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The distribution of the number of nodes in

the relative interior of the typical I-segment in

homogeneous planar anisotropic STIT Tessellations

Christoph Thäle

Abstract. A result about the distribution of the number of nodes in the relative
interior of the typical I-segment in homogeneous and isotropic random tessella-
tions stable under iteration (STIT tessellations) is extended to the anisotropic
case using recent findings from Schreiber/Thäle, Typical geometry, second-order

properties and central limit theory for iteration stable tessellations, arXiv:1001.0990
[math.PR] (2010). Moreover a new expression for the values of this probability
distribution is presented in terms of the Gauss hypergeometric function 2F1.

Keywords: hypergeometric function, iteration/nesting, random tessellation, seg-
ments, stochastic geometry, stochastic stability

Classification: Primary 60D05; Secondary 60G55, 52A22

1. Introduction and result

Since their introduction by Nagel and Weiss in [4], homogeneous (i.e. spatial
stationary) random tessellations that are stable under the operation of iteration
have attracted considerable interest in stochastic geometry. One of their main
features is that they admit an explicit local and global construction that allows
an interpretation as a random process of cell division. It can roughly be explained
as follows: Let us fix a locally finite measure Λ on the space of lines in the plane
R2 that can be written as Λ = ℓ ⊗ R, where ℓ is the Lebesgue measure on the
real axis and R a probability measure on the space of directions L, i.e. the space
of lines through the origin (the non-oriented Grassmannian in the sense of [5]).
We use here the standard parameterization as identifying a line with its direction
and its signed distance from the origin. We assume from now on that R is not
concentrated on a single direction (line), which ensures that our tessellations will
have bounded cells with probability one. Beside Λ, we fix some compact convex
polygon W ⊂ R2 in which our construction is carried out. Now, assign to W
an exponentially distributed random life time with parameter Λ([W ]), where by
[W ] we mean the collection of all (parameterized) lines in the plane that hit
W ⊂ R2. Upon expiry of this random lifetime, the cell W dies and splits into
two polygonal sub-cells W+ and W− separated by a line in [W ] that is chosen
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Figure 1. States of the random cell division process for different
time instants t ∈ (0, 6]; the respective new segments are dashed

according to the law Λ([W ])−1Λ(· ∩ [W ]). The resulting two new cells W+ and
W− are again provided independently of each other with exponential lifetimes
with respective parameters Λ([W+]) and Λ([W−]) (this ensures that smaller cells
live stochastically longer) and the entire construction continues independently
and recursively, until some deterministic time threshold t > 0 is reached. The
cell-separating 1-dimensional faces arising in subsequent cell splits are usually
referred to as I-segments , assuming shapes similar to the letter I. This cell division
procedure is illustrated in Figure 1 for different time instants t. The resulting
random tessellation Y (t, Λ, W ) is a homogeneous random tessellation inside W ,
but it can be shown that its law is consistent in W , which implies the existence of
random tessellation Y (tΛ) in the whole plane with the property that for any W ⊂

Rd we have Y (tΛ)∩W
D
= Y (t, Λ, W ), where

D
= stands for equality in distribution,

cf. [4]. Realizations of Y (tΛ) inside a quadratic window W for fixed t and different
choices of Λ are shown in Figure 2. We call the random tessellation Y (tΛ) a
random STIT tessellation with line measure tΛ, where the construction time t
may be interpreted as the edge length intensity of Y (tΛ), i.e. the mean length of
edges per unit area. The abbreviation STIT refers to the characteristic property
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Figure 2. Realizations of Y (tΛ) for fixed t and different direc-
tional distributions R; the uniform distribution for R (left) and
R concentrated with equal weight on the coordinate directions
only (right)

of the tessellations of being stable under iteration, which formally means that

Y (tΛ) ⊞ Y (sΛ)
D
= Y ((s + t)Λ), s, t > 0,

where ⊞ denotes the operation of iteration, see [4]. The line measure tΛ is some-
times referred to as the generating or the driving measure of the homogeneous
random STIT tessellation Y (tΛ).

We are concerned in this note with the typical I-segment of a homogeneous
random STIT tessellation Y (tΛ) with driving measure tΛ, that is the almost surely
uniquely determined I-segment of the tessellation that contains the origin when
Y (tΛ) is regarded under the Palm distribution with respect to the embedded point
process of I-segment midpoints (see [5] for the technical background). Moreover,
we can mark each of the midpoints by the direction of the I-segment through
the particular point, which opens the door to the theory of Palm distributions
for marked point processes, see e.g. [5, Chapter 3.5]. This technique allows us to
make mathematically precise the notion of the typical I-segment of the tessellation
with a particular direction l in the support of R.

It is our main objective here to extend a recent result from [3] concerning
the probability distribution of the number of nodes in the relative interior of the
typical I-segment obtained for homogeneous and isotropic (stochastically rotation
invariant) random STIT tessellations to the anisotropic case, i.e. to general driving
measures tΛ satisfying our above formulated assumption. Our result reads as
follows:
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Theorem. The probability p(k) that the typical I-segment with direction l ∈ L of

a homogeneous planar random STIT tessellation Y (tΛ) has k ∈ N = {0, 1, 2, . . .}
nodes in its relative interior does not depend on l and t and its precise value is

given by

p(k) =
2k+2

(k + 1)(k + 2)(k + 3)
2F1(k + 1, k + 1; k + 4;−1),

where 2F1 is the Gauss hypergeometric function (see [1, Chapter 15] or (11)
below).

Some particular values of p(k) for small k are provided in the table.

k = 0 k = 1 k = 2

exact 8 ln 2 − 5 32 ln 2 − 22 104 ln2 − 72

numerical 0.545178 0.180710 0.087307

k = 3 k = 4 k = 5

exact 304 ln2 − 632
3 832 ln 2 − 1730

3 2176 ln2 − 22624
15

numerical 0.050076 0.031788 0.021598

From the formula for p(k) it can be calculated that the mean number of points
in the relative interior of the typical I-segment and of the typical I-segment with
direction l equals 2. This equality was already observed in [7] and was a first
indication for the distributional equality provided by the Theorem. It can further
be shown that no higher moments exist.

The proof we give here will be based on recent findings from [6] obtained in
the framework of martingale theory, which fills the gap from [3] of a missing
Slivnyak-type result for I-segments. In fact, the martingale techniques from [6]
yield a Slivnyak theorem for I-segments that holds in construction time t of the
tessellation. This result plays an important rôle in the background of the proof
given below.

As a byproduct, we are also able to provide an alternative formula to that from
[3] for the probabilities p(k) in terms of the Gauss hypergeometric function 2F1.

Our methods provide information on anisotropic random STIT tessellations,
namely that the probability distribution of the number of nodes in the relative
interior of the typical I-segment in direction l is the same for all directions. This
might seem implausible at first sight if one thinks for example of a directional
distribution R that is concentrated on two different directions l1 and l2, l1 with
weight ǫ > 0 and l2 with weight 1 − ǫ. However, intuitively one could argue as
follows: I-segments with direction l1 are rare and short. But they are hit by
a large number of I-segments with direction l2. On the other hand, I-segments
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with direction l2 appear more often and they are comparatively long. But they
are seldom hit by I-segments with direction l1. Surprisingly, these two effects
are balancing and lead to the independence of the crucial distribution from the
direction of the segment. Another way to make the result plausible is to say
that the distribution of the number of nodes in the relative interior of the typical
I-segment in direction l cannot depend on its length, because in contrast to the
length, the number of nodes does not change under dilations of the tessellation.
But the length depends on the direction, so the number of nodes and the direction
could be independent, too.

2. Proof of the Theorem

Let Y (tΛ) be a homogeneous random STIT with driving measure tΛ, t > 0,
where Λ has the product structure Λ = ℓ⊗R with R as above. Denote the random
segment process of I-segments of Y (tΛ) by XI and for each I-segment s ∈ XI , by
β(s) ∈ (0, t] its birth time that it gets in the spatio-temporal construction of the
tessellation. We consider now the birth time augmented process

X̂I := {(s, β(s)) : s ∈ XI}

and denote by Q̂Y (tΛ) the distribution of the birth-time marked typical I-segment
in the sense of [5, Chapter 4.1]. From the general theory presented in [5, Chapter 3]

we deduce that there exists a regular family of distributions Q̂
Y (tΛ)
l , l ∈ L, such

that

(1) Q̂Y (tΛ) =

∫
L

Q̂
Y (tΛ)
l R(dl).

We may interpret a random segment with distribution Q̂
Y (tΛ)
l as the typical birth-

time marked I-segment of Y (tΛ) with direction l.
We regard now a homogeneous Poisson line tessellation PLT(sΛ) in the plane with
line measure sΛ and 0 < s < t. Then we can consider — similarly to what we did
with the I-segments above — the distribution QPLT(sΛ) of the typical edge of the

Poisson line tessellation and the family (Q
PLT(sΛ)
l )l∈L of distributions of random

segments that may be interpreted as typical edges of PLT(sΛ) with direction l.
Having these concepts in mind, we recall Equation (33) from [6], which states

that the distribution Q̂Y (tΛ) of the typical birth-time marked I-segment of Y (tΛ)

is a mixture of distributions Q̂PLT(sΛ), 0 < s < t, and the mixing distribution is
a beta-distribution on [0, t] with parameters 2 and 1. More formally, we have

Q̂Y (tΛ) =

∫ t

0

2s

t2
[QPLT(sΛ) ⊗ δs] ds,

where δs stands for the unit mass Dirac measure concentrated at s ∈ (0, t]. Using
now (1) and its equivalent for the Poisson line tessellations, we arrive at
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(2)

∫
L

∫
f(Z)Q̂

Y (tΛ)
l (dZ)R(dl)

=

∫
L

∫ t

0

2s

t2

∫
f(Z)(Q

PLT(sΛ)
l ⊗ δs)(dZ)dsR(dl),

for any non-negative measurable function f on the space of birth-time marked
line segments.

Above, we have constructed from the distribution QPLT(sΛ) a family of distri-

butions Q
PLT(sΛ)
l . Similarly to that, we can infer once again from the general

theory that for each Q
PLT(sΛ)
l there exists a regular family Q

PLT(sΛ)
l,x , such that

Q
PLT(sΛ)
l =

∫
(0,∞)

Q
PLT(sΛ)
l,x λl,s(dx),

where by λl,s we mean the length distribution of a random line segment with

distribution Q
PLT(sΛ)
l . Consequently, (2) can be written as

(3)

∫
L

∫
f(Z)Q̂

Y (tΛ)
l (dZ)R(dl)

=

∫
L

∫ t

0

2s

t2

∫
(0,∞)

∫
f(Z)(Q

PLT(sΛ)
l,x ⊗ δs)(dZ)λl,s(dx) dsR(dl).

However, it is well known that λl,s has a density pl,s(x) with respect to the
Lebesgue measure on the positive real half-axis (see the remarks in [5] or equa-
tion (6) below). To simplify the notations, we denote by Il a random birth-time

marked segment with distribution Q̂
Y (tΛ)
l and by Zl,s,x the random marked line

segment with distribution Q
PLT(sΛ)
l,x ⊗ δs. Then (3) can be rewritten as

(4)

∫
L

Ef(Il)R(dl) =

∫
L

∫ t

0

2s

t2

∫ ∞

0

pl,s(x) · Ef(Zl,s,x) dx dsR(dl).

We define now the following special function F on the space of birth-time marked
line segments by

F (Z) := 1 [in the relative interior of Z there appear

after its birth time and until time t exactly k nodes]

with k ∈ N = {0, 1, 2, . . .}. Furthermore, we introduce the abbreviations

p(k|l) := EF (Il) and p(Zl,s,x, k) := EF (Zl,s,x).
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Then (4) with f replaced by F · h(l) with an arbitrary non-negative measurable
function h(l) on L reads

∫
L

h(l)p(k|l)R(dl) =

∫
L

h(l)

∫ t

0

2s

t2

∫ ∞

0

ps,l(x)p(Zl,s,x, k) dx dsR(dl),

whence

(5) p(k|l) =

∫ t

0

2s

t2

∫ ∞

0

ps,l(x)p(Zl,s,x, k) dx ds

follows.
In order to calculate p(k|l), it remains to determine the length density pl,s(x)

with respect to the Lebesgue measure on the positive real half-axis and the count-
ing density p(Zl,s,x, k).

To this end, notice at first that it is well known from the theory of Poisson
line tessellations that the length distribution of Zl,s is an exponential distribu-
tion with parameter sΛ([e(l)]), where e(l) denotes a segment of unit length on l
(see for example the remarks on Gamma-type results for Poisson based random
tessellation in [5, Chapter 10] or [6] and the references given therein). Thus, we
have

(6) pl,s(x) = sΛ([e(l)])e−sΛ([e(l)])x.

It remains to determine the counting density p(Zl,s,x, k). To this end, we make
the following considerations: Note, that at time s, the random segment Zl,s has
by definition the same distribution as the typical marked I-segment with direction
l that has birth-time s. Furthermore, at the time of its birth s ∈ (0, t], such an
I-segment does not contain any node in its relative interior due to the construc-
tion, whence the nodes can only appear during the remaining time interval (s, t].
Recall now that homogeneous random STIT tessellations have the following sec-
tion property (cf. [2] and the references cited therein): The intersection of Y (tΛ)
with any line g induces a homogeneous Poisson point process on g with intensity
tΛ([e(l)]), where l ∈ L is the unique line parallel to g. Moreover, observe that
from the iteration stability of Y (tΛ) it follows

(7) Y (tΛ)
D
= Y (sΛ) ⊞ Y ((t − s)Λ).

The last equation says that both results are the same, either to continue the
random cell division process from time s until t or to stop the process at time
s and to perform an iteration of Y (sΛ) with tessellations distributed as Y ((t −
s)Λ). We consider the second mentioned possibility and regard the effect of the
iteration (7) on each of two the sides of the I-segment Zl,s. On each side of Zl,s,
an iteration is performed and it induces on the line containing the segment a
homogeneous Poisson point process with intensity (t− s)Λ([e(l)]), because of the
section property for STIT tessellations mentioned afore. This is because iteration
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with Y ((t − s)Λ) is for the considered line the same as intersection with the
STIT tessellation Y ((t − s)Λ). The same does independently also hold for the
other side of the segment. As a result, there appears on the line containing the
I-segment Zl,s the superposition of two independent and homogeneous Poisson
point processes, which is again a homogeneous Poisson point process but with
intensity 2(t − s)Λ([e(l)]). Thus, in the relative interior of the random segment
Zl,s,x, which is born without an inner structure, there appears a random number
of nodes that is Poisson distributed with parameter 2(t − s)Λ([e(l)])x, i.e.

(8) p(Zl,s,x, k) =
(2(t − s)Λ([e(l)])x)k

k!
e−2(t−s)Λ([e(l)])x, k ∈ N,

because we have conditioned additionally on its length x ∈ (0,∞). Thus, we
obtain from (5) in view of (6) and (8) the following identity for the probability
p(k|l):

p(k|l) =

∫ t

0

2s

t2

∫ ∞

0

sΛ([e(l)])e−sΛ([e(l)])x

×
(2(t − s)Λ([e(l)])x)k

k!
e−2(t−s)Λ([e(l)])x dx ds.

The last expression can further be evaluated and we obtain

(9)

p(k|l) =

∫ t

0

2s

t2
(2(t − s)Λ([e(l)]))k

k!
sΛ([e(l)])

∫ ∞

0

xke−Λ([e(l)])(2t−s)x dx ds

=

∫ t

0

2s

t2
(2(t − s)Λ([e(l)]))k

k!
sΛ([e(l)]) ·

k!

(Λ([e(l)])(2t − s))k+1
ds

=

∫ t

0

2s2

t2
(2(t − s))k

(2t − s)k+1

Λ([e(l)])Λ([e(l)])k

Λ([e(l)])k+1
ds

=

∫ t

0

2s2

t2
(2(t − s))k

(2t − s)k+1
ds

which is independent of the direction l. This implies that the probability p(k|l)
for the typical I-segment with a particular direction l and

∫
L

p(k|l)R(dl) for the
typical I-segment itself coincide. For this reason we will write from now on p(k)
instead of p(k|l).

To proceed, we apply the substitution a = 1 − s/t, which leads to

(10)

(9) =

∫ 1

0

2((1 − a)t)2

t2
(2(t − (1 − a)t))k

(2t − (1 − a)t)k+1
t da

= 2k+1

∫ 1

0

(1 − a)2
ak

(1 + a)k+1
da = p(k),

which is independent of t.
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We can derive from the last formula an alternative expression for the values
p(k), i.e. for the probability that the number of nodes in the relative interior
of the typical I-segment equals k ∈ N. Recall for that purpose that the Gauss
hypergeometric function 2F1(u, v; w; z), u, v, w > 0, z ∈ R is defined by

(11)

2F1(u, v; w; z) =
∞∑

n=0

(u)n(v)n

(w)n

·
zn

n!

=
Γ(w)

Γ(u)Γ(v)

∞∑
n=0

Γ(u + n)Γ(v + n)

Γ(w + n)
·
zn

n!
,

where (x)n, n ∈ N, is the Pochhammer symbol

(x)n =
Γ(x + n)

Γ(x)
.

From [1, Equation (15.3.1)] we know that this function has the following integral
representation (the so-called Euler integral):

2F1(u, v; w; z) =
Γ(w)

Γ(v)Γ(w − v)

∫ 1

0

da

a1−v(1 − a)1−w+v(1 − za)u
.

Using the last formula with the parameters u = v = k + 1 > 0, w = k + 4 > 0,
k ∈ N, and z = −1 yields

2F1(k + 1, k + 1; k + 4;−1)

=
Γ(k + 4)

Γ(k + 1)Γ(3)

∫ 1

0

da

a−k(1 − a)−2(1 + a)k+1

=
(k + 1)(k + 2)(k + 3)

2

∫ 1

0

(1 − a)2
ak

(1 + a)k+1
da.

A comparison of this expression and the expression for the probabilities p(k) from
(10) implies now

p(k) = 2k+1

∫ 1

0

(1 − a)2
ak

(1 + a)1+k
da

=
2k+2

(k + 1)(k + 2)(k + 3)
2F1(k + 1, k + 1; k + 4;−1)

and completes the proof. �

Acknowledgement. The author highly values the comments and remarks by
Werner Nagel (Jena) who considerably helped to improve the presentation.



512 C. Thäle
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