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Abstract. In this paper we investigate the effect on the multiplicity of Laplacian eigenval-
ues of two disjoint connected graphs when adding an edge between them. As an application
of the result, the multiplicity of 1 as a Laplacian eigenvalue of trees is also considered.
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1. Introduction

Let G = (V, E) be a graph with vertex set V = {v1, v2, . . . , vn} and edge set E.

Let A(G) and D(G) = diag (d(v1), d(v2), . . . , d(vn)) be the adjacency matrix and the

diagonal matrix of vertex degrees of G, respectively, where d(vi) is the degree of

vertex vi ∈ V (G). The matrix L(G) = D(G) − A(G) is called the Laplacian matrix

of the graph G because it is a discrete analogue of the Laplace differential operator

(see [6]). It is well known that L(G) is positive semidefinite, symmetric and singular.

Moreover, since G is connected, L(G) is irreducible. Denote its eigenvalues by

µ1(G) > µ2(G) > . . . > µn(G) = 0,

which are always enumerated in non-increasing order and repeated according to their

multiplicity. We shall use the notation µk(G) to denote the k-th Laplacian eigenvalue

of the graph G.

A vertex in a graph is called a quasipendant vertex if it is adjacent to a pendant

vertex. Denote by p(G) and q(G) the number of pendant vertices and quasipendant
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vertices of G, respectively. We use mG(λ) to denote the multiplicity of λ as a

Laplacian eigenvalue of G.

In [2], Faria proved that for any graph G,

mG(1) > p(G) − q(G).

In [3], Grone, Merris, and Sunder proved that for a tree T with n vertices, if λ > 1

is an integer Laplacian eigenvalue of T , then λ|n (i.e., λ divides n) and mT (λ) = 1.

In that paper, it is also pointed out that “there is an abundance of examples that

leads the authors to believe there can be no simple graph theoretic interpretation for

mT (1)”.

Recently, Shao, Guo and Shan [7] investigated the effect on the multiplicity of

Laplacian eigenvalues of connected graphs when adding edges. In the present paper,

we first consider the effect on the multiplicity of Laplacian eigenvalues of two disjoint

connected graphs when adding an edge between them. Then we characterize all trees

with the property n − 6 6 mT (1) 6 n.

2. Lemmas and results

Let G be a graph and let G′ = G + e be the graph obtained from G by inserting

a new edge e into G. We have the following

Lemma 2.1 [3]. The Laplacian eigenvalues of G and G′ interlace, that is,

µ1(G
′) > µ1(G) > µ2(G

′) > µ2(G) > . . . > µn(G′) = µn(G) = 0.

The following inequalities are known as Cauchy’s inequalities and the whole the-

orem is also known as the interlacing theorem [1].

Lemma 2.2. Let A be a Hermitian matrix with eigenvalues λ1 > λ2 > . . . > λn

and let B be a principal submatrix of orderm; letB have eigenvalues µ1 > µ2 > . . . >

µm. Then the inequalities λn−m+i 6 µi 6 λi (i = 1, 2, . . . , m) hold.

Lemma 2.3 [4]. For any tree T with n vertices, we have µ(T ) 6 n, with equality

if and only if T ∼= K1,n−1, a star on n vertices.

If v ∈ G, let Lv(G) be the principal submatrix of L(G) formed by deleting the row

and column corresponding to vertex v.

Let B be a real square matrix. We denote by Φ(B) = Φ(B; x) = det(xI − B) the

characteristic polynomial of B. In particular, if B = L(G), we write Φ(G) instead
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of Φ(L(G)) and call Φ(G) the Laplacian characteristic polynomial of G. For the

Laplacian characteristic polynomial of a graph with a cut edge we have the following

Lemma 2.4 [5]. Let G1 and G2 be two vertex-disjoint graphs and let G = G1u :

vG2 be the graph obtained by joining the vertex u of the graph G1 to the vertex v

of the graph G2 by an edge. Then

Φ(G) = Φ(G1)Φ(G2) − Φ(G1)Φ(Lv(G2)) − Φ(G2)Φ(Lu(G1)).

Let T ∗

n(s, t) (s > t) be a tree on n vertices obtained from a star K1,s by joining t

pendant vertices of K1,s to t new isolated vertices by t edges. It is easy to see that

n = s + t + 1.

Corollary 2.1. For s > t > 1 and n 6= 3 we have

mT∗

n(s,t)(1) =

{

s − t − 1, s > t + 1;

0, s = t.

P r o o f. From Lemma 2.4, we have

Φ(T ∗

n(s, t)) = x(x − 1)s−t−1(x2 − 3x + 1)t−1

× [x3 − (s + 4)x2 + (3s + 4)x − n].

Let f1(x) = x3 − 3x + 1, f2(x) = x3 − (s + 4)x2 + (3s + 4)x − n. It is easy to see

that f1(1) = −1 6= 0, f2(1) = s − t. Thus, if s > t + 1, then mT∗(s,t)(1) = s − t − 1;

if s = t, then

Φ(T ∗

n(s, t)) = x(x − 1)−1(x2 − 3x + 1)t−1

× [x3 − (s + 4)x2 + (3s + 4)x − 2s − 1]

= x(x2 − 3x + 1)t−1[x2 − (s + 3)x + 2s + 1]

, x(x2 − 3x + 1)t−1f3(x).

Since n 6= 3, we have s 6= 1. Then f3(1) = s− 1 6= 0. So, mT∗

n(s,t)(1) = 0 for s = t

and n 6= 3. The proof is complete. �

Let G1u : v be the graph obtained by joining the vertex u of G1 to a new isolated

vertex v, and let G1u : vw be the graph obtained from G1 and a new path P2 : vw

by joining the vertex u to the vertex v. We have
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Theorem 2.1. Let G1 and G2 be two disjoint graphs and G = G1u : vG2 the

graph obtained from G1 and G2 by joining an (arbitrary) vertex u of G1 to an

(arbitrary) vertex v of G2. Then we have:

(1) If mG2
(λ) = mLv(G2)(λ) + 1, then

mG(λ) = mG1
(λ) + mG2

(λ) − 1.

(2) If mG2
(λ) = mLv(G2)(λ) − 1, then

mG(λ) = mLv(G1u:v)(λ) + mG2
(λ).

and

mG(λ) = mG1u:vw(λ) + mG2
(λ)

(3) If mG1
(λ) = mLu(G1)(λ) and mG2

(λ) = mLv(G2)(λ), then

mG(λ) > mG1
(λ) + mG2

(λ).

P r o o f. We first prove that (1) is true. From Lemma 2.1 we have

(2.1) mG(λ) > mG−uv(λ) − 1 = mG1
(λ) + mG2

(λ) − 1.

From Lemma 2.4 we have

(2.2) Φ(G) = Φ(G2)(Φ(G1) − Φ(Lu(G1))) − Φ(G1)Φ(Lv(G2))

= Φ(G2)Φ(Lv(G1u : v)) − Φ(G1)Φ(Lv(G2)).

From Lemma 2.2 we have

(2.3) mG(λ) 6 mLv(G)(λ) + 1 = mLv(G1u:v)(λ) + mLv(G2)(λ) + 1

= mLv(G1u:v)(λ) + mG2
(λ).

From Eqs. (2.2) and (2.3) we have

(2.4) mG(λ) 6 mG1
(λ) + mLv(G2)(λ) = mG1

(λ) + mG2
(λ) − 1.

Eqs. (2.1) and (2.4) complete the proof of (1).

Next, we prove that (2) holds. From Lemma 2.2 we have

(2.5) mG(λ) > mLv(G)(λ) − 1 = mLv(G1u:v)(λ) + mLv(G2)(λ) − 1

= mLv(G1u:v)(λ) + mG2
(λ).

692



From Lemma 2.1 we have

(2.6) mG(λ) 6 mG−uv(λ) + 1 = mG1
(λ) + mG2

(λ) + 1

= mG1
(λ) + mLv(G2)(λ).

From Eqs. (2.2) and (2.6), we have

(2.7) mLv(G1u:v)(λ) + mG2
(λ) > mG(λ).

Thus, from Eqs. (2.5) and (2.7) we have

mG(λ) = mLv(G1u:v)(λ) + mG2
(λ).

In particular, taking G2 = vw we have mG1u:vw(λ) = mLv(G1u:v)(λ). The proof of

(2) is complete.

From Lemma 2.4 it is easy to see that (3) holds. �

From Theorem 2.1 we obtain the following known result.

Corollary 2.2 [3]. Let G1 be a graph on n > 1 vertices, and let G be a graph

obtained from G1 and K1,s by joining an (arbitrary) vertex of G1 to a vertex v of

K1,s. Then we have mG(s + 1) = mG1
(s + 1).

P r o o f. Without loss of generality, we distinguish the following two cases:

Case 1. v is the center of K1,s. Since

(2.8) Φ(K1,s) = x(x − s − 1)(x − 1)s−1

and

(2.9) Φ(Lv(K1,s)) = (x − 1)s.

Eqs. (2.8) and (2.9) yield

mK1,s
(s + 1) = mLv(K1,s)(s + 1) + 1.

From (1) of Theorem 2.1 we have mG(s + 1) = mG1
(s + 1).

Case 2. v is a pendant vertex of K1,s. It is easy to see that

(2.10) Φ(Lv(K1,s)) = (x − 1)s−2(x2 − (s + 1)x + 1).

From Eqs. (2.8) and (2.10) we have

mK1,s
(s + 1) = mLv(K1,s)(s + 1) + 1.

From (1) of Theorem 2.1 we have mG(s + 1) = mG1
(s + 1). �

Furthermore, we have the following
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Corollary 2.3. Let G1 be a graph on n > 1 vertices, and let G be the graph

obtained from G1 and K1,s (s > 2) by joining a vertex u of G1 to a vertex v of K1,s.

Then we have:

(1) If v is a pendant vertex of K1,s, then

mG(1) = mG1
(1) + s − 2;

(2) if v is the center of K1,s, then

mG(1) = mG1u:vw(1) + s − 1.

P r o o f. If v is a pendant vertex of K1,s, then from Eqs. (2.8) and (2.10) we

have

mK1,s
(1) = mLv(K1,s)(1) + 1 = s − 1.

From (1) of Theorem 2.1 we have

mG(1) = mG1
(1) + mK1,s

(1) − 1 = mG1
(1) + s − 2.

Hence (1) follows.

If v is the center of K1,s, then from Eqs. (2.8) and (2.9), we have

mK1,s
(1) = mLv(K1,s)(1) − 1 = s − 1.

From (2) of Theorem 2.1 we have

mG(1) = mG1u:vw(1) + s − 1.

Hence (2) follows. �

From (1) of Corollary 2.3 we immediately have the following known result.

Corollary 2.4 [3]. Let G be a graph obtained from G1 and a new path P3 by

joining a vertex of G1 to a pendant vertex of P3. Then we have mG(1) = mG1
(1).

From Corollary 2.1 and (2) of Theorem 2.1 we have
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Corollary 2.5. Let u be a vertex of the graph G1 and let G be a graph obtained

from G1 and T ∗

n(s, t) by joining the vertex u to the vertex v (with degree s) of

T ∗

n(s, t). If s − t > 1, then we have

mG(1) = mG1u:vw(1) + s − t − 1.

Next we investigate the multiplicity of 1 as a Laplacian eigenvalue of trees. We

first introduce the following definition.

Let [0, n] = {0, 1, . . . , n}. A subset N of [0, n] is said to be (Laplacian) 1-realizable

for trees with n vertices provided that for any k ∈ N , there exists at least one tree

T on n vertices such that mT (1) = k.

Theorem 2.2. For any tree T on n > 4 vertices we have

mT (1) 6= n, mT (1) 6= n − 1 and mT (1) 6= n − 3.

P r o o f. Since µn(T ) = 0, mT (1) 6= n is obvious. If mT (1) = n − 1, from the

well known fact
n−1
∑

i=1

µi(T ) = 2(n − 1) we have n = 1, a contradiction to n > 4. If

mT (1) = n − 3, then T 6= K1,n−1 (since MK1,n−1
(1) = n − 2). So T contains P4

as a subgraph. From Lemma 2.1 we have µn−1(T ) 6 µ3(P4) ≈ 0.586 < 1. From
n−1
∑

i=1

µi(T ) = 2(n − 1) we have

µn−1(T ) + µ1(T ) = n + 1.

Thus, we have µ1(T ) > n, a contradiction. �

Theorem 2.3. The set N = {0, 1, 2, . . . , n−4, n−2} is 1-realizable for trees with

n > 4 vertices.

P r o o f. In order to obtain the result, we only need to prove that for any k ∈ N

there exists a tree T on n vertices such that mT (1) = k. We distinguish the following

four cases:

Case 1. If k = n−2, take T = K1,n−1. The result follows frommK1,n−1
(1) = n−2.

Case 2. If k = 0, take T = T ∗(s, t) (0 6 s − t 6 1, s + t + 1 = n). The result

follows from Corollary 2.1.

Case 3. k = n− 6 (n > 7). Let T ′ be the tree obtained from K1,n−5 and the path

P4 by joining the center ofK1,n−5 to a nonpendant vertex of P4. From Corollaries 2.1

and 2.5 we have mT ′(1) = n − 6.
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Case 4. 1 6 k 6 n − 4 and k 6= n − 6. Let T ′′ be the tree obtained from K1,k+2

and T ∗

n−k−3(s, t) (0 6 s− t 6 1, s + t + 1 = n− k− 3) by joining a pendant vertex of

K1,k+2 and a vertex of T
∗

n−k−3(s, t). Since k 6= n − 6, we have n − k − 3 6= 3. From

Corollary 2.1 and (1) of Corollary 2.3 we have

mT ′′(1) = mT∗

n−k−3
(s,t)(1) + k = k.

�

Let T3(s, t) be the tree on n vertices with diameter 3 obtained from K1,s and K1,t

by joining the center of K1,s to the center of K1,t (see Fig. 1). It is easy to see that

n = s + t + 2.

s t

Fig. 1. T3(s, t)

Let T4(s, r, t) be the tree on n vertices with diameter 4 obtained from P5 :

v1v2v3v4v5, a path on 5 vertices, by attaching s − 1, r, t − 1 (s, t > 1, r > 0)

pendant edges at vertices v2, v3, v4 of P5, respectively (see Fig. 2). It is easy to see

that n = s + t + r + 3.

s t

r

Fig. 2. T4(s, r, t)

Let T5(s, t) be the tree on n vertices with diameter 5 obtained from T4(s, 0, t) by

subdividing one of the nonpendant edges of T4(s, 0, t) (see Fig. 3). It is easy to see

that n = s + t + 4.

s t

Fig. 3. T5(s, t)

Let d(T ) be the diameter of T . In the following we characterize all trees satisfying

n − 6 6 mT (1) 6 n − 4 and mT (1) = n − 2.
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Theorem 2.4. Let T be a tree on n > 6 vertices. Then we have

(1) mT (1) = n − 2 if and only if T ∼= K1,n−1;

(2) mT (1) = n − 4 if and only if T ∼= T3(s, t) (s, t > 1; s + t + 2 = n);

(3) mT (1) = n − 5 if and only if T ∼= T4(s, 0, t) (s, t > 1, s + t + 3 = n) or

T ∼= T5(s, t) (s, t > 1; s + t + 4 = n);

(4) mT (1) = n − 6 if and only if T ∼= T4(s, r, t) (r 6= 0; s, t > 1; s + t + r + 3 = n).

P r o o f. We first prove that (1) holds. From
n−1
∑

i=1

µi(T ) = 2(n − 1) we have

µ1(T ) = n. By Lemma 2.3 (1) holds.

Secondly, we prove that (2) holds. By virtue of Lemma 2.3 we can assume that

T 6= K1,n−1, that is d(T ) > 3. If d(T ) > 4, then T contains P5 as a subgraph. It is

easy to calculate that spec(P5) = {3.6180, 2.6180, 1.382, 0.382, 0}. From Lemma 2.1

we have mT (1, n] > 3 and mT [0, 1) > 2. Thus,

mT (1) = n − mT (1, n] − mT [0, 1) 6 n − 5.

So, if mT (1) = n − 4, then d(T ) = 3. Then there exist two integers s > 1 and

t > 1 such that T ∼= T3(s, t). If T ∼= T3(s, t), then Corollary 2.1 and (2) of Corollary

2.3 imply

mT3(s,t)(1) = s + t − 2 = n − 4.

The proof of (2) is complete.

Finally, we prove that (3) and (4) hold. If d(T ) > 6, then T contains P7 as a

subgraph. By a simple calculation we have

spec(P7) = {3.801, 3.246, 2.445, 1.555, 0.754, 0.1999, 0}.

Then by reasoning similar as above we have mT (1) 6 n − 7. So, in the following,

we can assume that 4 6 d(T ) 6 5. Without loss of generality, we distinguish the

following two cases:

Case 1. d(T ) = 5. Let P6 : v1v2v3v4v5v6 be a path on 6 vertices and let P ′

6 be the

tree on 7 vertices obtained from P6 by attaching a new pendant edge v3v
′

3 at v3. By

a simple calculation we have

spec(P ′

6) = {4.334, 3.099, 2.274, 1.406, 0.623, 0.261, 0}.

Then by reasoning similar as above we have mT (1) 6 n − 7 (n > 7). Thus, if

mT (1) = n − 6, d(T ) = 5 or mT (1) = n − 5, d(T ) = 5, then there exists a tree

T5(s, t) (s, t > 1; s + t + 4 = n) such that T ∼= T5(s, t). From (1) of Corollary 2.3 we

have mT5(s,t)(1) = s− 1 + t = n− 5. Thus we have if d(T ) = 5, then mT (1) 6= n− 6,

and mT (1) = n − 5 if and only if T ∼= T5(s, t) (s, t > 1; s + t + 4 = n).
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Case 2. d(T ) = 4. Let P5 : v1v2v3v4v5 be a path on 5 vertices and let P ′

5 be

a tree on 7 vertices obtained from P5 by attaching a new path v3uw with length

2 at vertex v3, where u and w are new different vertices. By a simple calculation

we have spec(P ′

5) = {4.414, 2.618, 2.618, 1.586, 0.382, 0.382, 0}. Then by reasoning

similar as above, if T contains P ′

5 as a subgraph, then mT (1) 6 n − 7. Thus, if

d(T ) = 4 and mT (1) = n − 5 or d(T ) = 4 and mT (1) = n − 6, then there exists a

tree T4(s, r, t) (s, t > 1; s + t + r + 3 = n) such that T ∼= T4(s, r, t).

If r = 0, then from (1) of Corollary 2.3 we have

mT4(s,0,t)(1) = s + 1 − 2 + t − 1 = n − 5.

If r 6= 0, then from Corollary 2.1 and (2) of Corollary 2.3 we have

mT4(s,r,t)(1) = s − 1 + t − 1 + r − 1 = n − 6.

The proofs of (3) and (4) are complete. �

At the end of this paper, we propose the following problem:

Characterize the trees on n vertices with the property

mT (1) = 0.
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