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HYBRID PARALLELIZATION
OF AN ADAPTIVE FINITE ELEMENT CODE

Axel Voigt and Thomas Witkowski

We present a hybrid OpenMP/MPI parallelization of the finite element method that is
suitable to make use of modern high performance computers. These are usually built from a
large bulk of multi-core systems connected by a fast network. Our parallelization method is
based firstly on domain decomposition to divide the large problem into small chunks. Each
of them is then solved on a multi-core system using parallel assembling, solution and error
estimation. To make domain decomposition for both, the large problem and the smaller sub-
problems, sufficiently fast we make use of a hierarchical mesh structure. The partitioning is
done on a coarser mesh level, resulting in a very fast method that shows good computational
balancing results. Numerical experiments show that both parallelization methods achieve
good scalability in computing solution of nonlinear, time dependent, higher order PDEs
on large domains. The parallelization is realized in the adaptive finite element software
AMDiS.
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1. INTRODUCTION

Nowadays, high performance computers are built together from multi-core archi-
tectures. Most of these computers have at least dual or quad-core CPUs, and the
number of cores per CPU will increase over the next years. To make use of the whole
performance that is provided by high performance computers, one has to parallelize
software in two ways. First, the classical parallelization using domain decomposition
and the message passing interface (MPI) must be used to partition the big compu-
tational domain into smaller parts. Each of these sub-problems is then computed
on one CPU. The algorithms, which compute on the sub-problems, must be further
parallelized based on shared memory concepts, e. g., OpenMP or PThread, to make
use of the multiple cores of each CPU. To parallelize scientific software in a hybrid
way, such that it makes use of multiple CPUs, i. e. multi-process parallelization, and
of multi cores, i. e. multi-threading parallelization, is a challenging task.

Our concept of multi-process parallelization is not new and based on textbook
techniques. We therefore concentrate on multi-threading parallelization for architec-
tures with shared memory and an arbitrary number of cores. Our approach makes
use of a multilevel mesh structure, has an efficiency of more than 80%, as long as
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the memory bandwidth is not a limiting factor, and can make use of an arbitrary
large number of cores. This makes it applicable not only for the current computer
architectures, but also for future hardware concepts with dozens and hundred of
cores per CPU.

Most multi-core parallelization concepts for finite element code consider solving
the discrete problem only. In the 1d and 2d cases, this is also the most time con-
suming part with more than 90% of the overall runtime. When going to the 3d case
with millions of elements and highly adaptive meshes, assembling the matrices and
vectors, and error estimation take a significant time of the simulation. In our 3d
simulations, assembling and error estimation take up to 50% of the overall solution
time in sequential computations.

In this work, we consider only the parallelization of assembling the stiffness matrix
and error estimation. Parallel direct and iterative solvers for the resulting large
sparse matrices are considered, e. g., in the work of Davis [3] or Kotakemori and
Hasegawa [7].

The parallelization concepts presented here are implemented in AMDiS (Adaptive
MultiDimensional Simulations), a finite element toolbox for the solution of systems of
partial differential equations (PDEs) that is written in C++. Problem formulations
can be done on a high level of abstraction in a dimension independent way. Numerical
issues are kept away from the user as far as possible. More information about AMDiS
may be obtained from Vey and Voigt [14]. To parallelize the sequential code, we use
the OpenMP programming interface for multi-threading parallelization and MPI for
multi-process parallelization. A different parallel concept based on domain covering
meshes has been considered by Vey and Voigt [13].

The remainder of this paper is organized as follows: Section 2 shortly describes
adaptivity and the adaptive mesh structure used in AMDiS. In Section 3, we de-
scribe the multi-threading, and in Section 4 the multi-process parallelization con-
cepts. Section 5 presents some numerical results to show the feasible speedups of
our parallelization concepts on illustrating examples. In Section 6, we conclude our
results and give an outlook for further research on this topic.

2. ADAPTIVE MESHES

Adaptivity is a standard technique in finite element codes to solve PDEs with a given
error tolerance and with as least computing resources as possible. In AMDiS, the
computation starts on a macro mesh, which is defined by a mesh file and a number
of global refinements, both to be specified by the user. From this first mesh, a linear
equation system is build (assembling) and solved with either an iterative or direct
solver. Using this solution, the global error is approximated by local element-wise
indicators (error estimation). If the global error estimation exceeds a given error
tolerance, those elements with a high local error indicator are refined. In regions
with a very low local error indicator, the mesh may be coarsened. The whole process,
assembling, solution, error estimation and mesh adaption, is repeated, until a given
error tolerance is achieved.

AMDiS meshes consist of simplicial elements which are lines in 1d, triangles in
2d and tetrahedrons in 3d. If an element has to be refined during the adaption
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Fig. 1. (a) 2d macro mesh (b) some refinements of it (c) binary tree of macro element 0.

loop, it will be bisected into two elements of the same dimension. The refinement
algorithm is described by Schmidt and Siebert [11] in more detail. The two new
elements are called children of the original parent element. For each element of the
macro mesh, a binary tree arises during adaption. In Figure 1, a triangular macro
mesh consisting of four elements (a), some refinements of this macro triangulation
(b), and the corresponding binary tree for macro element 0 (c) are shown. The
representation of the mesh as a set of macro elements and the binary trees is the
basis of our multilevel approach for parallelization. Using binary trees for mesh
representation it is possible to traverse a mesh on different levels very efficiently.
The coarsest level is the macro level. The finest level, also called the leaf level,
represents the final mesh.

3. MULTI–THREADING PARALLELIZATION

The general idea of our parallelization approach is based on the fact that assembling
and error estimation are operations that may be computed in parallel on different
elements. The global error estimation is the sum of all local element-wise indicators.
Therefore, it is possible to partition the set of all elements into n parts and assign
each part to one core. Then each core computes the error estimation for its elements
only. The final result is the sum of all locally computed error estimates. This
addition can be done only sequentially, but its runtime is negligible in contrast to
the parallel computation done before.

Parallel assembling of the stiffness matrix works in the same way than error
estimation. The stiffness matrix is the result of adding all element matrices, which
may be also computed independently from each other. Hereby, each core computes
a private stiffness matrix for the elements that were assigned to it. At the end
of the parallel computation, all private stiffness matrices have to be added to the
global stiffness matrix. This operation can only be done in a sequential way to
circumvent race conditions. In contrast to the addition of the local error estimation,
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Fig. 2. A mesh with 24 macro elements is partitioned for two cores

this operation is more costly and cannot be negligible in the same way. For a small
number of cores, we show in the Section 5 that the overall time to add all local
stiffness matrices is quite short compared to the time for assembling them.

3.1. Parallel mesh traverse

The efficiency of a parallel algorithm for assembling and error estimation is based
on a fast and almost uniform distribution of all elements to the available cores.
A widely used approach is to use graph partitioning algorithms, e. g., ParMETiS
[10], to partition a graph corresponding to the mesh into nearly equal sub-trees.
Especially for large and adaptive meshes partitioning in this way takes more time
than the operation to be done on the mesh. To make partitioning as fast as possible,
we make use of the hierarchical mesh representation explained in the section before.
Instead of partitioning the mesh on the leaf level, it is partitioned on the macro
level.

The mesh partitioning is implemented in a “virtual” way, i. e. the operations that
are performed on the mesh do not know anything about the mesh partitioning. The
mesh traverse can be started either in a sequential or in a parallel way. In the
later case, the current thread is forked to n threads. Each of them traverses only
the corresponding sub-mesh and calls the operation to be done only on the private
leaf elements. Using the parallel mesh traverse, all element-wise algorithms can be
executed in parallel without changing the code:

#ifdef _OPENMP

TraverseParallelMesh traverse;

#else

TraverseMesh traverse;

#endif

do {

foo(traverse.getElement());

} while (traverse.next());

If AMDiS is compiled with a compiler supporting OpenMP, the parallel mesh tra-
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versed is used automatically. In the case the compiler does not support OpenMP, the
sequential mesh traverse is used. Because both classes implement the same interface,
the code using the mesh traverse is the same in both cases.

Up to now, the only open question is how to partition the macro elements in a
cheap way and to achieve a good load balancing, i. e. the number of leaf elements
should be nearby equal on all cores. We have made the observation, that in al-
most all practical simulations the number of leaf elements is almost the same in all
neighbouring macro elements. Under this assumption, no complicated partitioning
algorithm has to be used. The parallel mesh traverse assigns all macro elements with
the index i to core j, if i mod pmax = j, with pmax the number of all available cores.
If the number of macro elements is much higher than the number of available cores,
i. e. at least two magnitudes, this ensures a good partition of macro elements too
the cores. A high number of macro elements is not a hard restriction. When using
complex geometries, we need many macro elements to get a good triangulation of
the geometry. Furthermore, we assume that when thinking about parallelization in
large, the size of the geometry scales with the number of availble computing nodes.
When using simple geometries, we still prefer to pre-refine the domain to enlarge
the number of macro elements, altough the lower bound on the number of required
macro elements to achieve a proper load balance is in the order of the number of
cores that are used. But this way the load balancing is sufficient in most practical
computation.

An example for this kind of partitioning is shown in Figure 2 for a 2d mesh with
24 macro elements. The advantage of the partitioning is that the sub-meshes are
not continuous. This improves the leaf element distribution to the cores, if the mesh
has some very local refinements, for example due to singularities in the solution.

3.2. Assembling

In the sequential version of AMDiS, for assembling the stiffness matrix and the load
vector, the mesh is traversed on its leaf level and an assembling function is called for
every element. To parallelize this loop, we use the parallel mesh traverse algorithm
described above. Every thread creates a private matrix and vector and assembles
its sub-mesh on them. Because the assembling procedure takes the same amount of
time on every element, independently of the elements size or location, the parallel
assembling on the sub-meshes scales perfectly, as long as all elements are perfectly
partitioned to the available cores.

After all threads have assembled on their sub-meshes, the private matrices and
vectors have to be added to the public stiffness matrix and load vector. This oper-
ation must be performed in a sequential way to avoid race conditions. For a small
number of cores we have implemented it using OpenMP’s critical section. That
means, that all threads add their matrices to the global matrix one after the other.
Up to 8 cores, the private to public matrix additions take less than 10% of the
assembling time. For higher number of cores, the percentage of the addition time
will increase and therefore, the parallel efficiency will go down. To circumvent the
problem, we have implemented a hierarchical addition of matrices. Hereby, always
two threads are allowed to add their private matrices. Figure 3 shows an example
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Fig. 3. Hierarchical matrix addition.

for eight threads. In the first step, threads 1 adds its private matrix to the matrix of
thread 0, thread 3 to thread 2, and so on. All these additions on this level may be
done in parallel. In the next step, thread 2 adds its matrix to thread 0 and thread
6 to thread 4. In the last step, the global stiffness matrix is contained in the master
thread 0. It is clear, that the hierarchical matrix addition scales not linear, but
instead logarithmically in the number of cores which leads to higher memory usage
due to multiple copies of one matrix. In our simulations this not a cruical point
because highly sparse matrices are used.

3.3. Error estimation

Parallelizing the error estimation loop is done in a very similar way to the assembling
process. The mesh is traversed in parallel by all available cores. Each core evaluates
some local estimators on all elements of its sub-mesh. Eventually, the result, which is
just a floating point value, is added by all cores to a global estimation. Theoretically,
using this approach the speedup and efficiency must scale linearly in the number of
cores.

4. MULTI–PROCESS PARALLELIZATION

To make use of hundreds and thousands of computers connected by a fast network,
we have parallelized AMDiS based on domain decomposition and distributed linear
algebra. To avoid a bottleneck when partitioning large domain, we use the same idea
as in multi-threading parallelization. The mesh is not partitioned on the leaf level,
but on the macro level. Furthermore, each element on the macro level is weighted
with the number of its leaves. Using ParMETIS [10], the partitioning of the macro
mesh can be done very fast with a very good distribution of the elements to the
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Fig. 4. Solution of the Cahn–Hilliard equation at t = 0.003, t = 13.27 and t = 124.16.

The color indicates the local curvature of the solution.

processes.
Once the mesh is partitioned, AMDiS assigns to each degree of freedom at inte-

rior boundaries, i. e. at boundaries between process’ sub-meshes, the owner of these
degree of freedom. This is necessary to make the global indices of the degrees of free-
dom unique. Using the global indices for degrees of freedom, AMDiS uses PETSc [2]
to assemble global matrices and vectors and to solve the linear system of equations.

5. NUMERICAL RESULTS

5.1. Multi-threading parallelization

As an example we use a phase-field model for surface diffusion, which has applications
in nanotechnology [8]. The model follows from a free energy

F =

∫
δ

2
|∇φ|2 + 1

δ
f(φ) dΩ (1)

with f(φ) = 18φ2(1 − φ)2 and δ > 0 a small parameter defining the width of the
diffuse interface. The Cahn–Hilliard equation reads

δtφ = ∇ ·
(
B(φ)∇

(
−ǫ∆φ+

1

ǫ
f ′(φ)

))
(2)

with B(φ) = 36φ2(1 − φ)2 a degenerate mobility. We split the 4th order PDE (2)
into a system of two second order equations

δtu = ∇ · (B(φ)∇µ) (3)

µ = −ǫ∆φ+
1

ǫ
f ′(φ) (4)

and discretize both using linear finite elements. Furthermore we use a semi-implicit
time discretization, with a linearization of the double well potential

f ′(φn+1) ≈ f ′′(φn)φn+1 + f ′(φn)− f ′′(φn)φn (5)

Details can be obtained from Rätz et al. [9]. Figure 4 shows the evolution of two
nanobots which collide and evolve to a sphere.



Hybrid Parallelization of an Adaptive Finite Element Code 323

Table 1. Runtime results for assembling.

cores runtime [s] matrix addition [s] speedup efficiency
1 6904.0 0.0 – 0% 1.0 100%
2 3612.2 83.67 – 2.3% 1.91 95.5%
4 1992.0 93.62 – 4.7% 3.47 86.8%
5 1856.5 102.98 – 5.5% 3.72 74.4%
6 1955.7 104.52 – 5.3% 3.53 58.8%
7 1667.2 114.18 – 6.8% 4.14 59.1%
8 1330.2 122.89 – 9.2% 5.19 64.8%

Table 2. Runtime results for error estimation.

cores runtime [s] speedup efficiency
1 2452.9 1.00 100%
2 1449.1 1.69 84.5%
4 877.57 2.8 70.0%
5 775.57 3.12 63.3%
6 863.7 2.84 47.3%
7 831.5 2.95 42.1%
8 621.0 3.99 49.9%

The simulation was done with adaptive timesteps and adaptive meshes. The
overall number of computed timesteps is around 2500. We have used linear Lagrange
finite elements, leading to meshes with up to 1.3 million degree of freedoms (DOFs)
and around 4 million elements (tetrahedrons). The numerical results were done
on a server with four AMD Opteron dual cores, 32 Gbyte RAM and SuSE Linux
Enterprise 10.0.

Table 1 shows the runtime, the achieved speedup and the efficiency of parallel
matrix assembling. The values are given for the first 50 timesteps. The third row
specifies the time for adding the private matrices to the global matrix. Adding the
private matrices one after the others takes less than 10% of the overall assembling
time. Using the hierarchical matrix addition does not lead to a significant fast
addition for up to 8 cores. We expect this technique to be advantageous for larger
number of cores per CPU.

The speedup is about 80% for up to four cores, but breaks down for more cores.
This adheres to the used hardware. Using four threads, each thread is set to one of
the four CPUs. In the case of at least five threads, two threads have to share one
dual core CPU. In this situation, the memory bandwidth is a limiting factor causing
the worse speedup for more than four cores.

In Table 2, the runtime for error estimation of the first 50 timesteps is presented.
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Fig. 5. Initial and final solution of the PFC equation on a sphere. The color indicates

the density field.

The achieved speedup up to four cores is around 10% worse than for assembling.
This has only technical reasons, because we had to add some OpenMP barriers
in our code because of some global variables. The same collapse of speedup can
be observed for more than four cores, as for assembling, which again results from
memory bandwith limitations.

5.2. Multi-process parallelization

The applicability and performance of our parallelization scheme is tested for a situ-
ation typical in scientific computing. We choose a nonlinear higher order PDE, the
Phase Field Crystal model (PFC) which recently become popular in computational
material science [5]. The PFC is a Phase Field model on atomistic scale. It can
be derived as a approximation to classical density functional theory. The simplest
dimensionless form of the free energy is

F =

∫
1

2
ψ
(
−ǫ+ (∆ + 1)2

)
ψ +

1

4
ψ4 dx (6)

which leads to the following conserved evolution law

∂tψ = ∆
{
(−ǫ+ (1 + ∆)2)ψ + ψ3

}
, (7)

where ψ is a rescaled density field of the underlying particles. For the connection
to DFT and the relation of the involved numerical parameters to parameters of real
materials, we refer to van Teeffelen et al. [12].

The resulting evolution equation is of 6th order, which already introduces some
numerical difficulties. Furthermore, for the crystalline state the energy is minimized
by a density field, which is peaked at the atomic positions. Due to the rapid spatial
variations, fine computational grids have to be used in order to resolve the inter-
atomic separation. This results in huge systems. Both aspects ask for an efficient
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Table 3. Runtime results for MPI based parallelization.

CPUs runtime [s] speedup efficiency speedup efficiency
2 16555 1.00 100% – –
4 8948 1.85 92.5% – –
8 3303 5.01 125.2% 1.00 100%
16 1766 9.37 117.1% 1.87 93.5%
32 853 19.4 121.2% 3.87 96.7%
64 415 39.89 110.8% 7.95 99.3%

numerical treatment of the equation on high performance computers. In order to
solve the higher order PDE, we rewrite (7) as a system of three second order equa-
tions

v = ∆ψ, (8)

∂tψ = ∆u, (9)

u = (1− ǫ)ψ + 2∆ψ +∆v + ψ3. (10)

Furthermore, we use a semi-implicit time discretization, with a linearization of the
derivative of the potential (ψn+1)3 ≈ 3(ψn)2ψn+1 − 2(ψn)3 . A brief review of the
finite element discretization of the PFC equation is stated in Backofen et al. [1].

For the numerical experiment we have computed the PFC equation on a surface
mesh of a sphere with noise as initial condition. The equations have to be modified
by replacing the Laplace operator ∆ by its surface complement ∆Γ the Laplace–
Beltrami operator. Details on how to deal with such surface PDEs can be found in
Vey and Voigt [14] as well as Dziuk and Elliott [4].

For discretization we have used 4th order Lagrange elements. The overall problem
size is 106 degree of freedoms. Because of the three components of the PDE, the
overall linear system consists of around 3 · 106 equations. The computation was
done on the PC farm “deimos” at the Technical University Dresden. The specific
computing nodes we used are AMD Opteron x85 processors equipped with 2 GB
of memory. They are connected by an 4x Infiniband network. Table 3 shows the
runtime results for computing 10 timesteps of the equation. Because we have used
a globally refined mesh, the problem does not benefit from mesh adaptivity. The
distributed linear system of equations is solved with PETSc’s implementation of the
TFQMR method with block jacobi preconditioning.

The third and fourth row show the speedup and the efficiency, respectively, which
is related to the computation time of the 2 CPU results. Within the computation
on two and four CPUs, there are much more cache misses than for the other compu-
tations where the problem sizes are smaller and thus fit better to the CPU’s cache
hierarchy. This explains the super linear speedup, when we compare the results for
at least 8 CPUs to the computation with 2 CPUs. The two last rows of Table 3
show therefore the speedup and efficiency for computations on 16, 32 and 64 CPUs
related to the computation time on 8 CPUs. Here we see nearly perfect speedup.
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6. CONCLUSION

We have presented two parallelization techniques that make it possible to compute
solutions of PDEs on large domains in 3d. Besides some technical trivia to improve
the speedup of our OpenMP parallelization, we will combine both parallelization
techniques together to parallelize all parts of the finite element method in both ways.
The only reason why we have not done it till now is the absence of a distributed
linear algebra package that makes use of both, MPI and OpenMP parallelization.
In near future, the Matrix Template Library 4 [6], that we are using for sequential
linear algebra, will be about to make use of both parallelization concepts.
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