Czechoslovak Mathematical Journal

Jerzy Krzempek
Components and inductive dimensions of compact spaces

Czechoslovak Mathematical Journal, Vol. 60 (2010), No. 2, 445-456

Persistent URL: http://dml.cz/dmlcz/140581

Terms of use:

© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

COMPONENTS AND INDUCTIVE DIMENSIONS OF COMPACT SPACES

Jerzy Krzempek, Gliwice

(Received November 8, 2008)

Abstract

It is shown that for every pair of natural numbers $m \geqslant n \geqslant 1$, there exists a compact Fréchet space $X_{m, n}$ such that (a) $\operatorname{dim} X_{m, n}=n$, ind $X_{m, n}=\operatorname{Ind} X_{m, n}=m$, and (b) every component of $X_{m, n}$ is homeomorphic to the n-dimensional cube I^{n}.

This yields new counter-examples to the theorem on dimension-lowering maps in the cases of inductive dimensions.

Keywords: inductive dimension, theorem on dimension-lowering maps, component.
MSC 2010: 54F45

There exist numerous examples of compact spaces with non-coinciding dimensions in literature. The first such examples by A.L. Lunc [15] and O. V. Lokucievskiĭ [14] appeared in 1949, and the first two series of compact spaces with $\operatorname{dim}=n<m=$ ind and $\operatorname{dim}=n<m=$ Ind by P. Vopěnka [16] appeared in this journal in 1958. ${ }^{1}$ It was not noted, probably anywhere, that Vopěnka's method leads to compact spaces X whose every component P has $\operatorname{Ind} P<\operatorname{ind} X \leqslant \operatorname{Ind} X<\infty$. Such spaces, in turn, are domains of counter-examples to the theorem on dimension-lowering maps in the cases of inductive dimensions.

Recently, V. A. Chatyrko [5] has constructed compact spaces $X_{\mathrm{Ch}, i}$, where $i=1,2$, and a (continuous) map $f_{\mathrm{Ch}}: X_{\mathrm{Ch}, 1} \rightarrow A_{\mathfrak{c}}$ onto the compact space $A_{\mathfrak{c}}$ with the only accumulation point μ, card $A_{\mathfrak{c}}=\mathfrak{c}$, which satisfy the following conditions:

- $\operatorname{dim} X_{\mathrm{Ch}, i}=1<2=\operatorname{ind} X_{\mathrm{Ch}, i}=\operatorname{Ind} X_{\mathrm{Ch}, i}$ for $i=1,2$;

[^0]- all point-inverses $f_{\mathrm{Ch}}^{-1} \alpha, \mu \neq \alpha \in A_{\mathrm{c}}$, are single points, and Ind $f_{\mathrm{Ch}}^{-1} \mu=1$;
- every component of $X_{\mathrm{Ch}, 2}$ is homeomorphic to the interval $I=[0,1]$; and
- $X_{\mathrm{Ch}, i}$ are not hereditarily normal for $i=1,2$.

Suppose that d is a dimension function, and \mathcal{M} is a class of maps. One says that the theorem on the dimension-lowering maps holds in \mathcal{M} if $\mathrm{d} X \leqslant \mathrm{~d} Y+\mathrm{d} f$ for every map $f: X \rightarrow Y$ in \mathcal{M} (here, $\mathrm{d} f=\sup \left\{\mathrm{d} f^{-1} y: y \in Y\right\}$; cf. R. Engelking [9, Theorems 1.12.4 and 3.3.10]).

Constructing $f_{\text {Ch }}$, Chatyrko has shown that the theorem on inductive-dimensionlowering maps does not hold ${ }^{2}$ even if we consider maps into the "hereditarily nice" space A_{c}. On the other hand, the present author [13] has proved certain theorems on dimension-lowering maps for Ind, for Charalambous-Filippov-Ivanov inductive dimension Ind_{0} (M. G. Charalambous [2], A. V. Ivanov [12]), and for fully closed maps from spaces that need not be hereditarily normal (see Section 3 in the present paper).

In this paper we modify Chatyrko's construction, develop a method related to Vopěnka's one [16], and prove

Theorem 1. For every pair of natural numbers $m \geqslant n \geqslant 1$, there exists a compact Fréchet space $X_{m, n}$ such that
(a) $\operatorname{dim} X_{m, n}=n$, ind $X_{m, n}=\operatorname{Ind} X_{m, n}=m$, and
(b) every component of $X_{m, n}$ is homeomorphic to the n-dimensional cube I^{n}.

Chatyrko [5] has asked if there exist compact spaces X, Y and a map $f: X \rightarrow Y$ such that $\operatorname{Ind} X>\operatorname{Ind} Y+\operatorname{Ind} f+1$. The answer to this question is "yes".

Example 1. Let $m>n$. Suppose that \mathcal{D} is the decomposition of $X_{m, n}$ into its components, and $f: X_{m, n} \rightarrow X_{m, n} / \mathcal{D}$ is the natural quotient projection. Then every point-inverse of f is homeomorphic to $I^{n}, X_{m, n} / \mathcal{D}$ is zero-dimensional in any sense, and hence, $\operatorname{Ind} X_{m, n}=m>n=\operatorname{Ind} X_{m, n} / \mathcal{D}+\operatorname{Ind} f$.

Section 1 contains a proof of Theorem 1, and in Section 2 we show that $\operatorname{Ind}_{0} X_{m, n}=n 2^{m-n}$. In Section 3 we indicate modifications of our construction, and prove that for every triple $k \geqslant m \geqslant n \geqslant 1$, there is a compact Fréchet space $Y_{k, m, n}$ such that $\operatorname{dim} Y_{k, m, n}=n$, ind $Y_{k, m, n}=\operatorname{Ind} Y_{k, m, n}=m$, and $\operatorname{Ind}_{0} Y_{k, m, n}=k$.

Our terminology follows Engelking's monographs [8], [9].

[^1]
1. Proof of Theorem 1

Let $w X$ denote the weight of a (topological) space X. Let $A_{\mathfrak{m}}$ be the one-point compactification of the discrete space of cardinality \mathfrak{m}, and let $\mu \in A_{\mathfrak{m}}$ be the only accumulation point.

Lemma 1. Suppose that X is a space with $w X<\mathfrak{m}>\aleph_{0}$, and $\pi_{X}: A_{\mathfrak{m}} \times X \rightarrow X$ is the projection. If $H \subset A_{\mathfrak{m}} \times X$ is a G_{δ}-set, then there is a set $A \subset A_{\mathfrak{m}}$ such that $\operatorname{card}\left(A_{\mathfrak{m}} \backslash A\right)<\mathfrak{m}$ and $A \times \pi_{X}[H \cap(\{\mu\} \times X)] \subset H$.

Proof. Let \mathcal{B}, where $\operatorname{card} \mathcal{B}=w X$, be a base of open sets for X. First, suppose that $H \subset A_{\mathfrak{m}} \times X$ is open. Let \mathcal{B}_{0} be the family of all $U \in \mathcal{B}$ for which there is a set $A_{U} \subset A_{\mathfrak{m}}$ with $\mu \in A_{U}, \operatorname{card}\left(A_{\mathfrak{m}} \backslash A_{U}\right)<\aleph_{0}$, and $A_{U} \times U \subset H$. It suffices to take $A=\bigcap_{U \in \mathcal{B}_{0}} A_{U}$.

If $H=\bigcap_{n=1}^{\infty} H_{n}$, where $H_{n} \subset A_{\mathfrak{m}} \times X$ are open, then for every n there is a set $A_{n} \subset A_{\mathfrak{m}}$ such that $\operatorname{card}\left(A_{\mathfrak{m}} \backslash A_{n}\right)<\mathfrak{m}$ and $A_{n} \times \pi_{X}\left[H_{n} \cap(\{\mu\} \times X)\right] \subset H_{n}$. It suffices to take $A=\bigcap_{n=1}^{\infty} A_{n}$.

The next lemma is a direct consequence of A. V. Arkhangelskiú's Example 5.12 and Theorem 5.16 in [1].

Lemma 2. If X is a compact Fréchet space, then so is $A_{\mathfrak{m}} \times X$.

Lemma 3 (see Vopěnka [16, p. 320]). If X, Y are compact spaces and $\operatorname{Ind} X=0$, then $\operatorname{Ind}(X \times Y)=\operatorname{Ind} Y$.

For any pair of non-empty compact spaces X and Y we will construct a certain compact space $Z(X, Y)$, and later we will investigate the properties of $Z(X, Y)$.

Write \mathcal{S}_{X} for the family of all subspaces of X that are either finite or homeomorphic to $A_{\aleph_{0}}$ (hence, the empty set is a member of \mathcal{S}_{X}), and take any cardinal number $\mathfrak{m} \geqslant \max \left\{\aleph_{0},(w X)^{+},(w Y)^{+}, \operatorname{card} \mathcal{S}_{X}\right\}$. Consider the set $M=A_{\mathfrak{m}} \times X \times Y$ with the product topology, the union

$$
N=(\{\mu\} \times X) \cup\left[\left(A_{\mathfrak{m}} \backslash\{\mu\}\right) \times X \times Y\right],
$$

and the function $\pi_{1}: M \rightarrow N$:

$$
\pi_{1}(\alpha, x, y)= \begin{cases}(\alpha, x) & \text { if } \alpha=\mu \\ (\alpha, x, y) & \text { if } \alpha \neq \mu\end{cases}
$$

The decomposition of M into all point-inverses of π_{1} is upper semi-continuous. Hence, if we equip N with the largest topology such that π_{1} is continuous (the quotient topology), then N is a Hausdorff compact space. The unique function $\pi_{2}: N \rightarrow A_{\mathfrak{m}} \times X$ such that $\pi_{2} \pi_{1}(\alpha, x, y)=(\alpha, x)$ is continuous. Note that if $x \in X$, then all sets $\pi_{2}^{-1}(A \times U)$, where $A \ni \mu$ and $U \ni x$ are open in A and X, respectively, form a neighborhood base for the point $(\mu, x) \in N$. Indeed, if $V \ni(\mu, x)$ is open in N, then $(\mu, x) \in\left(A_{\mathfrak{m}} \times X\right) \backslash \pi_{2}(N \backslash V)$ and there are open sets $A \ni \mu$ and $U \ni x$ such that $(\mu, x) \in A \times U \subset\left(A_{\mathfrak{m}} \times X\right) \backslash \pi_{2}(N \backslash V)$. Hence, $(\mu, x) \in \pi_{2}^{-1}(A \times U) \subset V$.

Consider any function $\varphi: A_{\mathfrak{m}} \backslash\{\mu\} \rightarrow \mathcal{S}_{X}$ such that $\operatorname{card} \varphi^{-1} S=\mathfrak{m}$ for every $S \in \mathcal{S}_{X}$. Put

$$
\begin{aligned}
H(\alpha) & = \begin{cases}\{\mu\} \times X & \text { for } \alpha=\mu, \\
\{\alpha\} \times \varphi \alpha \times Y & \text { for } \alpha \neq \mu, \text { and }\end{cases} \\
Z(X, Y) & =\bigcup_{\alpha \in A_{\mathrm{m}}} H(\alpha)
\end{aligned}
$$

$Z(X, Y)$ inherits topology from N, and is closed in N as every $\varphi \alpha \subset X$ is closed. Note that $Z(X, Y)$ depends ${ }^{3}$ on the choice of \mathfrak{m} and φ.

Let $\pi_{A_{\mathfrak{m}}}: A_{\mathfrak{m}} \times X \rightarrow A_{\mathfrak{m}}$ and $\pi_{X}: A_{\mathfrak{m}} \times X \rightarrow X$ be projections. If we consider the restriction $h=\pi_{A_{\mathfrak{m}}} \pi_{2} \mid Z(X, Y): Z(X, Y) \rightarrow A_{\mathfrak{m}}$, we have $h^{-1} \alpha=H(\alpha)$ for every $\alpha \in A_{\mathfrak{m}}$.

Lemma 4. Every component of $Z(X, Y)$ is homeomorphic to some component of X or Y, and hence, $\operatorname{dim} Z(X, Y)=\max \{\operatorname{dim} X, \operatorname{dim} Y\}$.

Proof. The equality is a consequence of the theorem on dimension-lowering maps for dim (see [9 , Theorem 3.3.10]).

Lemma 5. If X and Y are Fréchet spaces, then so is $Z(X, Y)$.
Proof. Suppose that $H \subset Z(X, Y)$ and $p \in \operatorname{cl} H$. If $p \in H(\alpha)$, where $\alpha \neq \mu$, then an application of Lemma 2 completes the proof since $H(\alpha)$ is homeomorphic to a subspace of $A_{\aleph_{0}} \times Y$. Suppose $p=(\mu, x) \in\{\mu\} \times X$. If $p \in \operatorname{cl}[H \cap(\{\mu\} \times X)]$, then the proof is complete as X is Fréchet. So, we can assume that $H \cap(\{\mu\} \times X)=\emptyset$. Then $(\mu, x)=\pi_{2}(\mu, x) \in \mathrm{cl} \pi_{2} H$, and by Lemma 2, a certain sequence of points $\left(\alpha_{n}, x_{n}\right) \in \pi_{2} H$ converges to (μ, x). It is easily seen that also any sequence of points $\left(\alpha_{n}, x_{n}, y_{n}\right) \in H$ converges to (μ, x) if we consider the topology in N.

[^2]Lemma 6. Ind $Z(X, Y) \leqslant \max \{\operatorname{Ind} X+1$, $\operatorname{Ind} Y\}$.
Proof. Suppose that $F_{0}, F_{1} \subset Z=Z(X, Y)$ are disjoint closed sets. There are open sets $U_{0}, U_{1} \subset Z$ such that $\mathrm{cl} U_{0} \cap \operatorname{cl} U_{1}=\emptyset$ and $F_{i} \subset U_{i}$ for $i=0,1$. Write $F_{i}(\alpha)=H(\alpha) \cap \operatorname{cl} U_{i}$. Observe that $\pi_{X} \pi_{2} F_{i}(\alpha) \subset \varphi \alpha$ for $\alpha \neq \mu$, and the set

$$
A=\left\{\alpha \in A_{\mathfrak{m}} \backslash\{\mu\}: \pi_{X} \pi_{2} F_{0}(\alpha) \cap \pi_{X} \pi_{2} F_{1}(\alpha) \neq \emptyset\right\}
$$

must be finite. Indeed, if there were a one-to-one sequence $\left(\alpha_{n}\right)_{n=1}^{\infty}$ of points in A, $\left(\alpha_{n}, x_{n}, y_{n, i}\right) \in F_{i}\left(\alpha_{n}\right)$, and $x \in X$ were a cluster point of the sequence $\left(x_{n}\right)_{n=1}^{\infty}$, then μ would be the limit of $\left(\alpha_{n}\right)_{n=1}^{\infty}$, and (μ, x) would be in $\mathrm{cl} U_{0} \cap \operatorname{cl} U_{1}$. By Lemma 3, we have $\operatorname{Ind}(\varphi \alpha \times Y)=\operatorname{Ind} Y$. So, for each $\alpha \in A$ there exist disjoint open sets $V_{i}(\alpha) \subset H(\alpha)$ such that $F_{i}(\alpha) \subset V_{i}(\alpha)$ and $\operatorname{Ind} L(\alpha)<\operatorname{Ind} Y$, where $L(\alpha)=H(\alpha) \backslash\left[V_{0}(\alpha) \cup V_{1}(\alpha)\right]$. If $\mu \neq \alpha \notin A$, then there are analogous sets $V_{i}(\alpha)$ with $L(\alpha)=\emptyset$. When we set $V_{i}=U_{i} \cup \bigcup_{\alpha \neq \mu} V_{i}(\alpha)$, we obtain a partition

$$
L=Z \backslash\left(V_{0} \cup V_{1}\right)=\left[H(\mu) \backslash\left(U_{0} \cup U_{1}\right)\right] \cup \bigcup_{\alpha \in A} L(\alpha)
$$

in Z between F_{0} and F_{1}. Since A is a finite set, $\operatorname{Ind} L<\max \{\operatorname{Ind} X+1, \operatorname{Ind} Y\}$.
The number $\operatorname{ind}_{b+} X \in \mathbb{N} \cup\{\infty\}$, defined below, is actually not necessary in our proof of Theorem 1. However, we will use Lemma 7 in the form with $\operatorname{ind}_{b+} X$ later (in Remark 4). Suppose that X is a regular space and $b \in X$. We put
$\operatorname{ind}_{b+} X=\min \{n:$ there is a closed neighborhood F of b such that ind $F \leqslant n\}$
whenever the above set of n 's is non-empty, and $\operatorname{ind}_{b+} X=\infty$ in the other case. Let us note that ind $X \geqslant \operatorname{ind}_{b+} X \geqslant \operatorname{ind}_{b} X$.

Lemma 7. If $B \subset X$ is a connected subspace that contains more than one point and X is a Fréchet space, then for every point $b_{0} \in B$ we have

$$
\operatorname{ind}_{\left(\mu, b_{0}\right)} Z(X, Y) \geqslant \min \left\{\operatorname{ind} Y, \min \left\{\operatorname{ind}_{b+} X: b \in B\right\}\right\}+1
$$

Proof. Fix points $b_{0} \neq b_{1} \in B$. Take a partition L in $Z=Z(X, Y)$ between $\left(\mu, b_{0}\right)$ and $\left(\mu, b_{1}\right)$. There exist open sets $U_{0}, U_{1} \subset N$ such that $\left(\mu, b_{i}\right) \in U_{i}$ for $i=0,1$, $Z \cap U_{0} \cap U_{1}=\emptyset$ and $Z \backslash L=Z \cap\left(U_{0} \cup U_{1}\right)$. Let $L^{\prime}=L \cap H(\mu), U_{i}^{\prime}=U_{i} \cap H(\mu)$ for $i=0,1$, and $B^{\prime}=\{\mu\} \times B$. There are two cases. (1) If $B^{\prime} \cap \operatorname{int}_{H(\mu)} L^{\prime} \ni(\mu, b)$ for a point $b \in B$, then ind $L \geqslant \operatorname{ind} L^{\prime} \geqslant \operatorname{ind}_{b+} X$. (2) If $B^{\prime} \cap \operatorname{int}_{H(\mu)} L^{\prime}=\emptyset$, then
$B^{\prime} \cap \mathrm{cl}_{H(\mu)} U_{0}^{\prime} \cap \mathrm{cl}_{H(\mu)} U_{1}^{\prime} \ni(\mu, b)$ since B is connected. As X is Fréchet, there are sequences $\left(b_{i}^{n}\right)_{n=1}^{\infty}$ convergent to b and such that $\left(\mu, b_{i}^{n}\right) \in U_{i}^{\prime}$ for $n=1,2, \ldots$ and $i=0,1$. Let $S=\{b\} \cup\left\{b_{i}^{n}: i=1,2, n=1,2, \ldots\right\} \in \mathcal{S}_{X}$. Consider the projection $\pi_{X \times Y}: A_{\mathfrak{m}} \times X \times Y \rightarrow X \times Y$ and the sets $H_{i}=\pi_{1}^{-1} U_{i}$. By Lemma 1 there exists a set $A \subset A_{\mathfrak{m}}$ such that $\operatorname{card}\left(A_{\mathfrak{m}} \backslash A\right)<\mathfrak{m}$ and $A \times \pi_{X \times Y}\left(\pi_{1}^{-1} U_{i}^{\prime}\right) \subset \pi_{1}^{-1} U_{i}$ for $i=0,1$. Since $\operatorname{card} \varphi^{-1} S=\mathfrak{m}$, there is an $\alpha \in A \backslash\{\mu\}$ such that $\varphi \alpha=S$. We have $\left\{\left(b_{i}^{n}, y\right): n=1,2, \ldots, y \in Y\right\} \subset \pi_{X \times Y}\left(\pi_{1}^{-1} U_{i}^{\prime}\right)$, and hence,

$$
\{\alpha\} \times\left\{b_{i}^{n}: n=1,2, \ldots\right\} \times Y \subset H(\alpha) \cap \pi_{1}^{-1} U_{i}=H(\alpha) \cap U_{i} .
$$

Consequently, $\{\alpha\} \times\{b\} \times Y \subset Z \backslash\left(U_{0} \cup U_{1}\right)=L$ and ind $L \geqslant$ ind Y. Therefore, in both cases ind $L \geqslant \min \left\{\operatorname{ind} Y, \min \left\{\operatorname{ind}_{b+} X: b \in B\right\}\right\}$.

Pro of of Theorem 1. Fix $n \geqslant 1$. Using induction on m, we obtain compact spaces $X_{m, n}$ and arcs $B_{m} \subset X_{m, n}$ such that for every $m \geqslant n$ the following conditions hold:
(a) every component of $X_{m, n}$ is homeomorphic to I^{n};
(b) Ind $X_{m, n} \leqslant m$;
(c) $\operatorname{ind}_{b+} X_{m, n} \geqslant m$ for every $b \in B_{m}$; and
(d) $X_{m, n}$ is a Fréchet space.

For $m=n, X_{n, n}$ is the cube I^{n} and $B_{n} \subset I^{n}$ is any fixed arc. If $X_{m, n} \supset B_{m}$ with the properties (a)-(d) are defined, we take $\mathfrak{m}=\max \left\{\left(w X_{m, n}\right)^{+}, \operatorname{card} \mathcal{S}_{X_{m, n}}\right\}$, where $\mathcal{S}_{X_{m, n}}$ is the family of all subsets of $X_{m, n}$ that are either finite or homeomorphic to $A_{\aleph_{0}}$, and put $X_{m+1, n}=Z\left(X_{m, n}, X_{m, n}\right), B_{m+1}=\{\mu\} \times B_{m} \subset X_{m+1, n} \subset N$. By Lemmas 4-7, the conditions (a)-(d) are true for $X_{m+1, n} \supset B_{m+1}$.

2. Charalambous-Filippov-Ivanov dimension Ind_{0}

Recently, there is a growing interest in dimension functions ind_{0} and Ind_{0} defined in the 1970's by Charalambous [2] and Ivanov [12] (see Charalambous, Chatyrko [3] and the references in that paper). In this section we investigate the behavior of Ind_{0} under our operation $Z(X, Y)$.

Definition. For normal spaces X, the dimension $\operatorname{Ind}_{0} X \in\{-1,0,1,2, \ldots, \infty\}$ is defined so that
(a) $\operatorname{Ind}_{0} X=-1$ iff $X=\emptyset$;
(b) $\operatorname{Ind}_{0} X \leqslant n \geqslant 0$ iff for every pair of disjoint closed sets $A, B \subset X$, between A and B there is a G_{δ} partition L such that $\operatorname{Ind}_{0} L \leqslant n-1$;
(c) $\operatorname{Ind}_{0} X=n$ iff $\operatorname{Ind}_{0} X \leqslant n$ and it is not true that $\operatorname{Ind}_{0} X \leqslant n-1$;
(d) $\operatorname{Ind}_{0} X=\infty$ if for every $n \in \mathbb{N}$, it is not true that $\operatorname{Ind}_{0} X \leqslant n$.

If we replace the set B in the above definition by a point, which arbitrarily runs over X, we obtain the definition of the dimension $\operatorname{ind}_{0} X$. However, Charalambous and Ivanov's results [2, Propositions 15 and 16], [12, Theorem 3 and Corollary 2] readily yield

Lemma 8. $\operatorname{Ind}_{0} X=\operatorname{ind}_{0} X$ and $\operatorname{Ind}_{0}(X \times Y) \leqslant \operatorname{Ind}_{0} X+\operatorname{Ind}_{0} Y$ for every pair of compact spaces X and $Y \neq \emptyset$.

It is clear that Ind $X \leqslant \operatorname{Ind}_{0} X$ and ind $X \leqslant \operatorname{ind}_{0} X$ for every normal space X, and $\operatorname{Ind} X=\operatorname{Ind}_{0} X$, ind $X=\operatorname{ind}_{0} X$ if X is perfectly normal.

Lemma 9. $\operatorname{Ind}_{0} Z(X, Y)=\operatorname{Ind}_{0} X+\operatorname{Ind}_{0} Y$ (if X and Y are non-empty compact spaces).

Proof. We adopt the notation of Section 1. In virtue of Lemma 8, we can replace Ind_{0} by ind_{0}. Since $\operatorname{ind}_{0}(\varphi \alpha \times Y)=\operatorname{ind}_{0} Y$ for every $\alpha \neq \mu$ such that $\varphi \alpha \neq \emptyset$ (by Lemma 8), it suffices to evaluate ind_{0} of $Z=Z(X, Y)$ only at points $(\mu, x) \in\{\mu\} \times X$. Set

$$
\lambda(A, B)=Z \cap \pi_{2}^{-1}(A \times B)
$$

where $A \subset A_{\mathfrak{m}}$ and $B \subset X$. Observe that all sets $\lambda(A, U)$, where $\mu \in A, A_{\mathfrak{m}} \backslash A$ are finite and $U \ni x$ are open in X, form a neighborhood base for (μ, x). Furthermore,
(*) if $\mu \in A \subset A_{\mathfrak{m}}, \operatorname{card}\left(A_{\mathfrak{m}} \backslash A\right)<\mathfrak{m}$ and $L \subset X$ is a non-empty closed subset, then $\lambda(A, L) \subset Z$ is homeomorphic to $Z(L, Y)$,
where $Z(L, Y)$ is constructed with the use of the function $\varphi_{L}: A \backslash\{\mu\} \rightarrow \mathcal{S}_{L}, \varphi_{L} \alpha=$ $L \cap \varphi \alpha$ for $\alpha \in A \backslash\{\mu\}$. Consequently, we infer that
(\dagger) if $\mu \in A \subset A_{\mathfrak{m}}, A_{\mathfrak{m}} \backslash A$ is finite and $L \subset X$ is a non-empty closed G_{δ}-set, then $\lambda(A, L) \subset Z$ is a G_{δ}-set homeomorphic to $Z(L, Y)$.
On the other hand, for every G_{δ}-set $\Lambda \subset Z$ there is a G_{δ}-set $H \subset N$ such that $\Lambda=Z \cap H$. Write $L_{\Lambda}=\pi_{X} \pi_{2}[\Lambda \cap(\{\mu\} \times X)]$. Applying Lemma 1 to the G_{δ}-set $\pi_{1}^{-1} H \subset A_{\mathfrak{m}} \times X \times Y$, we obtain a set $A_{\Lambda} \subset A_{\mathfrak{m}}$ with $\mu \in A_{\Lambda}, \operatorname{card}\left(A_{\mathfrak{m}} \backslash A_{\Lambda}\right)<\mathfrak{m}$, $A_{\Lambda} \times L_{\Lambda} \times Y \subset \pi_{1}^{-1} H$. Hence, $\pi_{2}^{-1}\left(A_{\Lambda} \times L_{\Lambda}\right) \subset H$ and it follows that
(\ddagger) if $\Lambda \subset Z$ is a closed G_{δ}-set that meets $\{\mu\} \times X$, then $\lambda\left(A_{\Lambda}, L_{\Lambda}\right) \subset \Lambda$ is homeomorphic to $Z\left(L_{\Lambda}, Y\right)$.
We will prove that $\operatorname{ind}_{0} Z \leqslant \operatorname{ind}_{0} X+\operatorname{ind}_{0} Y$ by induction on $n=\operatorname{ind}_{0} X$. If $n=0$ and $x \in X$, then $\operatorname{ind}_{(\mu, x)} N=0, \operatorname{ind}_{0(\mu, x)} Z=0$, and $\operatorname{ind}_{0} Z=\operatorname{ind}_{0} Y$. Assume that the inequality is true for spaces X with $\operatorname{ind}_{0} X \leqslant n$. Let $\operatorname{ind}_{0} X=n+1$, consider an open neighborhood $\lambda(A, U) \ni(\mu, x)$, and take a G_{δ} partition L in X between x and $X \backslash U, \operatorname{ind}_{0} L \leqslant n$. By the claim (\dagger) and the induction hypothesis, $\lambda(A, L)$ is the needed partition in Z and $\operatorname{ind}_{0} \lambda(A, L) \leqslant n+\operatorname{Ind}_{0} Y$.

We shall show that the inequality $\operatorname{ind}_{0} X \geqslant n$ implies $\operatorname{ind}_{0} Z \geqslant n+\operatorname{ind}_{0} Y$. This is obvious for $n=0$. Assume that this is true for n. Let $\operatorname{ind}_{0} X \geqslant n+1$. There is a point $x \in X$ and an open neighborhood $U \subset X$ of x such that every G_{δ} partition L in X between x and $X \backslash U$ has $\operatorname{ind}_{0} L \geqslant n$. If $\Lambda \subset Z$ is a G_{δ} partition in Z between (μ, x) and $Z \backslash \lambda\left(A_{\mathfrak{m}}, U\right)$, then $\operatorname{ind}_{0} L_{\Lambda} \geqslant n$, and by (\ddagger) and the induction hypothesis we obtain $\lambda\left(A_{\Lambda}, L_{\Lambda}\right) \subset \Lambda$ with $\operatorname{ind}_{0} \Lambda \geqslant \operatorname{ind}_{0} \lambda\left(A_{\Lambda}, L_{\Lambda}\right) \geqslant n+\operatorname{ind}_{0} Y$. Thus, $\operatorname{ind}_{0} Z \geqslant \operatorname{ind}_{0(\mu, x)} Z \geqslant n+1+\operatorname{ind}_{0} Y$.

By induction we infer

Theorem 2. $\operatorname{Ind}_{0} X_{m, n}=n 2^{m-n}$ for every pair of natural numbers $m \geqslant n \geqslant 1$.

3. Remarks, generalizations, and an open problem

Let us note some more properties of spaces and maps constructed in Section 1.
Remark 1. In our construction, $X_{m+1, n}=Z\left(X_{m, n}, X_{m, n}\right)$ is the disjoint union of two subspaces: $F_{m, n}=H(\mu)$ is closed and $G_{m, n}=X_{m+1, n} \backslash H(\mu)$ is the discrete sum of subspaces $H(\alpha), \alpha \neq \mu$. Since $\operatorname{Ind} F_{m, n}=\operatorname{Ind} G_{m, n}=m$ and $\operatorname{Ind} X_{m+1, n}=m+1$, $X_{m+1, n}$ is not hereditarily normal by [9, Theorem 2.3.1]. Moreover, if $m=n$, then both the subspaces $F_{m, n}$ and $G_{m, n}$ are metrizable.

Example 2. Consider the map h defined before Lemma 4 and put $X=Y=I^{n}$. Then $h: Z\left(I^{n}, I^{n}\right)=X_{n+1, n} \rightarrow A_{\mathfrak{m}}$ is not an onto map (as $H(\alpha)=\emptyset$ if $\varphi \alpha=\emptyset$), but the image $h X_{n+1, n}$ is homeomorphic to $A_{\mathfrak{m}}$. Observe that every point-inverse $h^{-1} \alpha=H(\alpha)$ is metrizable, and h is a counter-example to the theorem on dimensionlowering maps in all the three cases of ind, Ind, and Ind_{0}. Indeed,

$$
\begin{aligned}
\operatorname{Ind}_{0} X_{n+1, n} & =2 n \geqslant n+1=\operatorname{Ind} X_{n+1, n}=\operatorname{ind} X_{n+1, n} \\
& >n=\operatorname{Ind}_{0} h X_{n+1, n}+\operatorname{Ind}_{0} h=\operatorname{Ind} h X_{n+1, n}+\operatorname{Ind} h \\
& =\operatorname{ind} h X_{n+1, n}+\operatorname{ind} h .
\end{aligned}
$$

A theorem on inductive-dimension-lowering maps holds in the following circumstances. A map $f: X \rightarrow Y$ between compact spaces X and Y is said to be fully closed 4 if for every pair of disjoint closed sets $F, G \subset X$ the intersection $f F \cap f G$ is finite. It immediately results from [13, Theorem 2.3] that, if f is a fully closed map from a compact space X to a first countable space, then $\operatorname{Ind}_{0} X \leqslant \operatorname{Ind}_{0} f X+\operatorname{Ind}_{0} f$.

[^3]When in Theorem 3 below we consider the map $f: X \rightarrow X / \mathcal{D}$ that collapses every component of X to a point, then f is fully closed by (c), and consequently, we obtain

Theorem 3. If X is a compact space such that
(a) ind $X<\infty$,
(b) every component of X is a perfectly normal G_{δ} subspace, and
(c) for every pair of disjoint closed sets $F, G \subset X$ there is only a finite number of components P of X with $P \cap F \neq \emptyset \neq P \cap G$,
then there is a component P of X such that ind $P=\operatorname{ind} X=\operatorname{Ind} X=\operatorname{Ind}_{0} X$.
At the end, we sketch a few modifications of our constructions. Our attention is now directed to the dimension Ind_{0}.

Remark 2. If we replace the family \mathcal{S}_{X} by another one, $\mathcal{S}_{X} \leqslant 1$, which consists of the empty set and all one-point subsets of X, we can repeat our construction in the same way and obtain a compact space $Z^{\leqslant 1}(X, Y)$ instead of $Z(X, Y)$. It is easily checked that Lemmas 4, 5, and 9 remain true if $Z(X, Y)$ is replaced by $Z^{\leqslant 1}(X, Y)$.

Observe that, if Y is a non-empty compact space, then

$$
\text { ind } Z^{\leqslant 1}(I, Y)=\max \{1, \operatorname{ind} Y\} \quad \text { and } \quad \operatorname{Ind} Z^{\leqslant 1}(I, Y)=\max \{1, \text { Ind } Y\}
$$

Indeed, write $Z=Z^{\leqslant 1}(I, Y)$. If $\alpha \neq \mu$ and $\varphi \alpha \neq \emptyset$, then $h^{-1} \alpha=H(\alpha)$ is homeomorphic to Y, and $\operatorname{ind}_{p} Z \leqslant \operatorname{ind} Y$ for every $p \in H(\alpha)$. If $0 \leqslant t<s \leqslant 1, \mu \in A \subset A_{\mathfrak{m}}$, and $A_{\mathfrak{m}} \backslash A$ is finite, then the closed set $\Phi=Z \cap \pi_{2}^{-1}(A \times[t, s])$ has a finite boundary, $\operatorname{bd} \Phi=\{(\mu, s),(\mu, t)\} \backslash\{(\mu, 0),(\mu, 1)\} \subset H(\mu)$. Every point $p=(\mu, x) \in H(\mu)$ has arbitrarily small closed neighborhoods of the form Φ, and so, $\operatorname{ind}_{p} Z=1$. The proof of the first equality is complete. Now, it suffices to show that $\operatorname{Ind} Z \leqslant \max \{1$, Ind $Y\}$. Assume that $\operatorname{Ind} Y=n<\infty$, and take disjoint closed sets $F_{0}, F_{1} \subset Z$. By an argument similar to that in our proof of Lemma 6, we infer that the set

$$
A=\left\{\alpha \in A_{\mathfrak{m}} \backslash\{\mu\}: F_{0} \cap H(\alpha) \neq \emptyset \neq F_{1} \cap H(\alpha)\right\}
$$

is finite. The pre-image $h^{-1} A$ is clopen in Z, and there exists a partition L in $h^{-1} A$ between $F_{0} \cap h^{-1} A$ and $F_{1} \cap h^{-1} A$, Ind $L \leqslant n-1$. Every point $p \in F_{0} \backslash h^{-1} A$ has an open neighborhood $U_{p} \subset \operatorname{cl} U_{p} \subset Z \backslash\left(F_{1} \cup h^{-1} A\right)$ such that bd U_{p} has at most two elements. There are points $p_{1}, \ldots, p_{k} \in F_{0} \backslash h^{-1} A$ with $F_{0} \backslash h^{-1} A \subset V=$ $U_{p_{1}} \cup \ldots \cup U_{p_{k}} . L \cup \mathrm{bd} V$ is a partition in Z between F_{0} and F_{1}, and $\operatorname{Ind}(L \cup \mathrm{bd} V) \leqslant$ $\max \{0, n-1\}$ as bd V is finite. Therefore, $\operatorname{Ind} Z \leqslant \max \{1, n\}$ and the second equality is true.

Let us define spaces by induction: $Y_{1,1,1}=I$ and $Y_{n+1,1,1}=Z^{\leqslant 1}\left(I, Y_{n, 1,1}\right)$ for $n \geqslant 1$. Every $Y_{n, 1,1}$ is a compact Fréchet space, $\operatorname{dim} Y_{n, 1,1}=\operatorname{ind} Y_{n, 1,1}=\operatorname{Ind} Y_{n, 1,1}=$ 1, and $\operatorname{Ind}_{0} Y_{n, 1,1}=n$ (the last equality follows from the $Z^{\leqslant 1}$ analogue of Lemma 9).

If $n>1$, then the map $f: Y_{n, 1,1} \rightarrow Y_{n, 1,1} / \mathcal{D}$ that collapses every component of $Y_{n, 1,1}$ to a point has $\operatorname{Ind}_{0} Y_{n, 1,1}=n>1=\operatorname{Ind}_{0} Y_{n, 1,1} / \mathcal{D}+\operatorname{Ind}_{0} f$, and every point-inverse of f is homeomorphic to $[0,1]$.

Chatyrko [4] constructed certain first countable compact spaces I_{m} with $\operatorname{dim} I_{m}=$ 1 and ind $I_{m}=m$. It appears that the spaces also have $\operatorname{Ind} I_{m}=\operatorname{Ind}_{0} I_{m}=m$ (Krzempek [13, Corollary 2.7]). When we use the examples of Remark 2, Chatyrko's spaces I_{m}, n-dimensional cubes I^{n}, and take disjoint unions $Y_{k, m, n}=Y_{k, 1,1} \oplus I_{m} \oplus I^{n}$, we obtain

Theorem 4. For every triple of natural numbers $k \geqslant m \geqslant n \geqslant 1$ there exists a compact Fréchet space $Y_{k, m, n}$ such that $\operatorname{dim} Y_{k, m, n}=n$, ind $Y_{k, m, n}=\operatorname{Ind} Y_{k, m, n}=$ m, and $\operatorname{Ind}_{0} Y_{k, m, n}=k$.

Further modifications are directed towards other topological types of components as well as transfinite dimensions trind and trInd (see [9, Section 7.1] for definitions).

Remark 3. Suppose that K is a non-degenerate metric continuum (=connected compact space) with $\operatorname{dim} K=n<\infty$. The set $\left\{x \in K: \operatorname{ind}_{x} K=n\right\}$ is F_{σ} and n-dimensional (see [9, Exercise 1.5.H]). It follows from [9, Theorems 1.3.1 and 1.4.5] that the set contains a non-degenerate continuum B. It is easily checked that in our proof of Theorem 1, one can replace I^{n} and the arc B_{n} by K and the continuum B, respectively (since $\operatorname{ind}_{x+} K=n$ for $x \in B$). In this way, for $m \geqslant \operatorname{dim} K$ one obtains compact Fréchet spaces $X_{m, K}$ such that ind $X_{m, K}=\operatorname{Ind} X_{m, K}=m$ and every component of $X_{m, K}$ is homeomorphic to K.

Remark 4. Define $\operatorname{trind}_{b+} X$ in the way similar to $\operatorname{ind}_{b+} X$ (see p. 5). One easily checks that Lemmas 6 and 7 remain true if Ind, ind, ind_{b}, and ind_{b+} are replaced by trInd, trind, trind_{b}, and $\operatorname{trind}_{b+}$, respectively. So, if we want to prove a transfinite analogue of Theorem 1, a successor step of transfinite induction can be taken.

Let K be a finite dimensional metric non-degenerate continuum, and let $\gamma \geqslant n=$ $\operatorname{dim} K$ be a limit ordinal. Assume that for every ordinal $\delta, n \leqslant \delta<\gamma$, there is a compact Fréchet space $X_{\delta, K}$ such that trind $X_{\delta, K}=\operatorname{trInd} X_{\delta, K}=\delta$ and every component of $X_{\delta, K}$ is homeomorphic to K. We shall define $X_{\gamma, K}$ and $B_{\gamma} \subset X_{\gamma, K}$ so that the transfinite analogues of conditions (a)-(d) in the proof of Theorem 1 be satisfied. Consider the one-point compactification of the discrete sum $\underset{n \leqslant \delta<\gamma}{\bigoplus} X_{\delta, K}$, and join a homeomorphic copy of K to the compactification at the one-point remainder so as to obtain a compact space X_{0} whose every component is homeomorphic to $K . X_{0}$ is Fréchet and trind $X_{0}=\operatorname{trInd} X_{0}=\gamma$. Let $X_{\gamma, K}=Z\left(K, X_{0}\right)$. The trInd analogue of Lemma 6 implies that $\operatorname{trInd} X_{\gamma, K} \leqslant \gamma$. It is easily seen that $\operatorname{trind}_{(\mu, b)+} X_{\gamma, K} \geqslant \gamma$ for every point $(\mu, b) \in B_{\gamma}=H(\mu)$. By virtue of Lemmas $4-5$, every component
of $X_{\gamma, K}$ is homeomorphic to K, and $X_{\gamma, K}$ is Fréchet. Therefore, also the limit γ th step of induction can be taken.

By transfinite induction and Remarks 3-4 we obtain

Theorem 5. If K is a finite dimensional non-degenerate metric continuum and $\gamma \geqslant \operatorname{dim} K$ is an ordinal number, then there is a compact Fréchet space $X_{\gamma, K}$ such that
(a) $\operatorname{dim} X_{\gamma, K}=\operatorname{dim} K$, trind $X_{\gamma, K}=\operatorname{trInd} X_{\gamma, K}=\gamma$, and
(b) every component of $X_{\gamma, K}$ is homeomorphic to K.

We conclude this paper with a collection of questions (in fact, these are seven questions as ind $=$ Ind for perfectly normal compact spaces).

Problem. Suppose that \mathcal{K} is one of the following four classes of compact spaces: hereditarily normal compact spaces, first countable compact spaces, compact spaces whose every component is a G_{δ}-set, perfectly normal compact spaces. Then, does there exist a space $X \in \mathcal{K}$ whose every component P has ind $P<$ ind $X<\infty$ (Ind $P<\operatorname{Ind} X<\infty)$?

Acknowledgement. I would like to thank Vitalij A. Chatyrko for valuable remarks and correspondence on the subject.

References

[1] A. V. Arkhangel'skiu: The spectrum of frequencies of a topological space and the product operation. Tr. Mosk. Mat. Obshch. 40 (1979), 171-206. (In Russian.)
[2] M. G. Charalambous: Two new inductive dimension functions for topological spaces. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 18 (1975), 15-25.
[3] M. G. Charalambous and V. A Chatyrko: Some estimates of the inductive dimensions of the union of two sets. Topology Appl. 146-147 (2005), 227-238.
[4] V. A. Chatyrko: Compact spaces with noncoinciding dimensions. Tr. Mosk. Mat. Obshch. 53 (1990), 192-228, 261 (In Russian.); English transl.: Trans. Moscow Math. Soc. (1991), 199-236.
[5] V. A. Chatyrko: On properties of subsets of $\left[0, \omega_{\mathrm{c}}\right] \times I$. Quest. Answers Gen. Topology 26 (2008), 97-104.
[6] V. A. Chatyrko, K. L. Kozlov, and B.A. Pasynkov: On an approach to constructing compacta with different dimensions dim and ind. Topology Appl. 107 (2000), 39-55.
[7] V. A. Chatyrko, K. L. Kozlov, and B. A. Pasynkov: On another approach to constructing compacta with different dimensions dim and ind. Topology Proc. 25 (2000), 43-72.
[8] R. Engelking: General Topology. Heldermann Verlag, Berlin, 1989.
[9] R. Engelking: Theory of Dimensions, Finite and Infinite. Heldermann, Lemgo, 1995.
[10] V. V. Fedorchuk: Fully closed maps and their applications. Fundam. Prikl. Mat. 9 (2003), 105-235 (In Russian.); English transl.: J. Math. Sci. (N. Y.) 136 (2006), 4201-4292.
[11] V. V. Filippov: On the inductive dimension of the product of bicompacta. Dokl. Akad. Nauk SSSR 202 (1972), 1016-1019 (In Russian.); English transl.: Sov. Math., Dokl. 13 (1972), 250-254.
[12] A. V. Ivanov: The dimension of not perfectly normal spaces. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 31; no. 4 (1976), 21-27 (In Russian.); English transl.: Moscow Univ. Math. Bull. 31 (1976), 64-69.
[13] J. Krzempek: Fully closed maps and non-metrizable higher-dimensional Ander-son-Choquet continua. Preprint in Math Arxiv. Available at http://arxiv.org/ (arXiv:0805.2087v3). To appear in Colloq. Math.
[14] O. V. Lokucievskiu: On the dimension of bicompacta. Dokl. Akad. Nauk SSSR 67 (1949), 217-219. (In Russian.)
[15] A. L. Lunc: A bicompactum whose inductive dimension is larger than the covering dimension. Dokl. Akad. Nauk SSSR 66 (1949), 801-803. (In Russian.)
[16] P. Vopěnka: On the dimension of compact spaces. Czechoslovak Math. J. 8 (1958), 319-327. (In Russian.)

Author's address: J. Krzempek, Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, e-mail: j.krzempek@polsl.pl.

[^0]: Research partially supported by MNiSW Grant Nr. N201 034 31/2717.
 ${ }^{1}$ For Lokucievskiì's example see also R. Engelking [9, Examples 2.2.14 and 3.1.31]. For more references see [9], V. A. Chatyrko, K. L. Kozlov, B. A. Pasynkov [6], [7], and V. V. Fedorchuk [10].

[^1]: ${ }^{2}$ Earlier counter-examples to the theorem were obtained as a by-product of constructions of compact spaces X, Y such that $\operatorname{Ind}(X \times Y)>\operatorname{Ind} X+\operatorname{Ind} Y$ (V.V. Filippov [11]). See also comments in [5, Section 5] and [9, Sections 2.2, 2.4, and p. 205].

[^2]: ${ }^{3}$ We could write $Z(X, Y, \mathfrak{m}, \varphi)$, but it is easily shown that the dependence on φ is superficial. If $\varphi, \psi: A_{\mathfrak{m}} \backslash\{\mu\} \rightarrow \mathcal{S}_{X}$ and $\operatorname{card} \varphi^{-1} S=\operatorname{card} \psi^{-1} S=\mathfrak{m}$ for every $S \in \mathcal{S}_{X}$, then the subspace $Z(X, Y) \subset N$ defined with the use of φ is homeomorphic to $Z(X, Y) \subset N$ defined with the use of ψ.

[^3]: ${ }^{4}$ Fully closed maps are usually investigated in much more general setting, cf. Fedorchuk [10] (an extensive survey). See [10, Section II.1] for equivalent definitions of this class of maps.

