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Abstract. Let X be a Banach space with the Grothendieck property, Y a reflexive Banach
space, and let X⊗̌εY be the injective tensor product of X and Y .

(a) If either X∗∗ or Y has the approximation property and each continuous linear operator
from X∗ to Y is compact, then X⊗̌εY has the Grothendieck property.

(b) In addition, if Y has an unconditional finite dimensional decomposition, then X⊗̌εY

has the Grothendieck property if and only if each continuous linear operator from X∗

to Y is compact.
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González and Gutiérrez in [5] showed that if X is a Banach space with the

Grothendieck property, Y is a reflexive Banach space, and each continuous linear

operator from X to Y ∗ is compact, then X⊗̂πY , the projective tensor product of X

and Y , has the Grothendieck property; in addition, if Y ∗ has the bounded compact

approximation property, they also showed that X⊗̂πY has the Grothendieck prop-

erty if and only if each continuous linear operator from X to Y ∗ is compact. Bu and

Emmanuele in [1] showed that the injective tensor product Lp[0, 1]⊗̌εX (1 < p < ∞)

has the Grothendieck property if and only if X has the Grothendieck property and

each continuous linear operator from X∗ to Lp[0, 1] is compact. In this paper, we

will give sufficient conditions for X⊗̌εY , the injective tensor product of X and Y ,

to have the Grothendieck property, and then we will show that these conditions are

also necessary under special circumstances.

The second author is supported by the NSF of China (10571035; 10971043) and the third
author is partially supported by the NSF of China (10871213).
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For a Banach space X , BX will denote its closed unit ball and X∗ will denote

its topological dual space. For Banach spaces X and Y , L(X, Y ) and K(X, Y ) will

denote the space of continuous linear operators and the space of compact operators

from X to Y , respectively, and N (X, Y ) will denote the space of nuclear operators

from X to Y with its nuclear operator norm ‖ · ‖nuc. X⊗̂πY and X⊗̌εY will denote

the projective tensor product of X and Y with its projective tensor norm π(·) and the

injective tensor product of X and Y with its injective tensor norm ε(·), respectively

(see [10]). For T ∈ L(X, Y ), T ∗ will denote its adjoint operator.

A Schauder decomposition of a Banach space X is a sequence {Pn}∞1 of contin-

uous projections on X such that Pi ◦ Pj = 0 whenever i 6= j, and x =
∞
∑

k=1

Pnx

for each x in X (see [7] or [9, § 1.g]). A Schauder decomposition {Pn}∞1 of X is

called unconditional if for each x ∈ X , the series
∑

n

Pnx converges to x uncondi-

tionally. Let K denote the unconditional constant of the unconditional Schauder

decomposition {Pn}∞1 of X . Then for each x ∈ X and each sequence {θn}∞1 of signs,

(1)

∥

∥

∥

∥

∞
∑

n=1

θnPnx

∥

∥

∥

∥

6 K ·

∥

∥

∥

∥

∞
∑

n=1

Pnx

∥

∥

∥

∥

= K · ‖x‖.

A Banach space X is said to have a finite dimensional decomposition (FDD for

short) if X has a Schauder decomposition {Pn}∞1 such that Pn[X ] is finite dimen-

sional for each n ∈ N. In addition, if {Pn}
∞

1
is also unconditional then X is said to

have an unconditional FDD. Each Banach space with an unconditional basis has an

unconditional FDD.

For convenience, throughout this paper we will write the Radon-Nikodym property

simply as RNP and the approximation property simply as AP.

Recall that (X⊗̂πY )∗ = L(X, Y ∗) under the dual operation

〈T, u〉 =
n

∑

k=1

〈T (xk), yk〉

for each T ∈ L(X, Y ∗) and each u ∈ X ⊗ Y with a representation u =
n
∑

k=1

xk ⊗ yk.

Also recall that if X∗ or Y has AP then N (X, Y ) = X∗⊗̂πY and K(X, Y ) = X∗⊗̌εY

(see [6, Ch. I, § 5.1] or [10, § 4.1]). Note that if a dual Banach space has AP then

its predual also has AP. Hence if X∗∗ or Y ∗ has AP and if L(X∗, Y ∗) = K(X∗, Y ∗)

then

N (X, Y )∗ = (X∗⊗̂πY )∗ = L(X∗, Y ∗) = K(X∗, Y ∗) = X∗∗⊗̌εY
∗
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under the dual operation

〈T, u〉 =

n
∑

k=1

〈x∗∗

k , T ∗(y∗

k)〉

for each T ∈ N (X, Y ) and each u ∈ X∗∗⊗Y ∗ with a representation u =
n
∑

k=1

x∗∗

k ⊗y∗

k.

Proposition 1. Suppose that either X∗∗ or Y ∗ has AP and L(X∗, Y ∗) =

K(X∗, Y ∗). Let {Tn}∞1 be a bounded sequence in N (X, Y ) and T ∈ N (X, Y ). Then

lim
n

Tn = T weakly in N (X, Y ) if and only if lim
n

T ∗∗

n (x∗∗) = T ∗∗(x∗∗) weakly in Y

for each x∗∗ ∈ X∗∗.

P r o o f. Recall that each nuclear operator is weakly compact. Thus for each

x∗∗ ∈ X∗∗ and each n ∈ N, T ∗∗

n (x∗∗) ∈ Y and T ∗∗(x∗∗) ∈ Y . First assume that

lim
n

Tn = T weakly in N (X, Y ). For each x∗∗ ∈ X∗∗ and each y∗ ∈ Y ∗, since

x∗∗ ⊗ y∗ ∈ X∗∗⊗̌εY
∗ = N (X, Y )∗, we have

lim
n
〈T ∗∗

n (x∗∗) − T ∗∗(x∗∗), y∗〉 = lim
n
〈Tn − T, x∗∗ ⊗ y∗〉 = 0.

Thus lim
n

T ∗∗

n (x∗∗) = T ∗∗(x∗∗) weakly in Y .

Now assume that lim
n

T ∗∗

n (x∗∗) = T ∗∗(x∗∗) weakly in Y for each x∗∗ ∈ X∗∗. Then

for each v ∈ X∗∗ ⊗ Y ∗ with a representation v =
m
∑

k=1

x∗∗

k ⊗ y∗

k,

lim
n
〈Tn − T, v〉 = lim

n

m
∑

k=1

〈T ∗∗

n (x∗∗

k ) − T ∗∗(x∗∗

k ), y∗

k〉 = 0.

Note that X∗∗⊗Y ∗ is dense in X∗∗⊗̌εY
∗ = N (X, Y )∗. Therefore, lim

n
Tn = T weakly

in N (X, Y ). �

Recall that if either X∗ or Y ∗ has RNP then (X⊗̌εY )∗ = N (X, Y ∗) (see [6, Ch. I,

§ 4.1] or [2, p. 524]). Similarly to the proof of Proposition 1, we have a characteriza-

tion of weak∗ convergent sequences in N (X, Y ∗) as a dual space of X⊗̌εY .

Proposition 2. Suppose that either X∗ or Y ∗ has RNP. Let {Tn}∞1 be a bounded

sequence in N (X, Y ∗) and T ∈ N (X, Y ∗). Then lim
n

Tn = T weak∗ in N (X, Y ∗) if

and only if lim
n

Tn(x) = T (x) weak∗ in Y ∗ for each x ∈ X .

Recall that a Banach space X is said to have the Grothendieck property (or said

to be a Grothendieck space) if each weak∗ convergent sequence in X∗ is weakly

convergent.
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Proposition 3. Suppose that X and Y are Banach spaces with the Grothendieck

property such that either X∗ or Y ∗ has RNP, either X∗∗ or Y ∗∗ has AP, and

L(X∗, Y ∗∗) = K(X∗, Y ∗∗). Then X⊗̌εY has the Grothendieck property.

P r o o f. Recall that (X⊗̌εY )∗ = N (X, Y ∗). Take a sequence {Tn}∞1 in N (X,

Y ∗) such that lim
n

Tn = 0 weak∗ in N (X, Y ∗). Then {Tn}∞1 is a bounded sequence

in N (X, Y ∗). By Proposition 2, for each x ∈ X , lim
n

Tn(x) = 0 weak∗ in Y ∗. Since

Y has the Grothendieck property, lim
n

Tn(x) = 0 weakly in Y ∗. That is, for each

y∗∗ ∈ Y ∗∗, lim
n
〈Tn(x), y∗∗〉 = 0. Thus lim

n
T ∗

n(y∗∗) = 0 weak∗ in X∗. Since X has the

Grothendieck property, lim
n

T ∗

n(y∗∗) = 0 weakly in X∗. That is, for each x∗∗ ∈ X∗∗,

lim
n
〈x∗∗, T ∗

n(y∗∗)〉 = 0. So lim
n

T ∗∗

n (x∗∗) = 0 weakly in Y ∗. It follows from Proposi-

tion 1 that lim
n

Tn = 0 weakly in N (X, Y ∗) and hence, X⊗̌εY has the Grothendieck

property. �

Note that if Y has the Grothendieck property and Y ∗ has RNP then Y is reflexive

(see [3, p. 215]). Thus Proposition 3 is reformulated to the following theorem.

Theorem 4. Suppose that X is a Banach space with the Grothendieck property

and Y is a reflexive Banach space such that either X∗∗ or Y has AP and each contin-

uous linear operator from X∗ to Y is compact. Then X⊗̌εY has the Grothendieck

property.

González and Gutiérrez in [5] showed that ifX⊗̂πY has the Grothendieck property,

then either X or Y is reflexive. However, we do not know if the assumption that

X⊗̌εY has the Grothendieck property implies that either X or Y is reflexive.

The following lemma is a special case of Lemma 4 on page 259 of Dunford and

Schwartz’s book [4].

Lemma 5. Let {Pn}
∞

1
be an unconditional Schauder decomposition of a Banach

space X and let B be a subset of X . Then B is relatively compact if and only if

Pn(B) is relatively compact for each n ∈ N and

lim
n

sup

{∥

∥

∥

∥

∞
∑

i=n

Pi(x)

∥

∥

∥

∥

: x ∈ B

}

= 0.

Lemma 6. Suppose that X is a reflexive Banach space with an unconditional

FDD. If each bounded sequence in N (X, Y ) which converges in the weak operator

topology is weakly convergent in N (X, Y ), then each continuous linear operator

from X∗ to Y ∗ is compact.
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P r o o f. Let {Pn}∞1 be an unconditional Schauder decomposition of X such

that each Pn is of a finite rank. Take any S ∈ L(X∗, Y ∗). Let R = S∗|Y . Then

R∗ = S. To show that S is compact, we need only to show that R is compact.

Suppose that R is not compact, that is, R[BY ] is not a relatively compact subset

of X . By Lemma 5,

lim
n

sup

{∥

∥

∥

∥

∞
∑

i=n

Pi(R(y))

∥

∥

∥

∥

X

: y ∈ BY

}

6= 0.

Then there are ε0 > 0, yk ∈ BY for k ∈ N, and a subsequence n1 < n2 < . . . such

that
∥

∥

∥

∥

∞
∑

i=nk

Pi(R(yk))

∥

∥

∥

∥

X

> ε0, k = 1, 2, . . . .

Choose x∗

k ∈ BX∗ such that

(2)

∣

∣

∣

∣

∞
∑

i=nk

〈Pi(R(yk)), x∗

k〉

∣

∣

∣

∣

> ε0, k = 1, 2, . . . .

Define a linear functional z∗k on X by

(3) z∗k(x) =

〈

∞
∑

i=nk

Pi(x), x∗

k

〉

, ∀x ∈ X.

Then z∗k ∈ X∗ and by (1), ‖z∗k‖ 6 K. Let Tk = z∗k ⊗ yk. Then Tk ∈ N (X, Y ) and

‖Tk‖nuc 6 K. Moreover, for each x ∈ X and each y∗ ∈ Y ∗,

|〈Tk(x), y∗〉| =

∣

∣

∣

∣

〈 ∞
∑

i=nk

Pi(x), x∗

k

〉

· y∗(yk)

∣

∣

∣

∣

6 ‖y∗‖ · ‖yk‖ · ‖x
∗

k‖ ·

∥

∥

∥

∥

∞
∑

i=nk

Pi(x)

∥

∥

∥

∥

6 ‖y∗‖ ·

∥

∥

∥

∥

∞
∑

i=nk

Pi(x)

∥

∥

∥

∥

.

Thus {Tk}∞1 converges to 0 in the weak operator topology in N (X, Y ) and by hy-

pothesis, it converges to 0 weakly in N (X, Y ).

On the other hand, since X is reflexive and has an unconditional FDD, X∗ has AP

and so N (X, Y ) = X∗⊗̂πY . Thus Tk ∈ X∗⊗̂πY , too. Recall that S ∈ L(X∗, Y ∗) =
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(X∗⊗̂πY )∗. So lim
k
〈Tk, S〉 = 0. However, by (2) and (3) one has

|〈Tk, S〉| = |〈S(z∗k), yk〉| = |〈R∗(z∗k), yk〉|

= |〈z∗k, R(yk)〉| =

∣

∣

∣

∣

〈 ∞
∑

i=nk

Pi(R(yk)), x∗

k

〉∣

∣

∣

∣

> ε0

for each k ∈ N. This contradiction shows that R is compact and hence, S is compact.

�

Theorem 7. Suppose that X is a Banach space and Y is a reflexive Banach space

with an unconditional FDD. Then X⊗̌εY has the Grothendieck property if and only

if X has the Grothendieck property and each continuous linear operator from X∗

to Y is compact.

P r o o f. Suppose that X⊗̌εY has the Grothendieck property. Since X is com-

plemented in X⊗̌εY , X has the Grothendieck property. Let {Tn}
∞

1
be a bounded

sequence in N (Y, X∗) such that {Tn}∞1 converges to 0 in the weak operator topology

in N (Y, X∗). By Proposition 2, {Tn}
∞

1
converges to 0 weak∗ in N (Y, X∗). Note that

(X⊗̌εY )∗ = N (Y, X∗) and X⊗̌εY has the Grothendieck property. {Tn}∞1 converges

to 0 weakly in N (Y, X∗). It follows from Lemma 6 that each continuous linear oper-

ator from Y ∗ to X∗∗ is compact, which is equivalent to the fact that each continuous

linear operator from X∗ to Y is compact since Y is reflexive. �

Note that if Y is a reflexive Banach space with AP then K(X, Y ) = X∗⊗̌εY , and

note that each bounded linear operator from X∗∗ to Y is compact if and only if

each bounded linear operator from X to Y is compact. Thus we have the following

consequence.

Corollary 8. Suppose that X is a Banach space and Y is a reflexive Banach

space with an unconditional FDD. Then K(X, Y ) has the Grothendieck property if

and only if X∗ has the Grothendieck property and each continuous linear operator

from X to Y is compact.

If X and Y are reflexive Banach spaces, one of them has AP, and each continuous

linear operator from X∗ to Y is compact, then X⊗̌εY is reflexive (see [8] or [10, p. 85,

Theorem 4.21]) and hence, has the Grothendieck property. But right now we do not

have an example in which X⊗̌εY is not reflexive but has the Grothendieck property.

However, Theorem 7 provides us with more examples of Banach spaces without

the Grothendieck property. In fact, if X is an infinite-dimensional reflexive Banach

space and K is an infinite-dimensional compact Hausdorff space, then there is a non-

compact bounded linear operator from X∗ to C(K). Thus there is a non-compact
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bounded linear operator from C(K)∗ to X . If, in addition, X has an unconditional

FDD, then Theorem 7 informs us that C(K, X) = C(K)⊗̌εX does not have the

Grothendieck property even though C(K) has the Grothendieck property (in this

case, K is a Stonean space). As examples, C(K, ℓp), C(K, Lp[0, 1]), ℓ∞⊗̌εℓp, and

ℓ∞⊗̌εLp[0, 1] (1 < p < ∞) do not have the Grothendieck property.
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to revise the paper.
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