(1, l). If l = 2 and n > 2k + 4 or if l = 1 and n > 3k + 6 or if l = 0 and n > 5k + 7,

then the conclusion of Theorem A holds.

The next result follows from Theorem 2 and the fact that for two polynomials f ,

g, fn(f − 1) ≡ gn(g − 1) implies f ≡ g (for details, see [1] or [10]), or it follows from

Theorem 1 immediately.

Corollary 2. Let f(z) and g(z) be two nonconstant entire functions, and let n,

k be two positive integers. Suppose [fn(f − 1)](k) and [gn(g − 1)](k) share (1, l). If

l = 2 and n > 2k + 5 or if l = 1 and n > 3k + 8 or if l = 0 and n > 5k + 11, then

f(z) ≡ g(z).

2. Some lemmas

For proofs of our results, we need the following lemmas.

Lemma 1 (see [6]). Let f be a nonconstant meromorphic function, and let

a0, a1, . . . , an be finite complex numbers such that an 6= 0. Then

T (r, anfn + . . . + a1f + a0) = nT (r, f) + S(r, f).

Lemma 2 (see [3], [7], [8]). Let f be a nonconstant meromorphic function, and

let k be a positive integer. Then

N
(

r,
1

f (k)

)

6 N
(

r,
1

f

)

+ kN(r, f) + S(r, f).
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Lemma 3. Let F , G be two nonconstant entire functions and let k be a positive

integer. If F (k) and G(k) share 1 IM, then

NL

(

r,
1

F (k) − 1

)

6 Nk+1

(

r,
1

F

)

+ S(r, F ).

P r o o f. Since F (k) and G(k) share 1 IM, we have

(1) NL

(

r,
1

F (k) − 1

)

6 N2

(

r,
1

F (k) − 1

)

6 N
(

r,
1

F (k) − 1

)

− N
(

r,
1

F (k) − 1

)

.

By Lemma 2, we get

N
(

r,
1

F (k) − 1

)

− N
(

r,
1

F (k) − 1

)

+ N
(

r,
1

F (k)

)

− N
(

r,
1

F (k)

)

6 N
(

r,
1

F (k+1)

)

6 N
(

r,
1

F (k)

)

+ S(r, F ),

that is,

(2) N
(

r,
1

F (k) − 1

)

− N
(

r,
1

F (k) − 1

)

6 N
(

r,
1

F (k)

)

+ S(r, F ).

It is easy to see that

N
(

r,
1

F (k)

)

6 N
(

r,
1

F (k)

)

−
[

Nk+1

(

r,
1

F

)

− (k + 1)Nk+1

(

r,
1

F

)]

.

It follows from Lemma 2 that

N
(

r,
1

F (k)

)

6

[

N
(

r,
1

F

)

− Nk+1

(

r,
1

F

)

+ (k + 1)Nk+1

(

r,
1

F

)]

+ S(r, F ).

From the definition of Nk+1(r,
1
F

) we see that

N
(

r,
1

F

)

− Nk+1

(

r,
1

F

)

+ (k + 1)Nk+1

(

r,
1

F

)

6 Nk+1

(

r,
1

F

)

.

The above two inequalities give

(3) N
(

r,
1

F (k)

)

6 Nk+1

(

r,
1

F

)

+ S(r, F ).

Combining (1)–(3), we obtain

NL

(

r,
1

F (k) − 1

)

6 N
(

r,
1

F (k)

)

+ S(r, F ) 6 Nk+1

(

r,
1

F

)

+ S(r, F ).

Lemma 3 is proved. �
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Lemma 4. Let f(z) and g(z) be two nonconstant entire functions, and let n, m,

k be three positive integers with n > k+2 and λ, µ constants such that |λ|+ |µ| 6= 0.

Set

F = fn(µfm + λ), G = gn(µgm + λ),(4)

H =
(F (k+2)

F (k+1)
− 2

F (k+1)

F (k) − 1

)

−
(G(k+2)

G(k+1)
− 2

G(k+1)

G(k) − 1

)

.(5)

Suppose that F (k) and G(k) share (1, l). If H 6≡ 0, then

(i) when l = 2, then

m
(

r,
1

F (k)

)

6 N
(

r,
1

G(k)

)

− (n − k − 2)N
(

r,
1

f

)

− (n − k − 2)N
(

r,
1

g

)

(6)

+ S(r, f) + S(r, g);

(ii) when l = 1, then

m
(

r,
1

F (k)

)

6 N
(

r,
1

G(k)

)

− (n − k − 2)N
(

r,
1

f

)

− (n − k − 2)N
(

r,
1

g

)

(7)

+ Nk+2

(

r,
1

F

)

+ S(r, f) + S(r, g);

(iii) when l = 0, then

m
(

r,
1

F (k)

)

6 N
(

r,
1

G(k)

)

− (n − k − 2)N
(

r,
1

f

)

− (n − k − 2)N
(

r,
1

g

)

(8)

+ 2Nk+1

(

r,
1

F

)

+ Nk+1

(

r,
1

G

)

+ S(r, f) + S(r, g).

P r o o f. Since F (k) and G(k) share (1, l), using local expansion we see from (5)

that, if z0 is a common simple 1-point of F
(k) and G(k), then H(z0) = 0. Thus

N11

(

r,
1

F (k) − 1

)

= N11

(

r,
1

G(k) − 1

)

6 N
(

r,
1

H

)

6 T (r, H) + O(1)(9)

6 N(r, H) + S(r, f) + S(r, g).

By the Second Fundamental Theorem we have

T (r, F (k)) 6 N
(

r,
1

F (k)

)

+ N
(

r,
1

F (k) − 1

)

− N0

(

r,
1

F (k+1)

)

+ S(r, f),

T (r, G(k)) 6 N
(

r,
1

G(k)

)

+ N
(

r,
1

G(k) − 1

)

− N0

(

r,
1

G(k+1)

)

+ S(r, g),
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where N0(r, 1/F (k+1)) denotes the counting function which only counts points such

that F (k+1) = 0 but F (k)(F (k) − 1) 6= 0 and N0(r, 1/G(k+1)) is defined similarly.

By adding the above two inequalities and using (9), we get

T (r, F (k)) + T (r, G(k))(10)

6 N
(

r,
1

F (k)

)

+ N
(

r,
1

G(k)

)

+ N
(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

− N0

(

r,
1

F (k+1)

)

− N0

(

r,
1

G(k+1)

)

+ S(r, f) + S(r, g)

= N
(

r,
1

F (k)

)

+ N
(

r,
1

G(k)

)

+ N
(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

+ N(r, H) − N11

(

r,
1

F (k) − 1

)

− N0

(

r,
1

F (k+1)

)

− N0

(

r,
1

G(k+1)

)

+ S(r, f) + S(r, g).

For l = 2, F (k) and G(k) share 1 with weight 2. It follows from (5) that the poles

of H(z) possibly occur only at zeros of F (k+1) and G(k+1), and 1-points of F (k) (or

G(k)) with order at least 3. Then

N(r, H) 6 N2

(

r,
1

F (k)

)

+ N2

(

r,
1

G(k)

)

+ N3

(

r,
1

F (k) − 1

)

(11)

+ N0

(

r,
1

F (k+1)

)

+ N0

(

r,
1

G(k+1)

)

,

and

N3

(

r,
1

F (k) − 1

)

+ N
(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

(12)

6 N11

(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

6 N11

(

r,
1

F (k) − 1

)

+ T (r, G(k)) + O(1).

Combining (10)–(12), we obtain

T (r, F (k)) 6 N
(

r,
1

F (k)

)

+ N
(

r,
1

G(k)

)

+ N2

(

r,
1

F (k)

)

+ N2

(

r,
1

G(k)

)

(13)

+ S(r, f) + S(r, g).

It is not difficult to see that

N
(

r,
1

F (k)

)

+ N2

(

r,
1

F (k)

)

(14)

= N
(

r,
1

F (k)

)

−
[

N2

(

r,
1

F (k)

)

− N2

(

r,
1

F (k)

)]

+ N2

(

r,
1

F (k)

)

= N
(

r,
1

F (k)

)

−
[

N3

(

r,
1

F (k)

)

− 2N3

(

r,
1

F (k)

)]

.
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If z0 is a zero of f with multiplicity l (> 1), then z0 is a zero of F
(k) = [fn(µfm +

λ)](k) with multiplicity at least 3 since nl − k > (k + 2)l − k = (l − 1)k + 2l > 2, so

we have

(15) N3

(

r,
1

F (k)

)

− 2N3

(

r,
1

F (k)

)

> (n − k − 2)N
(

r,
1

f

)

.

Inequalities (14) and (15) yield that

(16) N
(

r,
1

F (k)

)

+ N2

(

r,
1

F (k)

)

6 N
(

r,
1

F (k)

)

− (n − k − 2)N
(

r,
1

f

)

.

Similarly, we have

(17) N
(

r,
1

G(k)

)

+ N2

(

r,
1

G(k)

)

6 N
(

r,
1

G(k)

)

− (n − k − 2)N
(

r,
1

g

)

.

Substituting (16) and (17) in (13) and noting that

(18) m
(

r,
1

F (k)

)

= T (r, F (k)) − N
(

r,
1

F (k)

)

+ O(1),

we get (6).

For l = 1, F (k) and G(k) share (1,1). From (5), we see that the poles of H possibly

occur only at zeros of F (k+1) and G(k+1), and 1-points of F (k) and G(k) are of order

at least 2. Then we have

N(r, H) 6 N2

(

r,
1

F (k)

)

+ N2

(

r,
1

G(k)

)

+ N2

(

r,
1

F (k) − 1

)

(19)

+ N0

(

r,
1

F (k+1)

)

+ N0

(

r,
1

G(k+1)

)

and

N
(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

6 N11

(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

(20)

6 N11

(

r,
1

F (k) − 1

)

+ T (r, G(k)) + O(1).

Combining (10), (19) and (20), we get

T
(

r, F (k)) 6 N
(

r,
1

F (k)

)

+ N
(

r,
1

G(k)

)

+ N2

(

r,
1

F (k)

)

+ N2

(

r,
1

G(k)

)

(21)

+ N2

(

r,
1

F (k) − 1

)

+ S(r, f) + S(r, g).
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It follows from (3) that

(22) N2

(

r,
1

F (k) − 1

)

6 N
(

r,
1

F (k+1)

)

6 Nk+2

(

r,
1

F

)

.

Then, from (16)–(18) and (21)–(22) we obtain (7).

For l = 0, F (k) and G(k) share 1 IM. We see from (5) that H has poles possibly

only at zeros of F (k+1) and G(k+1), and 1-points of F (k) and G(k) with different

order. Then

N(r, H) 6 N2

(

r,
1

F (k)

)

+ N2

(

r,
1

G(k)

)

+ NL

(

r,
1

F (k) − 1

)

(23)

+ NL

(

r,
1

G(k) − 1

)

+ N0

(

r,
1

F (k+1)

)

+ N0

(

r,
1

G(k+1)

)

and

N
(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

(24)

6 N11

(

r,
1

F (k) − 1

)

+ NL

(

r,
1

F (k) − 1

)

+ N
(

r,
1

G(k) − 1

)

6 N11

(

r,
1

F (k) − 1

)

+ NL

(

r,
1

F (k) − 1

)

+ T (r, G(k)) + O(1).

Combining (10), (23) and (24), we have

T (r, F (k)) 6 N
(

r,
1

F (k)

)

+ N
(

r,
1

G(k)

)

+ N2

(

r,
1

F (k)

)

+ N2

(

r,
1

G(k)

)

(25)

+ 2NL

(

r,
1

F (k) − 1

)

+ NL

(

r,
1

G(k) − 1

)

+ S(r, f) + S(r, g).

Lemma 3 implies that

2NL

(

r,
1

F (k) − 1

)

+ NL

(

r,
1

G(k) − 1

)

(26)

6 2Nk+1

(

r,
1

F

)

+ Nk+1

(

r,
1

G

)

+ S(r, f) + S(r, g).

Combining (16)–(18) and (25)–(26), we have (8). Lemma 4 is proved. �

Remark 3. Clearly, Lemma 4 is still valid if F = fn(µfm+λ) and G = gn(µgm+

λ) are replaced by F = fn(f − 1)m and G = gn(g − 1)m.
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3. Proof of Theorem 1

P r o o f of Theorem 1. Let F , G be defined by (4). Then F (k) and G(k)

share (1, l). By Lemma 1 and Nevanlinna first fundamental theorem, we have

(n + m∗)T (r, f) = T (r, F ) + S(r, f)(27)

6 m
(

r,
1

F (k)

)

+ m
(

r,
F (k)

F

)

+ N(r,
1

F
) + S(r, f)

= m
(

r,
1

F (k)

)

+ N
(

r,
1

F

)

+ S(r, f).

Suppose that H 6≡ 0, where H is defined by (5).

If l = 2, we have (6). Substituting (6) in (27) and using Lemma 2, we have

(n + m∗)T (r, f)(28)

6 N
(

r,
1

F

)

+ N
(

r,
1

G(k)

)

− (n − k − 2)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ S(r, f) + S(r, g)

6 N
(

r,
1

F

)

+ N
(

r,
1

G

)

− (n − k − 2)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ S(r, f) + S(r, g)

= N
(

r,
1

µfm + λ

)

+ N
(

r,
1

µgm + λ

)

+ (k + 2)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ S(r, f) + S(r, g).

Similarly, we have

(n + m∗)T (r, g) 6 N
(

r,
1

µfm + λ

)

+ N
(

r,
1

µgm + λ

)

(29)

+ (k + 2)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ S(r, f) + S(r, g).

By adding the above two inequalities, we obtain

(n + m∗)[T (r, f) + T (r, g)]

6 2
[

N
(

r,
1

µfm + λ

)

+ N
(

r,
1

µgm + λ

)]

+ (2k + 4)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ S(r, f) + S(r, g)

6 (2k + 2m∗ + 4)[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

that is,

(n − 2k − m∗ − 4)[T (r, f) + T (r, g)] 6 S(r, f) + S(r, g),

which is impossible since n > 2k + m∗ + 4.
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If l = 1, then substituting (7) in (27), and using Lemma 2, we get

(n + m∗)T (r, f) 6 N
(

r,
1

F

)

+ N
(

r,
1

G

)

+ Nk+2

(

r,
1

F

)

(30)

− (n − k − 2)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ S(r, f) + S(r, g).

Noting that n > 3k + 2m∗ + 6, we have

Nk+2

(

r,
1

F

)

= (k + 2)N
(

r,
1

f

)

+ Nk+2

(

r,
1

µfm + λ

)

.

Then we can deduce from (30) that

(n + m∗)T (r, f) 6 2N
(

r,
1

µfm + λ

)

+ N
(

r,
1

µgm + λ

)

+ (2k + 4)N
(

r,
1

f

)

(31)

+ (k + 2)N
(

r,
1

g

)

+ S(r, f) + S(r, g).

Similarly, we have

(n + m∗)T (r, g) 6 2N
(

r,
1

µgm + λ

)

+ N
(

r,
1

µfm + λ

)

+ (2k + 4)N
(

r,
1

g

)

(32)

+ (k + 2)N
(

r,
1

f

)

+ S(r, f) + S(r, g).

By adding (31)–(32) we obtain

(n + m∗)[T (r, f) + T (r, g)]

6 3
[

N
(

r,
1

µfm + λ

)

+ N
(

r,
1

µgm + λ

)]

+ (3k + 6)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ S(r, f) + S(r, g)

6 (3k + 3m∗ + 6)[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

that is,

(n − 3k − 2m∗ − 6)[T (r, f) + T (r, g)] 6 S(r, f) + S(r, g),

which contradicts the assumption n > 3k + 2m∗ + 6.

If l = 0, we have (8). Using the same argument as above, we have

(n + m∗)[T (r, f) + T (r, g)]

6 (5k + 7)
[

N
(

r,
1

f

)

+ N
(

r,
1

g

)]

+ 5
[

N
(

r,
1

µfm + λ

)

+ N
(

r,
1

µgm + λ

)]

+ S(r, f) + S(r, g)

6 (5k + 5m∗ + 7)[T (r, f) + T (r, g)] + S(r, f) + S(r, g),
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that is,

(n − 5k − 4m∗ − 7)[T (r, f) + T (r, g)] 6 S(r, f) + S(r, g),

a contradiction, since n > 5k + 4m∗ + 7.

Therefore H ≡ 0. Integrating H ≡ 0 yields

F (k+1)

(F (k) − 1)2
= A

G(k+1)

(G(k) − 1)2
,

where A is a nonzero constant. It follows that F (k) and G(k) share 1 CM. So by

Theorem C′ we obtain the conclusion of Theorem 1. The proof of Theorem 1 is

complete. �

P r o o f of Theorem 2. Using almost the same argument as in the proof of The-

orem 1, we can get the conclusion of Theorem 2. Here we omit the details. �
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