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(Received November 30, 2007)

Abstract. There are many relations involving the geometric means Gn(x) and power

means [An(x
γ)]1/γ for positive n-vectors x. Some of them assume the form of inequalities

involving parameters. There then is the question of sharpness, which is quite difficult in
general. In this paper we are concerned with inequalities of the form (1 − λ)Gγ

n(x) +
λA

γ
n(x) > An(x

γ) and (1 − λ)Gγ
n(x) + λA

γ
n(x) 6 An(x

γ) with parameters λ ∈ R and
γ ∈ (0, 1). We obtain a necessary and sufficient condition for the former inequality, and a
sharp condition for the latter. Several applications of our results are also demonstrated.

Keywords: geometric mean, power mean, Hermitian matrix, permanent of a complex,
simplex, arithmetic-geometric inequality
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1. Introduction

Means are basic to the whole subject of inequalities and their applications (see

e.g. [1]). There are many relations involving the geometric mean Gn(x) and the

power mean [An(xγ)]1/γ for nonnegative n-vectors x. Some of them take on the

form of inequalities involving parameters. Three such relations are obtained in [4],

[5], [6] which motivate our results that follow. Let n > 2 be a fixed integer. Let x =

(x1, x2, . . . , xn) be a vector of n nonnegative numbers, and let xγ = (xγ
1 , xγ

2 , . . . , xγ
n).

Let Gn(x) be the geometric mean

Gn(x) =

( n
∏

i=1

xi

)1/n
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and [An(xγ)]1/γ the power mean, where

An(xγ) =
1

n

n
∑

i=1

xγ
i , γ 6= 0.

In [4] it is shown that if γ > 2 and λ = nγ−1, then

(1) (1 − λ)Gγ
n(x) + λAγ

n(x) > An(xγ),

where we use An(x) instead of An(x1) for the sake of convenience. The question then

naturally arises as to whether such an inequality is sharp or whether the conditions

γ > 2 or λ = nγ−1 are necessary. In [5], it is shown that under the condition that

λ = nγ−1, (1) holds if and only if γ > n/(n − 1).

Note that the condition γ > n/(n− 1) implies γ > 1. Therefore it is of interest to

consider the case when 0 < γ 6 1. The case when γ = 1 can be discarded, however,

since (1) becomes an equality.

Another natural question is whether (1) holds if the inequality is reversed. Indeed,

in [6] it is shown that if 1 6 γ 6 n and λ = [n/(n − 1)]
γ−1

, then

(2) (1 − λ)Gγ
n(x) + λAγ

n(x) 6 An(xγ).

Again, we are left with the sublinear case when 0 < γ < 1.

In this paper, we will consider the case when 0 < γ < 1.We will show the following

two results.

Theorem 1. Let 0 < γ < 1. Then (1) holds for all x = (x1, x2, . . . , xn) ∈ [0,∞)n

if and only if λ > [(n − 1)/n]
1−γ

, and equality in (1) holds if and only if either

(3) x1 = x2 = . . . = xn,

or

λ =
(n − 1

n

)1−γ

and exists i : 1 6 i 6 n(4)

such that x1 = x2 = . . . = xi−1 = xi+1 = . . . = xn and xi = 0.
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Theorem 2. Let 0 < γ < 1. If

λ 6
γ

n − 1

[ (2 − γ)(n − 1)

1 + (1 − γ)(n − 1)

]2−γ

,

then (2) holds for all x = (x1, x2, . . . , xn) ∈ [0,∞)n; furthermore, equality in (2)

holds if, in addition, x1 = x2 = . . . = xn.

2. An application of (1)

Before proving Theorem 1, we first illustrate its use in obtaining bounds for an

integral mean. To this end, recall that the permanent of a complex n by n matrix

A = (aij) is

perA :=
∑

σ∈Sn

a1σ1
a2σ2

. . . anσn
,

where the summation is over the set Sn of all permutations of {1, 2, . . . , n} . Let Bm

be a finite but nonempty subset of the simplex

(5) Ωn,m =

{

α = (α1, α2, . . . , αn) ∈ [0,∞)n :

n
∑

i=1

αi = m > 0

}

and µ = µ(α) a positive function defined on Bm. Let f : (0,∞)n → (0,∞) be defined

by

f(x1, x2, . . . , xn) =
∑

α∈Bm

1

n!
µ(α)per

(

xαi

j

)

n×n
.

Then

Q =
1

(b − a)n

∫

[a,b]n

( f(xδ)

f(1, 1, . . . , 1)

)1/δm

dx1 . . . dxn, δ > 0, 0 < a < b,

is an integral mean over the parallelepiped [a, b]n.

A s s e r t i o n 1. If τ = max
(α1,α2,...,αn)∈Bm

{max {α1, α2, . . . , αn}} and δ ∈ (0, 1/τ) as

well as λ > [(n − 1) /n]
1−δτ

, then

(6)
(

n

n + 1

b(n+1)/n − a(n+1)/n

b − a

)n

6 Q 6 (1−λ)

(

n

n + 1

b(n+1)/n − a(n+1)/n

b − a

)n

+λ
a + b

2
.

P r o o f. We first recall that [7], [8]

[Gn(x)]
α1+α2+...+αn 6

1

n!
per

(

xαi

j

)

6

n
∏

j=1

(

1

n

n
∑

i=1

x
αj

i

)
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for any α = (α1, α2, . . . , αn) ∈ [0,∞)n and x = (x1, x2, . . . , xn) ∈ (0,∞)n. Recall

further that the power mean M
[t]
n (x) for x ∈ (0,∞)n is defined by

M [t]
n (x) =

{

(An(xt))
1/t

, t ∈ R, t 6= 0,

Gn(x), t = 0.

Then in view of [2], [3], we see that for any α = (α1, α2, . . . , αn) ∈ Bm and any

x = (x1, x2, . . . , xn) ∈ (0,∞)n,

[Gn(x)]
m

6
1

n!
per

(

xαi

j

)

6

n
∏

j=1

1

n

n
∑

i=1

x
αj

i =

n
∏

j=1

[M [αj ]
n (x)]αj

6

n
∏

j=1

[M [τ ]
n (x)]αj = [M [τ ]

n (x)]m.

Hence,

[Gn(x)]
m

f(1, 1, . . . , 1) =
∑

α∈Bm

µ(α) [Gn(x)]
m

6 f(x)

6
∑

α∈Bm

µ(α)[M [τ ]
n (x)]m = [M [τ ]

n (x)]mf(1, 1, . . . , 1),

or

Gn(x) 6

[ f(x)

f(1, 1, . . . , 1)

]1/m

6 M [τ ]
n (x).

Replacing xi by xδ
i and taking the (1/δ)-th power of all the terms in the resulting

inequalities, we obtain

(7) Gn(x) =
[

Gn(xδ)
]1/δ

6

[ f(xδ)

f(1, 1, . . . , 1)

]1/δm

6 [M [τ ]
n (xδ)]1/δ = M [δτ ]

n (x).

If we now apply Theorem 1, we have

M [δτ ]
n (x) =

[

An(xδτ )
]1/δτ

6
[

(1 − λ)Gδτ
n (x) + λAδτ

n (x)
]1/δτ

(8)

6 (1 − λ)Gn(x) + λAn(x),

and hence
∫

[a,b]n

( f(xδ)

f(1, 1, . . . , 1)

)1/δm

dx1 . . . dxn 6

∫

[a,b]n
M [δτ ]

n (x) dx1 . . . dxn

6

∫

[a,b]n
[(1 − λ)Gn(x) + λAn(x)] dx1 . . . dxn

= (1 − λ)

∫

[a,b]n

( n
∏

i=1

x
1/n
i

)

dx1 . . . dxn + λ

∫

[a,b]n

(

1

n

n
∑

i=1

xi

)

dx1 . . . dxn

= (b − a)n

[

(1 − λ)

(

n

n + 1

b(n+1)/n − a(n+1)/n

b − a

)n

+ λ
a + b

2

]

.
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This shows that the second inequality in (6) is true. The first inequality in (6) is

similarly proved. This completes the proof of Assertion 1.

3. An application of (2)

There are quite a few inequalities involving the power of eigenvalues of Hermitian

matrices. We can add more by means of Theorem 2. To be more precise, let A = (aij)

be an n by n positive definite Hermitian matrix and λ1, λ2, . . . , λn its eigenvalues.

Let diag(x) be the diagonal matrix with the components of x = (x1, x2, . . . , xn) as

its diagonal elements. Let λ = (λ1, λ2, . . . , λn). Then A = U diag(λ)U∗ for some

unitary matrix U (where U∗ is the conjugate transpose of U). Let 0 < γ 6 1. Then

Aγ = U diag (λγ)U∗,

An (λγ) =
1

n
tr (Aγ) ,

Gn (λγ) = (detA)
γ/n

,

and

(P [k]
n (λγ))1/γ =

[

k!(n − k)!

n!

∑

16i1<...<ik6n

k
∏

j=1

λγ
ij

]1/γk

=

[

k!(n − k)!

n!

∑

16i1<...<ik6n

det (Aγ [i1, i2, . . . , ik|i1, i2, . . . , ik])

]1/γk

,

where P
[k]
n (x) is the k-th symmetric mean of a positive vector x = (x1, x2, . . . , xn):

P [k]
n (x) =

[

k!(n − k)!

n!

∑

16i1<...<ik6n

k
∏

j=1

xij

]1/k

, k = 1, 2, . . . , n,

and M [i1, i2, . . . , ip|j1, j2, . . . , jq] is the p by q submatrix obtained from an n by n

matrix M by striking out rows that are not indexed by i1, i2, . . . , ip and columns

that are not indexed by j1, j2, . . . , jq.

A s s e r t i o n 2. Let n > 3, k ∈ {2, 3, . . . , n − 1} and let A be a positive definite

Hermitian n × n matrix. Assume

γ ∈ (0, 1), θ ∈
(

0,
γ

n − 1

[ (2 − γ)(n − 1)

1 + (1 − γ)(n − 1)

]2−γ]

, ω ∈
[(n − 1

n

)1−γ

, 1
)

and

p ∈
(

0,
n − k

k(n − 1)

]

, q ∈
[ n

n − 1

(

1 −
k

n

)1/k

, 1
)

.
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Then

(9) (1 − θ)(det A)γ/n + θ
( 1

n
tr A

)γ

6
1

n
tr (Aγ) 6 (1 − ω) (detA)γ/n + ω

( 1

n
trA

)γ

and

(10) (det A)(1−θp)/n
( 1

n
tr A

)θp

6 (P [k]
n (λγ))1/γ 6 (1−ωq) (det A)1/n+ωq

( 1

n
tr A

)

,

where equalities hold in (9) and (10) if all eigenvalues of A are equal.

P r o o f. (9) is a direct consequence of Theorems 1 and 2. Next, we recall from

[3], [9] that when n > 3 and 2 6 k 6 n − 1, then

[Gn(x)]1−p[An(x)]p 6 P [k]
n (x) 6 (1 − q)Gn(x) + qAn(x)

holds for p 6 (n − k)/k(n − 1) and q > n(1 − k/n)1/k/(n − 1). By Theorem 2 and

the arithmetic-geometric mean inequality, we may now see that

P [k]
n (λγ) > [Gn(λγ)]1−p [An(λγ)]p > [Gn(λγ)]1−p [(1 − θ)Gγ

n(λ) + θAγ
n(λ)]p

= (detA)
γ(1−p)/n

[

(1 − θ)(det A)γ/n + θ
( 1

n
trA

)γ]p

> (det A)γ(1−p)/n
[

(det A)γ(1−θ)/n
( 1

n
tr A

)γθ]p

=
[

(detA)
(1−θp)/n

( 1

n
tr A

)θp]γ

,

and by Theorem 1 and the inequality for power means [2], [3],

P [k]
n (λγ) 6 (1 − q)Gn(λγ) + qAn(λγ) 6 (1 − q)Gn(λγ) + q [(1 − ω)Gγ

n(λ) + ωAγ
n(λ)]

= (1 − q) (det A)
γ/n

+ q
[

(1 − ω) (detA)
γ/n

+ ω
( 1

n
tr A

)γ]

= (1 − ωq) (detA)γ/n + ωq
( 1

n
trA

)γ

6

[

(1 − ωq)(det A)1/n + ωq
( 1

n
trA

)]γ

.

Furthermore, as can be checked easily, the above inequalities hold if all the eigenval-

ues of A are equal. This completes the proof of Assertion 2.

4. Preparatory results

We will need the following preparatory results.

138



Lemma 1. Let 0 < γ < 1. Let H : [0,∞)n → R be defined by

(11) H(x) = An(xγ) − (1 − λ)Gγ
n(x)

where λ ∈ R. If x = (x1, x2, . . . , xn) is a relative extremum of H over the interior of

the simplex Ωn,n defined by (5), then k components of x, where k ∈ {1, 2, . . . , n−1},

are equal to each other and the other components are equal to each other as well.

P r o o f. If x = (x1, x2, . . . , xn) is a relative extremum of H over the interior

of the simplex Ωn,n, then by the Lagrange multiplier method, for some µ ∈ R, the

function L(x) = H(x) + µ
( n

∑

i=1

xi − n
)

must satisfy

∂L

∂xj
=

γ

n
xγ−1

j − (1 − λ)
γ

n

( n
∏

i=1

xi

)γ/n

x−1
j + µ = 0, j = 1, 2, . . . , n,

or equivalently, for some µ ∈ R,

xγ
1 +

nµ

γ
x1 − (1 − λ)

( n
∏

i=1

xi

)γ/n

= 0,

xγ
2 +

nµ

γ
x2 − (1 − λ)

( n
∏

i=1

xi

)γ/n

= 0,

...

xγ
n +

nµ

γ
xn − (1 − λ)

( n
∏

i=1

xi

)γ/n

= 0,

where 0 < xj < n for j = 1, 2, . . . , n. But the function

Ψ(t) = tγ +
nµ

γ
t − (1 − λ)

( n
∏

i=1

xi

)γ/n

is strictly concave on (0, n), as can be seen from

Ψ′′(t) = γ(γ − 1)tγ−2 < 0, t ∈ (0, n);

thus Ψ(t) has at most two real roots in (0, n). This shows that k components of x,

where k ∈ {1, 2, . . . , n − 1}, are equal to each other and the other components are

equal to each other as well. The proof is complete. �
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Lemma 2. Let 0 < γ < 1. Let

(12) ϕ(t, k) =
(ktγ + n − k)/n− tγk/n

((kt + n − k)/n)γ − tγk/n
, 0 6 t < 1, 1 6 k 6 n − 1.

Then (2) holds for all x ∈ [0,∞)n if and only if

(13) λ 6 inf
06t<1,16k6n−1

ϕ(t, k).

Furthermore, let ϕ(t0, k0) = inf
06t<1,16k6n−1

ϕ(t, k) and 0 6 x1 6 x2 6 . . . 6 xn.

Then equality holds in (2) if and only if x1 = x2 = . . . = xn or λ = ϕ(t0, k0) and

x1 = x2 = . . . = xk0
= t0xn and xk0+1 = xk0+2 = . . . = xn.

P r o o f. First note that (2) holds if and only if

H(x) > λAγ
n(x),

where H is defined by (11). To show that (2) holds for x ∈ [0,∞)n, it suffices to

show that it holds for x in the simplex Ωn,n (defined by (5)). But for x ∈ Ωn,n, we

have Aγ
n(x) = 1. Thus to show that (2) holds for x ∈ [0,∞)n, it suffices to show that

H(x) > λ for x ∈ Ωn,n.We need to consider two cases: (i) x belongs to the boundary

of Ωn,n, and (ii) x is a relative extremum of H over Ωn,n. In the former case, some

component of x, say xn, is 0. Then from Jensen’s inequality, An(xγ) > nγ−1Aγ
n(x),

so that

H(x) = An(xγ) − (1 − λ)Gγ
n(x) = An(xγ)

> nγ−1Aγ
n(x) = nγ−1 = ϕ(0, n − 1)

> inf
06t<1,16k6n−1

ϕ(t, k) > λ

as desired. In the latter case, in view of Lemma 1 we may assume without loss of

generality that there are two numbers u, v such that 0 < v 6 u and the first n − k

components of x are equal to u and the rest equal to v. Since

(n − k)u + kv = n,

we have

0 < v 6 u <
n

n − k
.
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Let t = v/u. Then 0 < t 6 1, u = n/(kt + n − k) and

H(x) =
1

n

n
∑

i=1

xγ
i − (1 − λ)

( n
∏

i=1

xi

)γ/n

=
1

n
[(n − k)uγ + kvγ ] − (1 − λ)

(

un−kvk
)γ/n

=
[ 1

n
(ktγ + n − k) − (1 − λ)tγk/n

]

uγ

= nγ−1[ktγ + n − k − (1 − λ)ntγk/n](kt + n − k)−γ .

If t = 1, then

H(x) = λ;

while if 0 < t < 1, since the arithmetic-geometric mean inequality implies

(kt + n − k

n

)γ

> tγk/n,

we see that (13) implies

(14) λ
[(kt + n − k

n

)γ

− tγk/n
]

6
ktγ + n − k

n
− tγk/n,

which in turn implies

H(x) > λ.

Next, we show that (13) is necessary. Indeed, if we take x to be a vector whose

first k (1 6 k 6 n − 1) components are equal to t ∈ [0, 1) and the rest are equal to

1, then substituting x into (2), we obtain ϕ(t, k) > λ.

If x1 = x2 = . . . = xn, then equality holds in (2); otherwise, equality holds in (2) if

and only if λ = inf
06t<1,16k6n−1

ϕ(t, k) = ϕ(t0, k0), x1 = x2 = . . . = xk0
= v, xk0+1 =

xk0+2 = . . . = xn = u and v/u = t0, that is, λ = ϕ(t0, k0), x1 = x2 = . . . xk0
= t0xn

and xk0+1 = xk0+2 = . . . = xn. The proof is complete.

Lemma 3. Let 0 < γ < 1. Then (1) holds for all x ∈ [0,∞)n if and only if

(15) λ > sup
06t<1,16k6n−1

ϕ(t, k),

where ϕ(t, k) is defined by (12). Furthermore, let sup
06t<1,16k6n−1

ϕ(t, k) = ϕ(t∗0, k
∗

0)

and 0 6 x1 6 x2 6 . . . 6 xn. Then equality holds in (1) if and only if x1 = x2 = . . . =

xn or λ = ϕ(t∗0, k
∗

0) and x1 = x2 = . . . = xk∗

0
= t∗0xn and xk∗

0
+1 = xk∗

0
+2 = . . . = xn.
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P r o o f. As in the proof of Lemma 2, to show that (1) holds for all x ∈ [0,∞)n

it suffices to show H(x) 6 λ for all x ∈ Ωn,n. If x belongs to the boundary of Ωn,n,

then some component of x, say xn, is 0. Thus

H(x) = An(xγ) − (1 − λ)Gγ
n(x) =

n − 1

n

(

1

n − 1

n−1
∑

i=1

xγ
i

)

6
n − 1

n

(

1

n − 1

n−1
∑

i=1

xi

)γ

=
(n − 1

n

)1−γ

= ϕ(0, 1)

6 sup
06t<1,16k6n−1

ϕ(t, k).

Hence, from (15) we see further that H(x) 6 λ. If x is a relative extremum of H over

Ωn,n, then the same argument for proving (14) leads us to

λ
[(kt + n − k

n

)γ

− tγk/n
]

>
ktγ + n − k

n
− tγk/n

or H(x) 6 λ.

Finally, if we take x to be a vector whose first k (1 6 k 6 n − 1) components are

equal to t ∈ [0, 1) and the rest are equal to 1, then substituting x into (1) we obtain

ϕ(t, k) 6 λ.

If x1 = x2 = . . . = xn, then equality holds in (1); otherwise, equality holds in (1) if

and only if λ = sup
06t<1,16k6n−1

ϕ(t, k) = ϕ(t∗0, k
∗

0), x1 = x2 = . . . = xk∗

0
= v, xk∗

0
+1 =

xk∗

0
+2 = . . . = xn = u and v/u = t∗0, that is, λ = ϕ(t∗0, k

∗

0), x1 = x2 = . . . xk∗

0
= t∗0xn

and xk∗

0
+1 = xk∗

0
+2 = . . . = xn. The proof is complete.

5. Proofs of main results

Two real numbers α and β are said to be of the same sign, denoted by α ∽ β, if

α > 0 ⇒ β > 0, α = 0 ⇒ β = 0 and α < 0 ⇒ β < 0. It is easily seen that if α, β > 0,

then α − β ∽ lnα − lnβ.

We now turn to the proof of Theorem 1. In view of Lemma 3, it suffices to show

that

(16)
(n − 1

n

)1−γ

> sup
06t<1,16k6n−1

ϕ(t, k),

where equality holds if and only if (3) or

(17) x1 = x2 = . . . = xi−1 = xi+1 = . . . = xn and xi = 0.
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Note that (16) is equivalent to

Ψ(t, k) :=
1

tγk/n

[

ξ
(kt + n − k

n

)γ

+ (1 − ξ)tγk/n −
ktγ + n − k

n

]

> 0,

where ξ = [(n − 1)/n]1−γ for t ∈ (0, 1) and k ∈ {1, 2, . . . , n − 1}. Now,

Ψ(t, k) = ξ
[kt1−k/n + (n − k)t−k/n

n

]γ

+ (1 − ξ) −
ktγ(1−k/n) + (n − k)t−γk/n

n
,

and

∂Ψ(t, k)

∂t
=

γk(n − k)

n2
t−γk/n−1

[

ξ
(kt + n − k

n

)γ−1

(t − 1) − (tγ − 1)
]

∽ ξ
(kt + n − k

n

)γ−1

(t − 1) − (tγ − 1)

for t ∈ (0, 1) and k ∈ {1, 2, . . . , n − 1}. The function

G(t, k) = ξ
(kt + n − k

n

)γ−1

(t − 1) − (tγ − 1), t ∈ (0, 1), k ∈ {1, 2, . . . , n − 1},

satisfies

G(t, k) 6 G(t, 1) = ξ
( t + n − 1

n

)γ−1

(t−1)− (tγ −1), t ∈ (0, 1), k ∈ {1, 2, . . . , n−1},

and

dG(t, 1)

dt
= ξ

( t + n − 1

n

)γ−2 γt + n − γ

n
− γtγ−1

∽ ln
[

ξ
( t + n − 1

n

)γ−2 γt + n − γ

n

]

− ln
(

γtγ−1
)

= ln
ξ

γ
+ (γ − 2) ln

t + n − 1

n
+ ln

γt + n − γ

n
+ (1 − γ) ln t.

Let

h(t) = ln
ξ

γ
+ (γ − 2) ln

t + n − 1

n
+ ln

γt + n − γ

n
+ (1 − γ) ln t, t ∈ (0, 1).

Since

h′(t) =
γ − 2

t + n − 1
+

γ

γt + n − γ
+

1 − γ

t

∽ (γ − 2)t(γt + n − γ) + γt(t + n − 1) + (1 − γ)(t + n − 1)(γt + n − γ)

= −(1 − γ) [(1 − γ)n + γ] t + (1 − γ)(n − 1)(n − γ)

= (1 − γ) [(1 − γ)n + γ]
[

− t +
(n − 1)(n − γ)

(1 − γ)n + γ

]

∽ −t +
(n − 1)(n − γ)

(1 − γ)n + γ

> −t + 1

> 0,
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we see that

−∞ = h(0) < h(t) < h(1) = ln
ξ

γ
= ln

1

γ

(n − 1

n

)1−γ

.

But
(n − 1

n

)1−γ

>

(2 − 1

2

)1−γ

= 2γ−1 > γ

for γ ∈ (0, 1), thus ln (ξ/γ) > 0. Consequently, the function h has a unique root

t0 ∈ (0, 1). Since h(t) < 0 for t ∈ (0, t0) and h(t) > 0 for t ∈ (t0, 1), we now see that

dG(t, 1)/ dt < 0 for t ∈ (0, t0) and dG(t, 1)/ dt > 0 for t ∈ (t0, 1). This and the fact

that 1 − ξ((n − 1)/n)γ−1 = 0 imply

∂Ψ(t, k)

∂t
∽ G(t, k) 6 G(t, 1) < max {G(0, 1), G(1, 1)}

= max
{

1 − ξ
(n − 1

n

)γ−1

, 0
}

= 0.

By virtue of

Ψ(1, k) = 0

for k ∈ {1, 2, . . . , n − 1}, we see further that Ψ(t, k) > 0 for t ∈ (0, 1) and k ∈

{1, 2, . . . , n − 1}.

Finally, we consider the conditions of equality in (1). According to the above proof

we have

sup
06t<1,16k6n−1

ϕ(t, k) = ϕ(0, 1) =
(n − 1

n

)1−γ

.

By Lemma 3, equality holds in (1) if and only if x1 = x2 = . . . = xn or

λ = ((n − 1)/n)1−γ and exists i : 1 6 i 6 n such that x1 = x2 = . . . = xi−1 =

xi+1 = . . . = xn and xi = 0. The proof is complete.

We now turn to the proof of Theorem 2. In view of Lemma 2, it suffices to show

that

(18) ϕ(t, k) >
γ

n − 1

[ (2 − γ)(n − 1)

1 + (1 − γ)(n − 1)

]2−γ

for t ∈ [0, 1) and k ∈ {1, 2, . . . , n − 1}. To this end, let us write

ϕ(t, k) =
pk(t)

qk(t)

where

pk(t) =
kt(n−k)γ/n + (n − k)t−γk/n

n
− 1,
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and

qk(t) =
(kt(n−k)/n + (n − k)t−k/n

n

)γ

− 1

for k ∈ {1, 2, . . . , n − 1}. Since pk(1) = qk(1) = 0 and

p′k(t) =
γk(n − k)

n2
t−γk/n−1(tγ − 1)

and

q′k(t) =
γk(n − k)

n2

(kt + n − k

n

)γ−1

t−γk/n−1(t − 1),

we see that there is ζk ∈ (t, 1) such that

ϕ(t, k) =
pk(t)

qk(t)
=

pk(t) − pk(1)

qk(t) − qk(1)
=

p′k(ζk)

q′k(ζk)

=
ζγ
k − 1

[(kζk + n − k)/n]γ−1 (ζk − 1)

>
ζγ
k − 1

[((n − 1)ζk + 1)/n]
γ−1

(ζk − 1)

where the last inequality is obtained by substituting k = n − 1. Let

u(t) = tγ − 1

and

v(t) =
[ (n − 1)t + 1

n

]γ−1

(t − 1).

Since u(1) = v(1) = 0, u′(t) = γtγ−1 and

v′(t) =
1

n

[ (n − 1)t + 1

n

]γ−2

[γ(n − 1)t + 1 + (1 − γ)(n − 1)] ,

we see further that there is ηk ∈ (ζk, 1) such that

ϕ(t, k) >
u(ξk) − u(1)

v(ξk) − v(1)
=

u′(ηk)

v′(ηk)
=

γ

w(δk)
,

where

w(t) = tγ−2 {−(1 − γ)(n − 1) + [1 + (1 − γ)(n − 1)] t}

and

δk =
n − 1 + η−1

k

n
> 1.
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Since (1 − γ) [1 + (1 − γ)(n − 1)] tγ−3 > 0 and

w′(t) = (1 − γ) [1 + (1 − γ)(n − 1)] tγ−3
[ (2 − γ)(n − 1)

1 + (1 − γ)(n − 1)
− t

]

,

the equation w′(t) = 0 has a unique root in the interval [1,∞):

t∗ =
(2 − γ)(n − 1)

1 + (1 − γ)(n − 1)
,

and w′(t) > 0 on [1, t∗] and w′(t) 6 0 on [t∗,∞). Hence

w(t) 6 w(t∗) = (n − 1)
[ (2 − γ)(n − 1)

1 + (1 − γ)(n − 1)

]γ−2

, t > 1.

Summarizing,

ϕ(t, k) >
γ

w(t∗)
=

γ

n − 1

[ (2 − γ)(n − 1)

1 + (1 − γ)(n − 1)

]2−γ

for t ∈ [0, 1) and k ∈ {1, 2, . . . , n − 1}. The proof is complete.

6. Three examples

Theorem 2 offers an explicit sufficient condition for λ to satisfy in order that

(2) holds. However, Lemma 2 offers a necessary and sufficient condition, which

unfortunately is not explicit. Provided explicit data are given, Lemma 2 may offer

better results. For example, suppose we are given n = 10 and γ = 1/2. Then using

commercial software, we may find that

inf
06t<1;16k69

ϕ(t, k) = inf
06t<1;16k69

1
10 (kt1/2 + 10 − k) − tk/20

( 1
10 (kt + 10 − k))1/2 − tk/20

= ϕ(0.0013465750656368116 . . . , 9)

= 0.3068771309760594 . . .

so that (2) holds if and only if λ 6 0.3068771309760594 . . . , and in view of

Lemma 2, equality holds in (2) if and only if x1 = x2 = . . . = x10 or λ =

0.3068771309760594 . . . and there exists i ∈ {1, 2, . . . , 10} such that

x1 = x2 = . . . = xi−1 = (0.0013465750656368116 . . .)xi = xi+1 = . . . = x10.
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On the other hand, if we apply Theorem 2, we may only conclude that (2) holds

when

λ 6
1

18

(27

11

)3/2

= 0.2146407595819928 . . . .

As another example, consider the case when n = 2 in (2). Then

inf
06t<1;16k6n−1

ϕ(t, k) = inf
06t<1

ϕ(t, 1).

By Theorem 2 we have

inf
06t<1

ϕ(t, 1) > γ.

On the other hand,

inf
06t<1

ϕ(t, 1) 6 lim
t→1

ϕ(t, 1) = γ,

thus

inf
06t<1;16k6n−1

ϕ(t, k) = inf
06t<1

ϕ(t, 1) = γ.

In other words, if n = 2 and 0 < γ < 1, then (2) holds for all x ∈ [0,∞)n if and only

if λ 6 γ.

As another application of our results, we will show the following result.

Theorem 3. For any x = (x1, x2, . . . , xn) ∈ (0,∞)n we have

(19)
An(x lnx) − An(x) ln An(x)

n − 1 − ln(n − 1)
6 An(x)−Gn(x) 6

An(x ln x) − An(x) ln An(x)

lnn − ln(n − 1)
,

where x lnx is the short hand notation for (x1 lnx1, x2 lnx2, . . . , xn lnxn); further-

more, equalities hold if in addition x1 = x2 = . . . = xn.

To see the proof, let γ ∈ (0, 1). If we let

λ =
γ

n − 1

[ (2 − γ)(n − 1)

1 + (1 − γ)(n − 1)

]2−γ

,

then by Theorem 2, (2) holds, which is equivalent to

1 − λ

1 − γ
(Gγ

n(x) − Aγ
n(x)) 6

An(xγ) − Aγ
n(x)

1 − γ
.

By taking limits on both sides as γ → 1, we see that

(20)
(

lim
γ→1

dλ

dγ

)

(Gn(x) − An(x)) 6 An(x) ln An(x) − An(x lnx).
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Since

lnλ = ln γ + (2 − γ){ln((2 − γ)(n − 1)) − ln (1 + (1 − γ)(n − 1))} − ln(n − 1),

we see that

1

λ

dλ

dγ
=

1

γ
− {ln ((2 − γ) (n − 1)) − ln (1 + (1 − γ) (n − 1))}

+ (2 − γ)
(

−
1

2 − γ
+

n − 1

1 + (1 − γ) (n − 1)

)

.

Since λ → 1 as γ → 1, we have

(21) lim
γ→1

dλ

dγ
= lim

γ→1

1

λ

dλ

dγ
= n − 1 − ln(n − 1).

By (20) and (21), we see that the first inequality in (19) holds.

Similarly, if we let

λ =
(n − 1

n

)1−γ

,

then by Theorem 1 we obtain

(

lim
γ→1

dλ

dγ

)

(Gn(x) − An(x)) > An(x) ln An(x) − An (x lnx) .

By means of arguments similar to those discussed above, we may show that in this

case,

lim
γ→1

dλ

dγ
= lnn − ln(n − 1).

Hence the latter inequality in (19) holds.

Obviously, when x1 = x2 = . . . = xn, equalities hold in (19). The proof is

complete.

In [10], [11] several applications on power means are obtained.

A c k n ow l e d gm e n t s. The authors are very grateful to the anonymous referee

for useful suggestions that helped to improve the presentation of our results.
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