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Abstract. A total dominating set in a graph G is a subset X of V (G) such that each
vertex of V (G) is adjacent to at least one vertex of X. The total domination number of
G is the minimum cardinality of a total dominating set. A function f : V (G) → {−1, 1}
is a signed dominating function (SDF) if the sum of its function values over any closed
neighborhood is at least one. The weight of an SDF is the sum of its function values over
all vertices. The signed domination number of G is the minimum weight of an SDF on G.
In this paper we present several upper bounds on the algebraic connectivity of a connected
graph in terms of the total domination and signed domination numbers of the graph. Also,
we give lower bounds on the Laplacian spectral radius of a connected graph in terms of the
signed domination number of the graph.
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domination, total domination
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1. Introduction

All graphs considered here are finite, undirected, and simple. For standard graph

theory terminology not given here, we refer to [8]. Specifically, let G = (V, E) be a

graph with vertex set V and edge set E. The order of G is given by n = |V |. For a

vertex v in V , the open neighborhood of v is N(v) = {u ∈ V ; uv ∈ E} and the closed

neighborhood of v is N [v] = {v}∪N(v). For a subset S ⊆ V , the open neighborhood

of S is N(S) =
⋃

v∈S

N(v) and the closed neighborhood of S is N [S] =
⋃

v∈S

N [v]. The

degree of v in G is denoted by d(v), which equals to |N(v)|. If all vertices of G have

the same degree k, then G is k-regular, or simply regular. For a subgraph H of G,
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let NH(v) = N(v) ∩ V (H) and |NH(v)| = dH(v). If H = G, then NH(v) and dH(v)

are written as N(v) and d(v) respectively. Let ∆(G) and δ(G) be the maximum

and minimum degree of vertices of G, respectively. Let S ⊆ V . Denote by G[S]

the subgraph of G induced by S. In the case of no confusion, we write NS(v) and

dS(v) instead of NG[S](v) and dG[S](v), respectively. For disjoint subsets U and W

of vertices of G, denote by e(U, W ) the number of edges between U and W .

A set S ⊆ V is a total dominating set of a graph G if every vertex in V is adjacent

to a vertex in S, that is N(S) = V . Every graph without isolated vertices has a

total dominating set, since S = V is such a set. The total domination number of

G, denoted by γt(G), is the minimum cardinality of a total dominating set. Total

domination in graphs was introduced by Cockayne et al. [2] and is now well studied

in graph theory (see, for example, [8]).

For a real-valued function f : V → R, the weight of f is w(f) =
∑

v∈V

f(v). For

S ⊆ V , define f(S) =
∑

v∈S

f(v), so that w(f) = f(V ). For a vertex v in V , denote

f(N(v)) by f [v] for notational convenience.

Dunbar et al. [3] defined the signed dominating function. Let f : V → {−1, 1}

be a function which assigns to each vertex of a graph without isolated vertices an

element in the set {−1, 1}. Then, f is called signed dominating function (SDF) if

for every v ∈ V , f(N [v]) > 1. The signed domination number, denoted by γs(G), of

G is the minimum weight of an SDF on G.

Let A(G) be the adjacency matrix of G and D(G) = diag (d(v1), d(v2), . . . , d(vn))

be the diagonal matrix of vertex degrees. The Laplacian matrix of G is L(G) =

D(G) − A(G). Clearly, L(G) is a real symmetric matrix. From this fact and Gerš-

gorin’s Theorem, it follows that its eigenvalues are nonnegative real numbers. The

eigenvalues of an n × n matrix M are denoted by λ1(M), λ2(M), . . . , λn(M), while

for a graph G, we will use λi(G) = λi to denote λi(L(G)), i = 1, 2, . . . , n and assume

that λ1(G) > λ2(G) > . . . > λn−1(G) > λn(G). It is well known that λn(G) = 0 and

the algebraic multiplicity of zero as an eigenvalue of L(G) is exactly the number of

connected components of G (see, [12]). In particular, the second smallest eigenvalue

λn−1(G) > 0 if and only if G is connected. This leads Fiedler [6] to define it as the

algebraic connectivity of G. The eigenvalue λ1(G) is called the Laplacian spectral

radius of G. It is known that λ1(G) = max λ1(Gi), i = 1, 2, . . . , n if G1, G2, . . . , Gn

are all components of G [6]. In recent years, the eigenvalues λ1(G) and λn−1(G)

have received a great deal of attention (see, for example, [12], [13]).

This paper is motivated by some recent papers (see, [5], [11], [13]) on graph eigen-

values involving domination of graphs. In this paper we further investigate the

relationship among the Laplacian eigenvalues, total domination and signed domina-

tion in graphs. We give upper bounds on the algebraic connectivity λn−1(G) for a
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connected graph G in terms of its total domination and signed domination numbers.

Moreover, we establish lower bounds on the Laplacian spectral radius λ1(G) of G in

terms of its the signed domination number.

2. Preliminary results

Let G = (V, E) be a graph of order n and X a nonempty subset of V . The edge

density of X is defined as

̺(X) =
ne(X, Xc)

|X ||Xc|
,

where Xc = V − X .

Fallat et al. [4] established the following relation between the edge density of X

and the eigenvalue λn−1(G).

Lemma 1 ([4]). If G = (V, E) is a graph of order n and X is nonempty subset of

V , then

λn−1(G) 6 ̺(X) =
ne(X, Xc)

|X ||Xc|
.

Lemma 2 ([6]). For a graph G of order n, λn−1(G) = n if and only if G = Kn.

Lemma 3 ([7]). If G = (V, E) is a graph of order n and size |E| > 0, then

λ1(G) > ∆(G)+1; if G is connected, then equality holds if and only if ∆(G) = n−1.

Proposition 4 ([2]). If G = (V, E) is a connected graph and X is a minimal total

dominating set of G, then each vertex v ∈ X has at least one of the following two

properties:

P1: There exists a vertex u ∈ V − X such that N(u) ∩ X = {v}.

P2: G[X − {v}] contains an isolated vertex.

Lemma 5 ([10]). If G = (V, E) is a connected graph of order n > 3 and G 6= Kn,

then G has a minimum total dominating set X in which every vertex has property

P1, or is adjacent to a vertex of degree 1 in G[X ] that has property P1.

Lemma 6 ([2]). If G is a connected graph of order n and ∆(G) < n − 1, then

γt(G) 6 n − ∆(G).

Mei Lu et al. [11] established the lower bound below on the Laplacian spectral

radius λ1(G).
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Lemma 7 ([11]). Let G = (V, E) be a connected graph of order n and G1 be

an induced subgraph of G with n1 (n1 < n) vertices and average degree r1 (i.e.,

r1 =
∑

v∈V (G1)

dG1
(v)/n1). Set d1 =

∑

v∈V (G1)

d(v)/n1. Then

λ1(G) >
n(d1 − r1)

n − n1
.

Moreover, if the equality holds, then dG2
(u) = s for each vertex u ∈ V (G1) and

dG1
(v) = t for each vertex v ∈ V (G2), where G2 = G[V − V (G1)].

Lemma 8 ([9]). If G is a k-regular graph of order n, then

γs(G) >















2n

k + 1
for k odd,

n

k + 1
for k even,

and these bounds are sharp.

By Lemma 8, we can determine γs(Kn) for a complete graph Kn.

Lemma 9. For a complete graphKn, we have γs(Kn) = 1 for n odd and γs(Kn) =

2 for n even.

P r o o f. By Lemma 5, clearly γs(Kn) > 1 for n odd and γs(Kn) > 2 for n even.

On the other hand, we assign to 1
2 (n+1) vertices in Kn the value 1, and to all other

vertices −1 if n is odd, this produces a signed dominating function f with weight

w(f) = 1. Similarly, if n is even, we can produce a signed dominating function f

with weight w(f) = 2. So the equalities hold, as required. �

3. Upper bounds on algebraic connectivity

Let G = (V, E) be a connected graph and X a minimal total dominating set of

G. For every vertex v ∈ X satisfying Property P1, we define PN(v, X) = N(v) −

N [X − {v}] which is called the private neighbors of v with respect to X .

First, we give an upper bound on the algebraic connectivity of a graph G in terms

of its total domination number.

318



Theorem 10. If G is a connected graph of order n > 3 and G 6= Kn, then

λn−1(G) 6
n(n − 1

2 (3γt(G) − 1))

n − γt(G)
.

P r o o f. Let X be a minimal total dominating set of G with |X | = γt(G).

Suppose that each vertex in X has Property P1, then
∑

v∈X

|PN(v, X)| > |X | = γt(G),

hence

e(X, Xc) 6
∑

v∈X

|PN(v, X)| + |X |

(

n − |X | −
∑

v∈X

|PN(v, X)|

)

= γt(G)(n − γt(G)) − (γt(G) − 1)
∑

v∈X

|PN(v, X)|

6 γt(G)(n − 2γt(G) + 1).

Thus, by Lemma 1, we have

λn−1(G) 6
n(n − 2γt(G) + 1)

n − γt(G)
6

n(n − 1
2 (3γt(G) − 1))

n − γt(G)
.

We may therefore assume that there exists at least one vertex in X that does not

have Property P1. Set

A = {v ∈ X ; v has Property P1},

B = X − A,

A1 = {v ∈ A ; dX(v) = 1 and there exists a vertex u ∈ B such that uv ∈ E(G)},

A2 = A − A1.

Then B 6= ∅ and |X | = |A| + |B|. By Lemma 5, |B| 6 |A1| 6 |A|. This implies

that γt(G) = |X | 6 2|A|. Hence 1
2γt(G) 6 |A| 6

∑

v∈A

|PN(v, X)|. By estimating the

number of edges between X and Xc, we have

e(X, Xc) 6
∑

v∈A

|PN(v, X)| + |X |

(

n − |X | −
∑

v∈A

|PN(v, X)|

)

= γt(G)(n − γt(G)) − (γt(G) − 1)
∑

v∈A

|PN(v, X)|

6 γt(G)(n − γt(G)) −
1

2
γt(G)(γt(G) − 1)

= γt(G)
(

n −
3

2
γt(G) +

1

2

)

.
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Thus, by Lemma 1, we have

λn−1(G) 6
n(n − 1

2 (3γt(G) − 1))

n − γt(G)
,

and the desired result follows. �

Note that if G is connected, then λn−1(G) > 0. Hence, by Theorem 10, we have

γt(G) < 1
3 (2n + 1). This implies that γt(G) 6 2

3n as γt(G) is an integer. Moreover,

every complete graph Kn (n > 3) clearly satisfies the formulation, so we obtain the

following result due to Cockayne et al. [2].

Corollary 11 ([2]). If G is a connected graph of order n > 3, then γt(G) 6 2
3n.

Next we present another upper bound on the algebraic connectivity λn−1(G) for

a connected graph G of order n > 3 that is not isomorphic to a complete graph.

Theorem 12. If G = (V, E) is a connected graph of order n > 3 and G 6= Kn,

then

(1) λn−1(G) 6 n − γt(G)

where equality holds if and only if G is either the complement of a graph consisting

of some K2’s or the complement of a graph consisting of some K2’s and isolated

vertices.

P r o o f. Let X be a minimal total dominating set of G with |X | = γt(G). We

claim that δ(G) 6 n − γt(G). Indeed, by Lemma 7, there exists at least a vertex

u ∈ V − X that is a private neighbor of some vertex v in X , i.e., N(u) ∩ X = {v},

so δ(G) 6 d(u) 6 (n − 1) − |X − {v}| = n − γt(G). According to our assumption

G 6= Kn, this means that |E(G)| > 1. By Lemma 3, we have

λn−1(G) = n − λ1(G) 6 n − ∆(G) − 1 = n − (n − 1 − δ(G)) − 1 6 n − γt(G).

Suppose now that the equality holds in (1), this implies that δ(G) = n − γt(G)

and λ1(G) = ∆(G) + 1 = γt(G).

If ∆(G) < n− 1, then, by Lemma 6, we have δ(G) = ∆(G), that is, G is a regular

graph. Thus G is also a regular graph. We claim that G is disconnected. Otherwise,

by Lemma 3, we have ∆(G) = |V (G)| − 1 = n − 1. But since ∆(G) = γt(G) − 1,

we have γt(G) = n, which contradicts the fact that G is connected and n > 3. This

implies that γt(G) = 2. Then ∆(G) + 1 = γt(G) = 2, and so ∆(G) = 1. The

regularity of G implies that G consists of some K2’s.
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If ∆(G) = n − 1, then γt(G) = 2 and δ(G) = n − 2, it follows that ∆(G) =

n − 1 − δ(G) = 1 and δ(G) = n − 1 − ∆(G) = 0. This immediately implies that G

consists of some K2’s and isolated vertices.

Conversely, let G = 1
2nK2 or G is the complement of a graph which is constructed

by some K2’s and isolated vertices. Clearly, in either case above, we have γt(G) = 2

and λn−1(G) = n − λ1(G) = n − 2. So the equality holds. �

To compare this bound in Theorem 10 with that of Theorem 12, we rewrite the

bound in Theorem 10 as

λn−1(G) 6 n − γt(G) +
n(γt(G) + 1) − 2γ2

t (G)

2(n − γt(G))
.

Archdeacon et al. [1] showed a well-known result on the total domination as follows:

If G is a graph of order n with δ(G) > 3, then γt(G) 6 ⌊ 1
2n⌋. Then, by this result,

for a graph G with δ(G) > 3 satisfying the conditions in Theorems 10 and 12, we

have 2γt(G) 6 n. Hence n(γt(G) + 1) > 2γt(G)(γt(G) + 1). This implies that
1
2

(

n(γt(G) + 1) − 2γ2
t (G)

)

/(n − γt(G)) > 0. Therefore, when δ(G) > 3, the bound

in Theorem 12 is better than that of Theorem 10.

Now we present the third upper bound on algebraic connectivity λn−1(G) of a

graph G in terms of its signed domination number.

Theorem 13. If G is a connected graph of order n > 2, then

λn−1(G) 6
n(γs(G) + n − 2)

n − γs(G)

and this bound is sharp.

P r o o f. Let f be an SDF of G for which ω(f) = γs(G), and let

P = {v ∈ V ; f(v) = 1},

M = {v ∈ V ; f(v) = −1}.

Then, |P | + |M | = n. Let |P | = p. Since f(N [v]) > 1 for each vertex v ∈ V , it

follows that for any vertex v ∈ P , we have dP (v) > dM (v). So

e(P, M) =
∑

v∈P

dM (v) 6
∑

v∈P

dP (v) 6 p(p − 1).

Thus, by Lemma 1, we have

λn−1(G) 6
n(p − 1)

n − p
=

n(γs(G) + n − 2)

n − γs(G)
.

That the bound is sharp may be seen as follows. Let G = Kn, where n is odd, then,

by Lemma 9, we have that γs(Kn) = 1. Hence, the equality in Theorem 13 follows

from Lemma 2. �

321



4. Lower bounds on Laplacian spectral radius

In this section we turn our attention to the Laplacian spectral radius λ1 in graphs.

We will investigate lower bounds on λ1 of a graph G in terms of its signed domination

number.

We begin by giving a lower bound on the Laplacian spectral radius for a general

graph G.

Theorem 14. If G = (V, E) is a connected graph of order n > 2, then

λ1(G) >
4n

γs(G) + n
.

Moreover, the equality holds if and only if G = K3.

P r o o f. Let f be an SDF of G for which ω(f) = γs(G), and P andM be defined

as in Theorem 13. Let |P | = p. By the definition of the signed dominating function,

each vertex in M is adjacent to at least two vertices in P , so we have

(2) |e(P, M)| > 2|M | > 2(n − p).

Thus, by Lemma 7, we have

λ1(G) >
n(d1 − r1)

n − p
,

where d1 = p−1
∑

v∈P

d(v) and r1 = p−1
∑

v∈P

dP (v). By (2), we have that

λ1(G) >
n

p(n − p)

(

∑

v∈P

d(v) −
∑

v∈P

dP (v)

)

=
n

p(n − p)
|e(P, M)|

>
2n

p
=

4n

γs(G) + n
.

Suppose that λ1(G) = 4n/(γs(G)+n). Then all equalities in the above inequality

chain hold. By Lemma 7, we have dM (u) = s for each vertex u ∈ P and dP (v) = t

for each vertex v ∈ M . The equality in (2) implies that t = 2. We claim that

∆(G) = n − 1. Suppose to the contrary that ∆(G) < n − 1. Then, by Lemma 3,

λ1(G) > ∆(G) + 1, hence we have

γs(G) =
4n

λ1(G)
− n <

4n

∆(G) + 1
− n.
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Note that γs(G) = 2p − n, n = |P | + |M | and s|P | = 2|M |. Hence 2p − n <

4n/(∆(G) +1)−n, and so p < (2 + s)p/(∆(G) + 1). This means that s + 1 > ∆(G),

thus s = ∆(G), a contradiction. So ∆(G) = n − 1, i.e., G is complete. It follows

from Lemma 3 that λ1(G) = ∆(G) + 1. This implies that p = (2 + s)p/(∆(G) + 1),

i.e., s = ∆(G) − 1 = n − 2. Note that t = 2. So G = K3.

Conversely, let G = K3. Then the equality immediately follows from Lemmas 3

and 9. �

Theorem 15. If G is a k-regular graph of order n, then

λ1(G) >















n(k + 3)

γs(G) + n
for k odd,

n(k + 2)

γs(G) + n
for k even.

Moreover, the equality holds if and only if G = Kn.

P r o o f. Let f be an SDF of G for which ω(f) = γs(G), and P andM be defined

as in Theorem 13. Let |P | = p, |M | = m. Then n = m+p. We distinguish two cases

depending on the parity of k.

C a s e 1. k is odd. For each u ∈ P , let u be adjacent to s (> 0) vertices in

M . Then u is adjacent to k − s vertices in P . By the definition of SDF, we have

f(N [u]) = k − 2s + 1 > 2, so s 6 1
2 (k − 1). For each v ∈ M , let v be adjacent to t

vertices in P . Then t > 2 and v is adjacent to k − t vertices in M . By the definition

of SDF, we have f(N [v]) = 2t − k − 1 > 2, so

(3) t >
1

2
(k + 3).

By counting the number of edges between P andM , we get that e(P, M) > 1
2m(k+3).

Note that 2p = γs(G) + n. Then, by Lemma 7, we have

(4) λ1(G) >
n

p(n − p)
|e(P, M)| >

nm(k + 3)

2p(n − p)
=

n(k + 3)

γs(G) + n
.

Suppose that the above equality holds. Then the inequalities in (3) and (4) are

equalities. Hence t = 1
2 (k + 3). By Lemma 7, we have dM (u) = s for each vertex

u ∈ P and dP (v) = t for each vertex v ∈ M . So sp = tm, and thus n = p + m =

p+ sp/t = p(1+2s/(k +3)). We claim that k = n− 1. Suppose to the contrary that

k < n − 1. Then, by Lemma 3, λ1(G) > k + 1. By (4), we have

γs(G) =
n(k + 3)

λ1(G)
− n <

n(k + 3)

k + 1
− n.
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Observing that γs(G) = 2p − n, we have

2p− n <
n(k + 3)

k + 1
− n,

or equivalently

2p <
n(k + 3)

k + 1
.

By substituting p(1 + 2s/(k + 3)) for n, we have 2p < (k + 3 + 2s)p/(k + 1). This

implies that s > 1
2 (k − 1), contradicting the fact that s 6 1

2 (k − 1). So k = n − 1,

which implies that G = Kn.

Conversely, let G = Kn. The equality in (4) immediately follows from Lemmas 3

and 9.

C a s e 2. k is even. For each u ∈ P , let u be adjacent to s vertices in M . Then

u is adjacent to k − s vertices in P . By the definition of SDF, we have f(N [u]) =

k − 2s + 1 > 1, hence s 6 1
2k. For each v ∈ M , let v be adjacent to t vertices in P .

Then v is adjacent to k − t vertices in M , and f(N [v]) = 2t − k − 1 > 1. Hence

(5) t >
1

2
(k + 2).

By counting the number of edges between P and M , we have e(P, M) > 1
2m(k + 2).

Then, by Lemma 2, we have

λ1(G) >
n

p(n − p)
|e(P, M)| >

nm(k + 2)

2p(n − p)
=

n

2p
(k + 2).

The formula γs(G) = 2p−n implies that λ1(G) > n(k +2)/(γs(G)+n), as required.

Suppose that λ1(G) = n(k + 2)/(γs(G) + n). Then the equalities t = 1
2 (k + 2),

e(P, M) = m 1
2 (k+2) and λ1(G) = n(k+2)/(γs(G)+n) hold. By Lemma 2, we have

dM (u) = s for each vertex u ∈ P and dP (v) = t for each vertex v ∈ M . So sp = tm,

and thus n = p + m = p(1 + 2s/(k + 2)). We show that G = Kn. If this is not the

case, then k < n − 1. By Lemma 3, we have λ1(G) > k + 1. Hence

2p− n = γs(G) =
n(k + 2)

λ1(G)
− n <

n(k + 2)

k + 1
− n,

that is, 2p < n(k + 2)/(k + 1). Thus

2p <
(k + 2 + 2s)p

k + 1
.

But then s > 1
2k, contradicting the fact s 6 1

2k. This implies k = n−1. So G = Kn.

Conversely, let G = Kn. Then the equality immediately follows from Lemmas 3

and 9. �
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