Mathematica Bohemica

Gábor Czédli; Miklós Maróti
On the height of order ideals

Mathematica Bohemica, Vol. 135 (2010), No. 1, 69-80
Persistent URL: http://dml.cz/dmlcz/140684

Terms of use:

© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

ON THE HEIGHT OF ORDER IDEALS

Gábor CzÉdli, Miklós Maróti, Szeged

(Received January 23, 2009)

Abstract

We maximize the total height of order ideals in direct products of finitely many finite chains. We also consider several order ideals simultaneously. As a corollary, a shifting property of some integer sequences, including digit sum sequences, is derived.

Keywords: order, product of chains, ideal of maximum height, digit sum sequence
MSC 2010: 06D99, 06A07

1. Introduction and The main results

Our notation and terminology are standard, see, for example, Davey and Priestley [3] or Grätzer [6]. In particular, let $B=(B ; \leqslant)$ be a finite order; also called a partially ordered set or poset. A subset I of B is called an order ideal, in notation $I \triangleleft B$, if $x \leqslant y$ and $y \in I$ implies $x \in I$ for all $x, y \in B$. By definition, $\emptyset \triangleleft B$. For $b \in B$, let $\downarrow b$ denote the order ideal $\{x \in B ; x \leqslant b\}$. Non-empty subsets of the form $\{x \in B ; a \leqslant x \leqslant b\}$ are called intervals of B. By an n-element chain we mean $\{0<1<\ldots<n-1\}$; the length of this chain is $n-1$.

For $b \in B$, the height of b is defined as the maximum of lengths of chains in $\downarrow b$. By the (total) height $h(X)$ of a subset X of B we mean $\sum_{a \in X} h(a)$. We say that an order ideal I of B maximizes the total height, if for all $J \triangleleft B$ with $|J|=|I|$, we have $h(J) \leqslant h(I)$. For example, if B is the order (in fact, a distributive lattice) depicted in Figure 1, then $h(\downarrow a)=6$ and $h(\downarrow b)=8$, and both $\downarrow a$ and $\downarrow b$ maximize the total height.

We have two main motivations for studying the total height of order ideals.

This research was partially supported by the NFSR of Hungary (OTKA), grant nos. T 049433, PD 75475 and K 60148.

Figure 1. $\downarrow a$ and $\downarrow b$ maximize the total height.
First, total heights have a useful connection to digit sum sequences. This connection will be exploited in Corollary 4 and the remark following it.

Secondly, let $f_{B}:\{0, \ldots,|B|\} \rightarrow \mathbb{N}_{0}, n \mapsto \max \{h(I) ; I \triangleleft B$ and $|I|=n\}$. It seems to be an interesting problem to

$$
\begin{equation*}
\text { determine the function } f_{B} \text {. } \tag{1}
\end{equation*}
$$

The solution of (1) for finite direct powers of the two-element chain, that is for finite boolean algebras, has been heavily used in [2]. In the present paper, Theorem 5 will solve problem (1) for direct products of finitely many finite chains. Notice that while the usual greedy algorithm yields the solution of (1) in the boolean case, here the straightforward greedy algorithm can fail even in the direct square of a threeelement chain. Therefore, the present approach to (1) is quite different from and more complex than that in [2].

Let $I_{0} \subset I_{1} \subset \ldots \subset I_{|B|}$ be order ideals of B such that, for all $j=0,1, \ldots,|B|$, $\left|I_{j}\right|=j$ and I_{j} maximizes the total height. Then we call $I_{0} \subset I_{1} \subset \ldots \subset I_{|B|}$ a greedy chain of order ideals of B. In connection with problem (1), one may ask which finite orders have a greedy chain of order ideals?

Although (2) is not targeted in the present paper, we mention two facts. The answer to (2) in case of Figure 1 is negative, since $\downarrow a$ and $\downarrow b$ are, respectively, the only four and five element order ideals maximizing the total height but $\downarrow a \nsubseteq \downarrow b$. Hence being a distributive lattice is not a sufficient condition to guarantee (2). On the other hand, it will be evident from Theorem 5 that the answer to (2) is affirmative for finite direct products of chains. This fact rather than the usual greedy algorithm motivates the term "greedy" in the following definition.

Definition 1. The following notation will be fixed throughout the paper. Let $t \in \mathbb{N}_{0}$. For $i=1, \ldots, t$ let $k_{i} \in \mathbb{N} \backslash\{1\}$, and let $C_{i}=\left\{0<1<\ldots<k_{i}-1\right\}$ be a chain such that

$$
k_{1} \leqslant k_{2} \leqslant \ldots \leqslant k_{t}, \text { that is }\left|C_{1}\right| \leqslant\left|C_{2}\right| \leqslant \ldots \leqslant\left|C_{t}\right| .
$$

Let $D=C_{1} \times \ldots \times C_{t}$ be the direct product of these chains (which is the one element order if $t=0$). By a greedy order ideal of D we mean an initial segment of the lexicographic order of D.

For example, for $t=k_{1}=k_{2}=2$, the greedy order ideals of D are exactly the following ones: $\emptyset,\{(0,0)\},\{(0,0),(0,1)\},\{(0,0),(0,1),(1,0)\}$, and D. It is straightforward to see that each greedy order ideal of D is an order ideal.

Definition 2. For $m \in \mathbb{N}$, let $\vec{X}=\left(X_{1}, \ldots, X_{m}\right)$ be a sequence of greedy order ideals of D. We say that \vec{X} is packed to the right, if there is an $i \in\{1, \ldots, m\}$ such that $X_{1}=\ldots=X_{i-1}=\emptyset$ and $X_{i+1}=\ldots=X_{m}=D$.

Theorem 3. Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{m} be greedy order ideals of D such that $\sum_{i=1}^{m}\left|X_{i}\right|=\sum_{i=1}^{m}\left|Y_{i}\right|$ and $\left(Y_{1}, \ldots, Y_{m}\right)$ is packed to the right. Then $\sum_{i=1}^{m} h\left(X_{i}\right) \leqslant \sum_{i=1}^{m} h\left(Y_{i}\right)$.

Consider the sequence $\vec{\alpha}^{(D)}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{|D|-1}\right)$ where α_{i} is the height of the i-th member, with respect to the lexicographic enumeration, of D. That is, $\alpha_{0}=$ $h((0, \ldots, 0,0))=0, \alpha_{1}=h((0, \ldots, 0,1))=1$, and so on. In some sense, Theorem 3 is a statement on this sequence. It has an interesting corollary, a relatively simple "shifting property", which seems to have been unnoticed so far:

Corollary 4. Let $1 \leqslant n \leqslant|D|=k_{1} k_{2} \ldots k_{t}$, and let s be the sum of n consecutive members of $\vec{\alpha}^{(D)}$. Then

$$
\alpha_{0}+\ldots+\alpha_{n-1} \leqslant s \leqslant \alpha_{|D|-n}+\ldots+\alpha_{|D|-1} .
$$

Remark. For $2 \leqslant q \in \mathbb{N}$, let $\vec{\beta}^{(q)}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \ldots\right)$ be the so-called digit sum sequence of base q, that is, β_{i} is the sum of digits of i written in base q. This sequence and the sum of its first n members have been studied for long, see Gel'fond [4] and Lindström [7] for example. A search for "title $=$ sum of digits" returns more than seventy publications in MathSciNet. Notice that the first q^{t} elements of $\vec{\beta}^{(q)}$ coincide with $\vec{\alpha}^{(D)}$ where D is the t-th direct power of the q-element chain.

Our second result is the following one.

Theorem 5. Let X and Y be order ideals of D such that $|X|=|Y|$ and Y is a greedy order ideal. Then $h(X) \leqslant h(Y)$.

A slightly related problem has been studied by Bollobás and Leader [1]. That problem in [1] refers to the addition in \mathbb{Z}_{k}^{n}, whence it does not belong to the theory of lattices and orders. However, the compression method used in [1], which is an advanced tool of combinatorics, offers an alternative proof of Theorem 5. The
present, more elementary, approach is justified by its connection to Theorem 3, digit sum sequences, and [2].

2. PRoofs and auxiliary statements

If $t=0$ or $t=1$, then $|D|=1$ or D is a chain. In both cases, Theorems 5 and 3 and Corollary 4 are trivial. Hence, from now on, we assume that $t \geqslant 2$. In addition to Definition 1, we also need the following one.

Definition 6.

- As usual, the covering relation in D is denoted by \prec. That is, $x \prec y$ means that $x<y$ but $x<z<y$ for no z.
- Let $E=C_{1} \times C_{2}, F=C_{3} \times \ldots \times C_{t}$, and $G=C_{2} \times \ldots \times C_{t}$. For $i \in C_{1}=$ $\left\{0,1, \ldots, k_{1}-1\right\}$, let $G_{i}=\left\{\left(i, a_{2}, \ldots, a_{t}\right) ;\left(a_{2}, \ldots, a_{t}\right) \in G\right\}$.
- Similarly, for $(i, j) \in E=C_{1} \times C_{2}$, let $F_{i j}=\left\{\left(i, j, a_{3}, \ldots, a_{t}\right) ;\left(a_{3}, \ldots, a_{t}\right) \in F\right\}$.
- Let $d=|D|=k_{1} \ldots k_{t}, g=|G|=k_{2} \ldots k_{t}$ and $f=|F|=k_{3} \ldots k_{t}$.
- For $i \in\{0, \ldots, d\}$, let $h^{\prime}(i)=h_{D}^{\prime}(i)$ denote $h(X)$ where X is the unique i element greedy order ideal of D. The symbols h_{G}^{\prime} and h_{E}^{\prime} have analogous meaning.

Notice that the $F_{i j}$ and G_{i} are intervals of D. For $t=3, k_{1}=3, k_{2}=4$ and $k_{3}=5$, the situation is depicted in Figure 2. The black-filled elements indicate how E is embedded in D.

Lemma 7. For $i \in C_{1}$, let X_{i} be a greedy order ideal of G_{i} such that $i \prec j$ implies $\left|X_{i}\right| \geqslant\left|X_{j}\right|$. Then $\bigcup_{i \in C_{1}} X_{i}$ is an order ideal of D. Similarly, if $Y_{i j}$ is a greedy order ideal of $F_{i j}$ for each $(i, j) \in E$ such that $(i, j) \prec(k, l)$ implies $\left|Y_{i j}\right| \geqslant\left|Y_{k l}\right|$, then $\bigcup_{(i, j) \in E} Y_{i j}$ is an order ideal of D.

Proof. The proof is almost trivial. If (k, l) covers (i, j) in E, then $F_{i j}$ and $F_{k l}$ are transposed intervals in the distributive lattice D, whence they are isomorphic. Let $\varphi: F_{k l} \rightarrow F_{i j}$ denote this isomorphism. Clearly, each greedy order ideal of F is determined by its size. Since $\left|Y_{i j}\right| \geqslant\left|Y_{k l}\right|, \varphi\left(Y_{k l}\right)$ is an initial segment of $Y_{i j}$. Hence the second part of the lemma follows. The first part is even simpler.

Definition 8. Let $q \in \mathbb{N}$. We say that $\left(y_{1}, \ldots, y_{n}\right) \in\{0, \ldots, q\}^{n}$ is packed to the right in $\{0, \ldots, q\}$, if, for $i \in\{1, \ldots, n-1\}, y_{i} \neq 0$ implies $y_{i+1}=q$. Similarly, we say that $\left(y_{1}, \ldots, y_{n}\right)$ is packed to the left in $\{0, \ldots, q\}$, if $\left(y_{n}, \ldots, y_{1}\right)$ is packed to the right in $\{0, \ldots, q\}$.

Figure 2. The structure of D for $\left(k_{1}, k_{2}, k_{3}\right)=(3,4,5)$

The following lemma is a trivial counterpart of Theorem 3; its evident proof will be omitted.

Lemma 9. Let $n, q \in \mathbb{N}$, and consider integers $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in\{0, \ldots, q\}$ and $a_{1} \leqslant \ldots \leqslant a_{n} \in \mathbb{N}_{0}$ such that $x_{1}+\ldots+x_{n}=y_{1}+\ldots+y_{n}$ and $\left(y_{1}, \ldots, y_{n}\right)$ is packed to the right in $\{0, \ldots, q\}$. Then $a_{1} x_{1}+\ldots+a_{n} x_{n} \leqslant a_{1} y_{1}+\ldots+a_{n} y_{n}$.

Proof of Theorem 3. We prove the theorem by induction on t. We assume that $t \geqslant 2$ and the statements hold for direct products of less than t finite chains. Since each greedy order ideal X of D is determined by its size $|X|$, the statement is evident for $m=1$.

Next, we deal with the case $m=2$. Assume that (X, Y) and (U, V) are pairs of greedy order ideals such that (U, V) is packed to the right and $|X|+|Y|=|U|+|V|$. Since the role of X and Y is symmetric, we can assume that $|X| \leqslant|Y|$. We claim that if (X, Y) is not packed to the right, then there exists a pair $\left(X^{\prime}, Y^{\prime}\right)$ of greedy order ideals such that $\left|X^{\prime}\right|+\left|Y^{\prime}\right|=|X|+|Y|,\left|Y^{\prime}\right|>|Y|$ and $h(X)+h(Y) \leqslant$ $h\left(X^{\prime}\right)+h\left(Y^{\prime}\right)$. By a repeated application of this claim the theorem will clearly follow.

Since (X, Y) is not packed to the right, $X \neq \emptyset$ and $Y \neq D$. Let $X_{i}=X \cap G_{i}$ and $Y_{i}=Y \cap G_{i}$. Both X and Y are greedy, whence there exist $r, s \in\left\{0,1, \ldots, k_{1}-1\right\}$
such that

$$
\begin{aligned}
X_{i} & =G_{i} \text { for } i<r, X_{r} \neq \emptyset, X_{i}=\emptyset \text { for } i>r \\
Y_{i} & =G_{i} \text { for } i<s, Y_{s} \neq G_{s}, Y_{i}=\emptyset \text { for } i>s
\end{aligned}
$$

We know from $|X| \leqslant|Y|$ that $r \leqslant s$. Using that $G_{r} \cong G \cong G_{s}$, we can pack the pair $\left(X_{r}, Y_{s}\right)$ to the right. That is, we obtain a pair $\left(X_{r}^{\prime}, Y_{s}^{\prime}\right)$ of greedy order ideals such that $X_{r}^{\prime} \triangleleft G_{r}, Y_{s}^{\prime} \triangleleft G_{s},\left|X_{r}\right|+\left|Y_{s}\right|=\left|X_{r}^{\prime}\right|+\left|Y_{s}^{\prime}\right|$, and either $X_{r}^{\prime}=\emptyset$ or $Y_{s}^{\prime}=G_{s}$. In both cases, $\left|Y_{s}\right|<\left|Y_{s}^{\prime}\right|$. Let $X^{\prime}=\left(X \backslash X_{r}\right) \cup X_{r}^{\prime}$ and $Y^{\prime}=\left(Y \backslash Y_{s}\right) \cup Y_{s}^{\prime}$. Then X^{\prime} and Y^{\prime} are greedy order ideals of $D,\left|X^{\prime}\right|+\left|Y^{\prime}\right|=|X|+|Y|$ and $\left|Y^{\prime}\right|>|Y|$. Let us compute:

$$
\begin{aligned}
& h\left(X^{\prime}\right)+h\left(Y^{\prime}\right)-(h(X)+h(Y))=h\left(X_{r}^{\prime}\right)+h\left(Y_{s}^{\prime}\right)-h\left(X_{r}\right)-h\left(Y_{s}\right) \\
& =h_{G}^{\prime}\left(\left|X_{r}^{\prime}\right|\right)+r\left|X_{r}^{\prime}\right|+h_{G}^{\prime}\left(\left|Y_{s}^{\prime}\right|\right)+s\left|Y_{s}^{\prime}\right|-h_{G}^{\prime}\left(\left|X_{r}\right|\right)-r\left|X_{r}\right|-h_{G}^{\prime}\left(\left|Y_{s}\right|\right)-s\left|Y_{s}\right| \\
& =\left(h_{G}^{\prime}\left(\left|X_{r}^{\prime}\right|\right)+h_{G}^{\prime}\left(\left|Y_{s}^{\prime}\right|\right)-\left(h_{G}^{\prime}\left(\left|X_{r}\right|\right)+h_{G}^{\prime}\left(\left|Y_{s}\right|\right)\right)\right) \\
& \quad+\left(r\left|X_{r}^{\prime}\right|+s\left|Y_{s}^{\prime}\right|-\left(r\left|X_{r}\right|+s\left|Y_{s}\right|\right)\right) .
\end{aligned}
$$

The first summand at the end of the above formula is non-negative, because the theorem holds for G by the induction hypothesis. The second summand is nonnegative by Lemma 9. Hence $h\left(X^{\prime}\right)+h\left(Y^{\prime}\right) \geqslant h(X)+h(Y)$. This proves the claim and settles the case $m=2$.

Finally, let $m>2$. Let us repeat the following transformation on the sequence $\left(X_{1}, \ldots, X_{m}\right)$ of greedy order ideals:

- Rearrange the sequence so that $\left|X_{1}\right| \leqslant \ldots \leqslant\left|X_{m}\right|$. If $X_{2} \neq D$, then let $l=\max \left\{i ; X_{l} \neq D\right\}$, and perform a "packing the pair $\left(X_{l-1}, X_{l}\right)$ to the right". At each step, the sum of total heights cannot decrease. At the end of these transformations we obtain a sequence $\left(Z_{1}, \ldots, Z_{m}\right)$ of greedy order ideals packed to the right. Since $\left(Z_{1}, \ldots, Z_{m}\right)$ is determined by $\sum_{i=1}^{m}\left|Z_{i}\right|=\sum_{i=1}^{m}\left|X_{i}\right|$, we have $\left(Z_{1}, \ldots, Z_{m}\right)=$ $\left(Y_{1}, \ldots, Y_{m}\right)$.

From now on, for the sake of a forthcoming induction, we assume that

Theorem 5 holds for direct products of less then t finite chains.

Definition 10.

- For $0 \leqslant m \leqslant k_{1}+k_{2}-2$, the subset $\{(i, j) ; i+j=m\}$ of E is called the m-th layer of E, and is denoted by L_{m}, see Figure 2.
- In figures, C_{1} is always left from C_{2}. The elements of L_{m} are on a horizontal line. Hence "left" and "right" in L_{m} make sense. Notice that (i, j) is left from (u, v) iff $j<v$ and, of course, $i+j=u+v$.
- If $(i, j),(i-1, j+1) \in E$, then $(i-1, j+1)$ is the right neighbor of (i, j) and (i, j) is the left neighbor of $(i-1, j+1)$. Sometimes we use this terminology for objects indexed by elements of E.
- An order ideal X of D will be called an eastern order ideal, if for every $0 \leqslant$ $m \leqslant k_{1}+k_{2}-2$ and every $(i, j),(k, l) \in L_{m}$ the following condition holds: if $(i, j) \neq(k, l),(k, l)$ is right from (i, j) and $X \cap F_{i j} \neq \emptyset$, then $F_{k l} \subseteq X$. (In other words, if the sequence $\left(\left|X \cap F_{i j}\right| ;(i, j) \in L_{m}\right)$ is packed to the right in $\{0, \ldots, f\}$).
- For $0 \leqslant m \leqslant k_{1}+k_{2}-2$, let $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ be the leftmost and the rightmost element of L_{m}, respectively. If (a, b) is a (joinreducible, join-reducible), (join-irreducible, join-irreducible) or (join-reducible, join-irreducible) pair of elements of E, then L_{m} is called a layer of type A, type V or type N, respectively. In Figure $2, L_{1}$ and L_{2} are of type V, L_{3} is of type N, L_{4} and L_{5} are of type A, and L_{0} has no type.

Greedy order ideals of D are clearly eastern order ideals, but the converse is not true. Hence the following lemma is just an intermediate step towards Theorem 5.

Lemma 11. Let X be an order ideal of D. Then there exists an eastern order ideal Y of D such that $|X|=|Y|$ and $h(X) \leqslant h(Y)$.

Proof. First, observe that

$$
\begin{equation*}
\text { if } i \prec j \in C_{1} \text {, then }\left|G_{i} \cap X\right| \geqslant\left|G_{j} \cap X\right| \text {. } \tag{4}
\end{equation*}
$$

Indeed, this follows from the implication $\left(j, x_{2}, \ldots, x_{t}\right) \in X \Longrightarrow\left(i, x_{2}, \ldots, x_{t}\right) \in X$. Replace $G_{i} \cap X$ by a greedy order ideal of G_{i} of the same size, for all $i \in C_{1}$. By (3), this way the total height does not decrease. Moreover, we obtain an order ideal of D by Lemma 7 . Hence we can assume that every $G_{i} \cap X$ is a greedy order ideal of G_{i}.

For $(i, j) \in E$, let $X_{i j}=F_{i j} \cap X$ and $x_{i j}=\left|X_{i j}\right|$. Since $G_{i} \cap X$ is greedy, we conclude that for every $i \in C_{1}$,
(5) $\left(x_{i 0}, \ldots, x_{i, k_{2}-1}\right)$ is packed to the left in $\{0, \ldots, f\} \quad$ (a" \swarrow property").

Similarly to (4), we conclude easily that

$$
\begin{equation*}
\text { if }(i, j) \in E \text { and } i \neq 0 \text { then } x_{i j} \leqslant x_{i-1, j} \quad \text { (a " } \searrow \text { property"). } \tag{6}
\end{equation*}
$$

Now we define a subset Z of D as follows. For each $(i, j) \in E$, the intersection $Z_{i j}=F_{i j} \cap Z$ will be a greedy order ideal of $F_{i j}$, whence it suffices to define $z_{i j}=\left|Z_{i j}\right|$. Let $\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right)$ be an enumeration of L_{m} from left to right.

By packing the sequence $\left(x_{i_{1} j_{1}}, \ldots, x_{i_{p} j_{p}}\right)$ to the right in $\{0, \ldots, f\}$ we obtain the sequence $\left(z_{i_{1} j_{1}}, \ldots, z_{i_{p} j_{p}}\right)$. We do this for each m, and this defines $z_{i j}$ for each $(i, j) \in E$. Hence Z is defined and $|Z|=|X|$. We obtain from Theorem 3 that $h(X) \leqslant h(Z)$.

We have to show that Z is an order ideal; then it is clearly an eastern order ideal. In virtue of Lemma 7, it suffices to show that for every $(u, v) \in E \backslash\{(0,0)\}$,

$$
\begin{equation*}
u \neq 0 \Longrightarrow z_{u v} \leqslant z_{u-1, v}(" \searrow ") \text { and } v \neq 0 \Longrightarrow z_{u v} \leqslant z_{u, v-1}(" \swarrow ") \tag{7}
\end{equation*}
$$

Let (u, v) belong to L_{m}. That is, $m=u+v>0$. Since $\left|C_{1}\right| \leqslant\left|C_{2}\right|$, we conclude that L_{m} is of type V, N or A.

Case $1 . L_{m}$ is of type V. Then L_{m}, enumerated from the left to the right, is $\{(m, 0),(m-1,1), \ldots,(0, m)\}$. For $k \in\{m-1, m\}$ define

$$
w_{k}=\sum\left\{x_{i j} ;(i, j) \in L_{k}\right\} .
$$

First assume that $x_{i j} \neq 0$ for all $(i, j) \in L_{m} \backslash\{(m, 0)\}$. Then we get from (5) that $x_{i j}=f$ and, therefore, $z_{i j}=f$ for all $(i, j) \in L_{m-1}$. Then (7) holds evidently.

Secondly, assume that $x_{m-s, s}=0$ for some $(m-s, s) \in L_{m} \backslash\{(m, 0)\}$, see Figure 3 . By (6), we get $x_{m-r, r} \leqslant x_{m-r-1, r}$ if $(m-r, r) \in L_{m}$ is to the left from $(m-s, s)$, that is, $r<s$. We obtain from (5) that $x_{m-r, r} \leqslant x_{m-r, r-1}$ if $r>s$. Hence we conclude that $w_{m} \leqslant w_{m-1}$.

Figure 3. Case 1, $x_{m-s, s}=0$
If $0<i \leqslant m$, then $w_{m} \leqslant w_{m-1}$ implies $z_{m-i, i} \leqslant z_{m-i, i-1}$. For $0<i<m$ we obtain $z_{m-i, i} \leqslant z_{m-i-1, i}$ from $z_{m-i, i} \leqslant z_{m-i, i-1} \leqslant z_{m-i-1, i}$. Finally, $z_{m, 0}=0 \leqslant$ $z_{m-1,0}$. This shows (7).

Case 2. L_{m} is of type N. Due to $\left|L_{m}\right|=\left|L_{m-1}\right|$, this case is much simpler. We have $L_{m}=\left\{\left(k_{1}-1, m-k_{1}+1\right),\left(k_{1}-2, m-k_{1}+2\right), \ldots,(0, m)\right\}$. Since $x_{r, m-r} \leqslant$ $x_{r, m-r-1}$ for $r \in C_{1}$ by (5), we get $w_{m} \leqslant w_{m-1}$. Hence $z_{i, m-i} \leqslant z_{i, m-i-1}$ for $i \in C_{1}$ and $z_{i, m-i} \leqslant z_{i, m-i-1} \leqslant z_{i-1, m-i}$ for $i \in C_{1} \backslash\{0\}$. This shows (7).

Case 3. L_{m} is of type A. If $x_{i, m-i}=0$ for all $(i, m-i) \in L_{m}$, then $z_{i, m-i}=0$ for all $(i, m-i) \in L_{m}$, and (7) is evident. Otherwise, let us choose an element $(q, m-q)$ in L_{m} such that $x_{q, m-q} \neq 0$, see Figure 4. If $(i, m-i) \in L_{m}$ is to the left from $(q, m-q)$, then $x_{i, m-i} \leqslant x_{i, m-i-1}$ by (5). If $(i, m-i) \in L_{m}$ is to
the right from or equals $(q, m-q)$, then $x_{i, m-i} \leqslant x_{i-1, m-i}$ by (6). These two inequalities yield that $w_{m} \leqslant w_{m-1}-x_{q, m-q-1}$. Since $x_{q, m-q-1}=f$ by (5), we conclude that $w_{m} \leqslant w_{m-1}-f$. Therefore at the rightmost element (u, v) of L_{m-1} we have $z_{u v}=f$. Let $w_{m-1}^{\prime}=\sum\left\{x_{i j} ;(i, j) \in L_{m-1},(i, j) \neq(u, v)\right\}$. Then $w_{m-1}^{\prime}=w_{m-1}-x_{u v} \geqslant w_{m-1}-f \geqslant w_{m}$, and disregarding (u, v) of L_{m-1} we conclude (7) the same way as in Case 2.

Figure 4. Case $3, x_{q, m-q} \neq 0$
Lemma 12. Let X be a nonempty eastern order ideal of D. Then there exists an eastern order ideal Y of D satisfying (5) such that $|X|=|Y|$ and $h(X) \leqslant h(Y)$.

Proof. Suppose that (5) fails, and let i be the largest element of C_{1} such that $G_{i} \cap X$ is not a greedy order ideal of G_{i}. Let Y_{i} be the $\left|G_{i} \cap X\right|$-element greedy ideal of G_{i}, and let $Y=\left(X \backslash G_{i}\right) \cup Y_{i}$. The induction hypothesis applies to G_{i}, and we conclude that $h(X) \leqslant h(Y)$. We have to show that Y is an eastern order ideal. In virtue of Lemma 7 , only the pairs of $\{i-1, i, i+1\} \times C_{2}$ have to be considered.

Let $i<k_{1}-1, j<k_{2}$, and assume that $y_{i+1, j}=x_{i+1, j}>0$. If $j<k_{2}-1$, then $x_{i, j+1}$, the right neighbor of $x_{i+1, j}$, equals f, because X is eastern. Then $y_{i u}=x_{i u}=f$ for $0 \leqslant u \leqslant j+1$, since X is an order ideal. The case $j=k_{2}-1$ is a bit different. Then the $x_{i+1, u}$ are equal to f for all $u<j=k_{2}-1$. The same holds for their right neighbors, that is, $x_{i, u}=f$ for all $1 \leqslant u \in C_{2}$. Since X is an order ideal, we obtain $y_{i u}=x_{i u}=f$ for all $u \in C_{2}$.

Let $0<i \in C_{1}$, and assume that $y_{i j}>0$. Then $x_{i j}>0$. If $j<k_{2}-1$, then $x_{i-1, j+1}=y_{i-1, j+1}$, the right neighbor of $x_{i j}$, equals f. Further, this implies $y_{i-1, j}=x_{i-1, j}=f$. If $j=k_{2}-1$, then $x_{i, k_{2}-2}$ and its right neighbor, $x_{i-1, k_{2}-1}$ are equal to f, whence $y_{i-1, u}=x_{i-1, u}=f$ for all $u \in C_{2}$. Hence Y is an eastern order ideal such that $G_{v} \cap Y$ is a greedy order ideal for every $v \geqslant i$. In other words, we have got rid of i, the largest failure of (5). Repeating the above argument, we can get rid of all the failures.

Lemma 13. Let X be a nonempty eastern order ideal of D satisfying (5). Then there exists an eastern order ideal Y of D satisfying (5) such that $|X|=|Y|, h(X) \leqslant$ $h(Y)$ and, moreover, $0<y_{i j}<f$ for at most one $(i, j) \in E$.

Proof. Let $K=\left\{(i, j) \in E ; 0<x_{i j}<f\right\}$. We intend to show that $|K| \leqslant 1$ can be supposed. The assumptions on X allow a (unique) enumeration
$\left\{\left(i_{1}, j_{1}\right) \ldots,\left(i_{s}, j_{s}\right)\right\}$ of K such that $i_{1}>\ldots>i_{s}$ and $j_{1}<\ldots<j_{s}$. We claim that

$$
\begin{equation*}
i_{1}+j_{1}<\ldots<i_{s}+j_{s} \tag{8}
\end{equation*}
$$

By way of contradiction, assume that $1 \leqslant u<v \leqslant s$ but $i_{u}+j_{u} \geqslant i_{v}+j_{v}$. Since $j_{u}<j_{v}$, we have $i_{u}+j_{u}-j_{v}<i_{u}$. If we had $i_{u}+j_{u}-j_{v}<0$, then $i_{u}+j_{u}<j_{v} \leqslant i_{v}+j_{v}$ would contradict the assumption. Hence $i_{u}+j_{u}-j_{v} \in C_{1}$ and $\left(i_{u}+j_{u}-j_{v}, j_{v}\right) \in E$. Since $\left(i_{u}+j_{u}-j_{v}, j_{v}\right)$ and $\left(i_{u}, j_{u}\right)$ belong to the same level, $j_{u}<j_{v}$ and X is eastern, we conclude that $x_{i_{u}+j_{u}-j_{v}, j_{v}}=f$. From $i_{u}+j_{u} \geqslant i_{v}+j_{v}$ we see that $i_{u}+j_{u}-j_{v} \geqslant i_{v}$. Since X is an order ideal, we obtain that $x_{i_{v} j_{v}} \geqslant x_{i_{u}+j_{u}-j_{v}, j_{v}}=f$, which contradicts $\left(i_{v}, j_{v}\right) \in K$. This shows (8).

Next, we consider the (uniquely determined) sequence $\vec{y}=\left(y_{i_{1}, j_{1}}, \ldots, y_{i_{s}, j_{s}}\right)$ that is packed to the right in $\{0, \ldots, f\}$ such that $x_{i_{1}, j_{1}}+\ldots+x_{i_{s}, j_{s}}=y_{i_{1}, j_{1}}+\ldots+y_{i_{s}, j_{s}}$.

$$
\begin{equation*}
\text { We intend to replace } \vec{x}=\left(x_{i_{1}, j_{1}}, \ldots, x_{i_{s}, j_{s}}\right) \text { with } \vec{y} \text {; } \tag{9}
\end{equation*}
$$

this way we obtain Y from X. The contribution of \vec{x} to $h(X)$ is

$$
\sum_{r=1}^{s} h^{\prime}\left(x_{i_{r}, j_{r}}\right)+\sum_{r=1}^{s}\left(i_{r}+j_{r}\right) x_{i_{r}, j_{r}} .
$$

If we replace \vec{x} with \vec{y}, then the first sum does not decrease by Theorem 3 and the second does not decrease by Lemma 9 . Hence $h(X) \leqslant h(Y)$. Since K is an antichain in E, that is, its elements are pairwise incomparable, Y is an eastern order ideal satisfying (5).

Proof of Theorem 5. By Lemmas 11, 12 and 13, we can assume that X is a non-empty eastern order ideal of D satisfying (5) and at most one of the $x_{i j}$ belongs to $\{1, \ldots, f-1\}$.

By an "inner" induction on $k_{1}=\left|C_{1}\right|$, we are going to show how X can be transformed to a greedy order ideal of D. We can assume that $G_{k_{1}-1} \cap X \neq \emptyset$ and $G_{0} \nsubseteq X$, because otherwise we could use the induction hypothesis on k_{1} (if $k_{1}>2$) or the induction hypothesis on t (if $k_{1}=2$). Let $m \in\left\{0, \ldots, k_{1}+k_{2}-2\right\}$ be the largest subscript such that $B_{m}=\left\{(i, j) \in L_{m} ; x_{i j} \neq 0\right\}$ is non-empty.

If $m>k_{2}-1$, then $G_{0} \subseteq X$ and we are done.
Suppose that $m=k_{2}-1$. If $x_{0, m}$, corresponding to the rightmost element of B_{m}, equals f, then $G_{0} \subseteq X$ again. Since X is eastern, the definition of m yields that $1 \leqslant x_{0, m} \leqslant f-1$ and $B_{m}=\{(0, m)\}$. Since $G_{k_{1}-1} \cap X \neq \emptyset$, there exists a largest index r such that $x_{k_{1}-1, r} \neq 0$. Notice that $x_{k_{1}-1, r}=f$ by Lemma 13. Notice also that $k_{1}-1+r \leqslant m$ by the definition of m, whence $k_{1}-1+r<m$ since $B_{m}=\{(0, m)\}$.
"Exchange $x_{k_{1}-1, r}=f$ and $x_{0, m}<f$," that is, exchange $X \cap F_{k_{1}-1, r}$ and $X \cap F_{0, m}$ in the ideal X. This way $h(X)$ increases and, clearly, we obtain a new eastern order ideal satisfying the same conditions that are given in the first sentence of the proof.

Next, assume that $m<k_{2}-1$. It suffices to show that m can be enlarged.
First, assume that $\left|B_{m}\right| \geqslant 2$, and let (i, j) be the leftmost element of B_{m}. Let $q=x_{i j}>0$. Since X is eastern, the rightmost element of B_{m} is $(0, m)$. Note that $(0, m+1) \in E$ and $x_{0, m+1}=0$. Replace $x_{i j}$ and $x_{0, m+1}$ with 0 and q, respectively. This way $h(X)$ increases (by q), m increases (by 1), and, clearly, we obtain a new eastern order ideal.

Secondly, assume that $\left|B_{m}\right|=1$. Since X is eastern, $B_{m}=\{(0, m)\}$. Since we have assumed that $G_{k_{1}-1} \cap X \neq \emptyset$, there is a (unique) largest $v \in C_{2}$ such that $q:=x_{k_{1}-1, v}$ is positive. If we had $0<x_{0, m}<f$, then $q=f$ and we could repeat the trick (9) to $\vec{x}=\left(x_{k_{1}-1, v}, x_{0, m}\right)$. Hence we can assume that $x_{0, m}=f$. Then, replacing $x_{k_{1}-1, v}$ and $x_{0, m+1}=0$ with 0 and q, we obtain a new eastern order ideal with larger total height and larger m.

Pro of of Corollary 4. Let $b_{0}, b_{1}, \ldots, b_{d-1}$ be the lexicographic enumeration of D. Then $\alpha_{i}=h\left(b_{i}\right)$. Let $s=\alpha_{j}+\ldots+\alpha_{j+n-1}$ where $0 \leqslant j$ and $j+n-1 \leqslant d-1$.

Let $X_{1}=\left\{b_{0}, \ldots, b_{n-1}\right\}, X_{2}=\left\{b_{0}, \ldots, b_{j-1}\right\}, Y_{1}=\emptyset$ and $Y_{2}=\left\{b_{0}, \ldots, b_{j-1}\right.$, $\left.b_{j}, \ldots, b_{j+n-1}\right\}$. The conditions of Theorem 3 hold, whence we obtain

$$
\begin{aligned}
& \left(\alpha_{0}+\ldots+\alpha_{n-1}\right)+\left(\alpha_{0}+\ldots+\alpha_{j-1}\right)=h\left(X_{1}\right)+h\left(X_{2}\right) \\
& \\
& \quad \leqslant h\left(Y_{1}\right)+h\left(Y_{2}\right)=0+\alpha_{0}+\ldots+\alpha_{j-1}+s
\end{aligned}
$$

which yields the first inequality of Corollary 4.
Let $X_{1}=\left\{b_{0}, \ldots, b_{j-1}, b_{j}, \ldots, b_{j+n-1}\right\}, X_{2}=\left\{b_{0}, \ldots, b_{d-n-1}\right\}, Y_{1}=\left\{b_{0}, \ldots\right.$, $\left.b_{j-1}\right\}$ and $Y_{2}=D=\left\{b_{0}, \ldots, b_{d-n-1}, b_{d-n}, \ldots, b_{d-1}\right\}$. Then Theorem 3 yields

$$
\begin{array}{r}
\left(\alpha_{0}+\ldots+\alpha_{j-1}\right)+s+\left(\alpha_{0}+\ldots+\alpha_{d-n-1}\right)=h\left(X_{1}\right)+h\left(X_{2}\right) \leqslant h\left(Y_{1}\right)+h\left(Y_{2}\right) \\
=\left(\alpha_{0}+\ldots+\alpha_{j-1}\right)+\left(\alpha_{0}+\ldots+\alpha_{d-n-1}\right)+\left(\alpha_{d-n}+\ldots+\alpha_{d-1}\right)
\end{array}
$$

which implies the second inequality of Corollary 4.

References

[1] B. Bollobás, I. Leader: Sums in the grid. Discrete Math. 162 (1996), 31-48.
[2] G. Czédli, M. Maróti, E. T. Schmidt: On the scope of averaging for Frankl's conjecture. Order 26 (2009), 31-48.
[3] B. A. Davey, H. A. Priestley: Introduction to Lattices and Order. Second edition, Cambridge University Press, New York, 2002, pp. xii +298.
[4] A. O. Gel'fond: Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13 (1967/1968), 259-265.
[5] G. Grätzer: General Lattice Theory. New appendices with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung, R. Wille; Second edition. Birkhäuser, Basel, 1998.
[6] G. Grätzer: The congruences of a finite lattice. A proof-by-picture approach, Birkhäuser Boston, MA. 2006; The Glossary of Notation is available as a pdf file at http://mirror.ctan.org/info/examples/Math_into_LaTeX-4/notation.pdf.
[7] B. Lindström: On a combinatorial problem in number theory. Canad. Math. Bull. 8 (1965), 477-490.

Authors' addresses: Gábor Czédli, Miklós Maróti, University of Szeged, Bolyai Institute, Aradi vértanúk tere 1, Szeged, 6720 Hungary, e-mail: czedli@math.u-szeged.hu, mmaroti@math.u-szeged.hu.

