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K Y BE R NE T IK A — VO L UM E 4 7 ( 2 0 1 1 ) , NU MB E R 1 , P AGE S 6 0 – 7 3

ORTHOCOMPLEMENTED DIFFERENCE LATTICES

WITH FEW GENERATORS

Milan Matoušek and Pavel Pták

The algebraic theory of quantum logics overlaps in places with certain areas of cyber-
netics, notably with the field of artificial intelligence (see, e. g., [19, 20]). Recently an effort
has been exercised to advance with logics that possess a symmetric difference ([13, 14])
– with so called orthocomplemented difference lattices (ODLs). This paper further con-
tributes to this effort. In [13] the author constructs an ODL that is not set-representable.
This example is quite elaborate. A main result of this paper somewhat economizes on this
construction: There is an ODL with 3 generators that is not set-representable (and so the
free ODL with 3 generators cannot be set-representable). The result is based on a specific
technique of embedding orthomodular lattices into ODLs. The ODLs with 2 generators
are always set-representable as we show by characterizing the free ODL with 2 generators
– this ODL is MO3 × 24.

Keywords: orthomodular lattice, quantum logic, symmetric difference, Gödel’s coding,
Boolean algebra, free algebra

Classification: 06C15, 03G12, 81B10

1. INTRODUCTION. BASIC NOTIONS

The notion of ODL has been introduced in [13] and further studied in [14] and [15].
The axiomatic setup of ODLs came into existence by taking an abstract form of set
theoretic symmetric difference as a primitive operation (see Def. 1.1). As it turns
out, an ODL is automatically orthomodular and therefore it forms an orthomodular
lattice (an OML). This situates the variety of ODLs between OMLs and Boolean
algebras. In a potential application, the ODLs add to the instances considered
previously as quantum logics (see [4, 5, 6, 7, 10, 17, 18, 19] etc.). In this paper
we find a minimal number of generators of an ODL that is not set-representable.
This number is 3. We shall make use of the Greechie’s paste job for OMLs together
with certain techniques of embeddings of OMLs into ODLs. An acquitance with the
theory of OMLs is assumed in places (see, e. g., [1, 12, 19] for basics on OMLs). For
some specific properties of ODLs, let us refer the reader to [13].

Let us first recall the definition of an ODL.

Definition 1.1. Let L = (X,∧,∨,⊥ , 0, 1,△), where (X,∧,∨,⊥ , 0, 1) is an ortho-
complemented lattice (abbr., an OCL) and △ : X2 → X is a binary operation.
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Then L is said to be an orthocomplemented difference lattice (abbr., an ODL) if the
following identities hold in L:

(D1) x △ (y △ z) = (x △ y) △ z,

(D2) x △ 1 = x⊥, 1 △ x = x⊥,

(D3) x △ y ≤ x ∨ y.

Obviously, the class of all ODLs forms a variety. We will denote it by ODL.

Let L = (X,∧,∨,⊥ , 0, 1,△) be an ODL. Then the OCL (X,∧,∨,⊥ , 0, 1) will be
denoted by Lsupp and called the support of L. Occasionally, the ODL L will be
identified with the couple (Lsupp,△). Let us list basic properties of ODLs as we
shall use them in the sequel.

Proposition 1.2. Let L be an ODL and let us suppose that x, y ∈ L. Then the
following statements hold true:

(1) x △ 0 = x, 0 △ x = x,

(2) x △ x = 0,

(3) x △ y = y △ x,

(4) x △ y⊥ = x⊥ △ y = (x △ y)⊥,

(5) x⊥ △ y⊥ = x △ y,

(6) x △ y = 0 ⇔ x = y,

(7) (x ∧ y⊥) ∨ (y ∧ x⊥) ≤ x △ y ≤ (x ∨ y) ∧ (x ∧ y)⊥.

P r o o f . Let us first observe that the property (D2) yields 1 △ 1 = 1⊥ = 0. Let us
verify the properties (1) – (7).

(1) x △ 0 = x △ (1 △ 1) = (x △ 1) △ 1 = x⊥ △ 1 = (x⊥)⊥ = x. Further, 0 △ x =
(1 △ 1) △ x = 1 △ (1 △ x) = 1 △ x⊥ = (x⊥)⊥ = x .

(2) Let us first show that x⊥ △ x⊥ = x △ x. We consecutively obtain x⊥ △ x⊥ =
(x △ 1) △ (1 △ x) = (x △ (1 △ 1)) △ x = (x △ 0) △ x = x △ x. Moreover, we have
x△x ≤ x as well as x△x = x⊥ △x⊥ ≤ x⊥. This implies that x△x ≤ x∧x⊥ = 0.

(3) x△y = (x△y)△0 = (x△y)△ [(y△x)△ (y△x)] = x△ (y△y)△x△ (y△x) =
x △ 0 △ x △ (y △ x) = x △ x △ (y △ x) = 0 △ (y △ x) = y △ x.

(4) x△ y⊥ = x△ (y△ 1) = (x△ y)△ 1 = (x△ y)⊥. The equality x⊥△ y = (x△ y)⊥

follows from x △ y⊥ = (x △ y)⊥ by applying the equality (3).

(5) Using (4) we obtain x⊥ △ y⊥ = (x⊥ △ y)⊥ = (x △ y)⊥⊥ = x △ y.

(6) If x = y, then x△y = 0 by the condition (2). Conversely, suppose that x△y = 0.
Then x = x △ 0 = x △ (y △ y) = (x △ y) △ y = 0 △ y = y.

(7) The property (D3) together with the properties (4), (5) imply that x△y ≤ x∨y,
x △ y ≤ x⊥ ∨ y⊥ = (x ∧ y)⊥, x ∧ y⊥ ≤ x △ y, x⊥ ∧ y ≤ x △ y. �
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Theorem 1.3. Let L be an ODL. Then its support Lsupp is an OML.

P r o o f . Suppose that x, y ∈ L, x ≤ y, y ∧ x⊥ = 0. Let us prove that x = y. Since
x ≤ y, we conclude that (x ∧ y⊥) ∨ (y ∧ x⊥) = y ∧ x⊥ = 0 and (x ∨ y) ∧ (x ∧ y)⊥ =
y ∧ x⊥ = 0. By Prop. 1.2, (6), (7) we see that x △ y = 0 and therefore x = y. �

In view of the above proposition, all notions of OMLs can be referred to in ODLs,
too. In particular, we shall say that two elements x, y in an ODL L commute (in
symbols, x C y) if they commute in Lsupp. Similarly, we shall denote by C(L) the
set of all elements of L that commute with all elements of L. Let us call C(L) the
centre of L. It can be easily shown that C(L) is a subalgebra of L ([13]).

Let us suppose that B is a Boolean algebra. Let us denote by ∆B the standard
symmetric difference on B. Thus, if x, y ∈ B then x ∆B y = (x ∧ y⊥) ∨ (y ∧ x⊥) =
(x ∨ y) ∧ (x ∧ y)⊥.

Proposition 1.4. Let L be an ODL. Let x, y ∈ L with x C y. Then x △ y =
(x ∧ y⊥) ∨ (y ∧ x⊥) = (x ∨ y) ∧ (x ∧ y)⊥.
A consequence: If B is a Boolean sub-algebra of L and x1, . . . , xn ∈ B, then x1 △
· · · △ xn = x1∆B · · ·∆Bxn.

P r o o f . According to Prop. 1.2, (7), we have the inequalities (x∧ y⊥)∨ (y∧x⊥) ≤
x △ y ≤ (x ∨ y) ∧ (x ∧ y)⊥. Since the elements x, y commute, the left-hand side
of the previous inequality coincides with the right-hand side and therefore x △ y =
(x ∧ y⊥) ∨ (y ∧ x⊥) = (x ∨ y) ∧ (x ∧ y)⊥. �

Let us exhibit some simple examples of ODLs. Firstly, each Boolean algebra can
be understood as an ODL which the following proposition shows.

Proposition 1.5. Let B be a BA. Then there exists exactly one mapping △ :
B × B → B which fulfils the conditions (D1), (D2) and (D3) of Def. 1.1.

P r o o f . To prove the existence, take for the operation △ the standard symmetric
difference ∆B in B. The properties (D1), (D2) and (D3) of Def. 1.1 are then obviously
fulfilled.

Let us prove the uniqueness of △. Let △1 : B×B → B be a mapping that fulfils
the conditions (D1), (D2) and (D3). So the couple (B,△1) is an ODL. If x, y ∈ B,
then x C y, and therefore x △1 y = x ∆B y = x △ y (Prop. 1.4). �

Example 1.6. Let MO3 be the OML obtained as the horizontal sum of three 4-
element BA’s (see, e. g., [12]). Write MO3 = {0, 1, x, x⊥, y, y⊥, z, z⊥}. Then one can
easily show that there is exactly one mapping △ : MO3 × MO3 → MO3 such that
x △ y = z and (MO3,△) is an ODL. The ODL obtained in this way will again be
denoted by MO3. Obviously, the ODL MO3 is generated by the elements x, y. (It
might be noted that MOk can be viewed as an ODL exactly when k = 2n − 1, [13].
We shall only use MO3 in this paper.)

Proposition 1.7. Let L be an ODL and let x, y ∈ L. Then
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(a) x ∨ (x △ y) = x ∨ y,

(b) x ∧ (x △ y) = x ∧ y⊥.

P r o o f . Before verifying the equalities, recall the convention of the preference of
△ over the operations ∧ and ∨ (thus, for instance, x∨ y △ z means x∨ (y △ z) etc.).
(a) The inequality x∨x△y ≤ x∨y is obvious. We have to show that x∨y ≤ x∨x△y.
But x ≤ x ∨ x △ y and therefore we need to check y ≤ x ∨ x △ y. According to
(D3), we have x ∨ x △ y ≥ x △ (x △ y) = y. (It is worthwhile observing that this
equality can be viewed as a strengthening of the condition (D3) from the definition
of ODL’s.)

(b) The equality follows from (a) via the following calculation: x∧ x△ y = (x∧ x△
y)⊥⊥ = (x⊥ ∨ x⊥ △ y)⊥ = (x⊥ ∨ y)⊥ = x ∧ y⊥. �

Proposition 1.8. Let L be an ODL and let x, y ∈ L. Then x ⊥ y ⇔ x△ y = x∨ y

(where x ⊥ y stands for x ≤ y⊥).

P r o o f . Let us suppose that x ⊥ y. Then both sides in Prop. 1.2, (7) equal to
x ∨ y, and therefore x△ y = x∨ y. Conversely, if x △ y = x ∨ y, then Prop. 1.7, (b)
implies that x ∧ (x ∨ y) = x ∧ y⊥. Thus, x = x ∧ y⊥, and this gives us x ≤ y⊥. �

We shall need the following simple fact on OMLs.

Lemma 1.9. Let L be an OML. Let x, y, x1, x2 ∈ L and let y = x1 ∨ x2, x1 ≤ x,
x2 ≤ x⊥. Then x C y and x1 = y ∧ x, x2 = y ∧ x⊥.

P r o o f . Since x1 ≤ x and x2 ≤ x⊥, we see that x1 ≤ x ≤ x⊥
2 . Thus, the elements

x1, x2, x are mutually commutative. As known, x C (x1 ∨ x2) and therefore x C y.
Moreover,

y ∧ x = (x1 ∨ x2) ∧ x = (x1 ∧ x) ∨ (x2 ∧ x) = x1 ∨ 0 = x1, and
y ∧ x⊥ = (x1 ∨ x2) ∧ x⊥ = (x1 ∧ x⊥) ∨ (x2 ∧ x⊥) = 0 ∨ x2 = x2. �

Proposition 1.10. Let L be an ODL. Let x, y, z ∈ L with x C y and x C z. Then
x C (y △ z) and x ∧ (y △ z) = (x ∧ y) △ (x ∧ z).

P r o o f . The commutativity of the pair x C y and x C z yields the equations
y = (y ∧ x) ∨ (y ∧ x⊥), z = (z ∧ x) ∨ (z ∧ x⊥). Since (y ∧ x) ⊥ (y ∧ x⊥) and
(z ∧ x) ⊥ (z ∧ x⊥), we see by Prop. 1.8 that y = (y ∧ x) △ (y ∧ x⊥) and z =
(z∧x)△(z∧x⊥). But we also have y△z = [(y∧x)△(y∧x⊥)]△ [(z∧x)△(z∧x⊥)] =
[(y ∧ x) △ (z ∧ x)] △ [(y ∧ x⊥) △ (z ∧ x⊥)]. Let us write x1 = (y ∧ x) △ (z ∧ x),
x2 = (y ∧ x⊥) △ (z ∧ x⊥). Then x1 ≤ (y ∧ x) ∨ (z ∧ x) ≤ x. Analogously, x2 ≤ x⊥.
This implies that x1 ⊥ x2. By Prop. 1.8, y △ z = x1 ∨ x2. The proof is completed
by using Lemma 1.9. �

Let us take up the intervals in ODLs. We will need them for the decomposition
property with respect to a central element. Consider first the situation in OMLs.
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Let K be an OML and let a ∈ K. Let us write [0, a]K = {x ∈ K; x ≤ a}. As
known, the interval [0, a] constitutes an OML. We will denote it by Ka. Let us
shortly recall the construction of Ka (see, for example, [12], p. 20): If x, y ∈ [0, a],
then x ∧ y ∈ [0, a] and x ∨ y ∈ [0, a]. The element 0, resp. a, is a least, resp. a
greatest, element of Ka. The orthocomplement of x in Ka, x⊥a , is defined by setting
x⊥a = x⊥K ∧ a. It can be easily seen that Ka = ([0, a],∧,∨,⊥a , 0, a) is an OML.

Let L be an ODL and let a ∈ L. If x, y ∈ [0, a] then x△y ∈ [0, a]. Let us consider
the algebra La = ([0, a],∧,∨,⊥a , 0, a,△) = ((Lsupp)

a,△).

Proposition 1.11. Let L be an ODL and let a ∈ L. Then the algebra La is again
an ODL. Moreover, if a ∈ C(L), then the mapping πa : L → [0, a] defined by putting
πa(x) = x ∧ a is a surjective homomorphism of L onto La.

P r o o f . In order for La to be an ODL, it is sufficient to check that the conditions
(D1), (D2) and (D3) of Def. 1.1 hold in La. The conditions (D1) and (D3) can be
easily verified . It remains to check the condition (D2). For that, suppose x ∈ [0, a].
Then x △La 1La = x △ a. Since x ≤ a, we have xCa and Prop. 1.4 implies that
x△a = a∧x⊥ = x⊥a . The equality 1La△La x = x⊥a follows from the commutativity
of △.

Suppose further that a ∈ C(L). Then the mapping πa is an OML-homomorphism
Lsupp → (La)supp (see [12], p. 20). It remains to show that the mapping πa preserves
the operation △. Suppose that x, y ∈ L. Then by Prop. 1.10 we consecutively obtain
πa(x △L y) = (x △L y) ∧ a = (x ∧ a)△L (y ∧ a) = πa(x) △La πa(y). This completes
the proof. �

In the final auxiliary result, let us show that an ODL can be decomposed with
the help of a central element in the way analogous to the situation known in OMLs.

Proposition 1.12. Suppose that L is an ODL and a ∈ C(L). Then the mapping
i : L → [0, a] × [0, a⊥] defined by putting i(x) = (πa(x), πa⊥(x)) is an isomorphism

of L onto La × La⊥

.

P r o o f . The mapping i is an isomorphism between the OMLs Lsupp and (La)supp×

(La⊥

)supp (see again [12], p. 20). Since both the mappings πa, πa⊥ preserve the
operation △, so does the mapping i and the proof is done. �

In the conclusion of preliminaries, let us recall an important class of ODLs –
the ODLs that are set-representable. They form a variety ([13]) and represent some
‘nearly Boolean’ ODLs. Though the name itself suggests their definition, let us recall
it in more formal terms. Let X be a set and let D be a family of subsets of X such
that

(1) X ∈ D,

(2) the family D forms a lattice with respect to the inclusion relation, and

(3) D is closed under the formation of the set symmetric difference.
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Obviously, D constitutes an ODL. Let us call it concrete. If L is an ODL that is
isomorphic with a concrete one, then L is said to be set-representable.

2. EACH ODL WITH TWO GENERATORS IS SET-REPRESENTABLE
(A CHARACTERIZATION OF THE FREE ODL WITH TWO
GENERATORS)

In analysing structural properties of varieties, free objects play a fundamental role
([3]). We show in this section that the free ODL on 2 generators coincides with
24 × MO3 (where, as usual, 24 stands for the Boolean algebra with 4 atoms). Since
the ODL 24 × MO3 is set-representable, and since a homomorphic image of a set-
representable ODL is again set-representable ([13]), we see that any ODL with two
generators is set-representable.

In order to characterize the free ODL with 2 generators, we shall need two auxil-
iary results. For the sake of a transparent formulation of these results, let us assume
that the generators of the Boolean algebra 24 are elements x1, y1 and the generators
of the ODL MO3 are elements x2, y2 (compare with Example 1.6 – we have renamed
x, y of Example 1.6 with x2, y2).

Proposition 2.1. Let L be an ODL and let a, b ∈ L. Let us suppose that a ∧ b =
a ∧ b⊥ = a⊥ ∧ b = a⊥ ∧ b⊥ = 0. Then there exists a homomorphism h : MO3 → L

with h(x2) = a, h(y2) = b.

P r o o f . Let us denote z2 = x2 △ y2 in MO3. Let us set h(0MO3
) = 0L, h(1MO3

) =
1L, h(x2) = a, h(x⊥

2 ) = a⊥, h(y2) = b, h(y⊥
2 ) = b⊥, h(z2) = a△b and h(z⊥2 ) = a△b⊥.

The definition of h implies that h preserves the least and greatest element. Also,
the operations ⊥ and △ are obviously preserved. Let us check that h preserves
the operation ∧, too. Suppose therefore that x, y ∈ MO3 and let us ask whether
or not we have h(x ∧ y) = h(x) ∧ h(y). If x, y commute in MO3, this equality is
obvious. Suppose that x, y do not commute. Without any loss of generality, it is
sufficient to consider the images of the elements x2 ∧ y2 and x2 ∧ z2. We firstly see
that h(x2 ∧ y2) = h(x2 ∧ z2) = h(0MO3

) = 0L, and further we have h(x2) ∧ h(y2) =
a ∧ b = 0L as well as, by Prop. 1.7, h(x2) ∧ h(z2) = a ∧ (a △ b) = a ∧ b⊥ = 0L. The
preservation of the operation ∨ is a simple consequence of de Morgan’s law. The
proof is complete. �

Proposition 2.2. Let L be an ODL with two generators s, t. Let us set a = (s ∧
t) ∨ (s ∧ t⊥) ∨ (s⊥ ∧ t) ∨ (s⊥ ∧ t⊥). Then a ∈ C(L) and there exist homomorphisms

g : 24 → La, h : MO3 → La⊥

such that

g(x1) = πa(s), g(y1) = πa(t),

h(x2) = πa⊥(s), h(y2) = πa⊥(t).

P r o o f . It is obvious that the element s∧ t commutes with both s and t. Since s, t

generate the ODL L, we see that s∧ t ∈ C(L). Analogously, all the elements s∧ t⊥,
s⊥ ∧ t and s⊥ ∧ t⊥ belong to C(L). As a consequence, (s ∧ t) ∨ (s ∧ t⊥) ∨ (s⊥ ∧ t) ∨
(s⊥ ∧ t⊥) = a ∈ C(L).
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Let us go on with the proof. Since the elements s, t generate L and since πa is a
surjective homomorphism onto La, it follows that the elements πa(s), πa(t) generate
the ODL La. Making use of the Foulis–Holland theorem ([12]) we infer that

πa(s) = s ∧ a = (s ∧ t) ∨ (s ∧ t⊥),

πa(t) = t ∧ a = (s ∧ t) ∨ (s⊥ ∧ t).

As a consequence of the above identities we see that the elements πa(s), πa(t) com-
mute and therefore La is a Boolean algebra. Since 24 is a free Boolean algebra on
the set {x1, y1}, the existence of the homorphism g is evident.

Let us take up the construction of the morphism h. It is sufficient to check
(Prop. 2.1) that
πa⊥(s)∧πa⊥(t)=πa⊥(s)∧(πa⊥(t))⊥=(πa⊥(s))⊥∧πa⊥(t)=(πa⊥ (s))⊥∧(πa⊥(t))⊥=0.
Let us prove that πa⊥(s) ∧ (πa⊥(t))⊥ = 0, the other equalities can be derived anal-

ogously. Since πa⊥ : L → La⊥

preserves the operation ⊥, we see that (πa⊥(t))⊥ =

(πa⊥(t))
⊥

La⊥ = πa⊥(t⊥L). As a consequence we obtain

πa⊥(s) ∧ (πa⊥(t))⊥ = πa⊥(s) ∧ πa⊥(t⊥L) = πa⊥(s ∧ t⊥L) = (s ∧ t⊥) ∧ a⊥ = (s ∧
t⊥) ∧ (s⊥ ∨ t⊥) ∧ (s⊥ ∨ t) ∧ (s ∨ t⊥) ∧ (s ∨ t) = (s ∧ t⊥) ∧ (s⊥ ∨ t) = (s ∧ t⊥) ∧ (s ∧
t⊥)⊥ = 0. �

Theorem 2.3. Suppose that the elements x1, y1 are generators of the free Boolean
algebra 24 and suppose that the elements x2, y2 are generators of the ODL MO3.
Then the product 24 ×MO3 is a free ODL on the set {x, y}, where x = (x1, x2) and
y = (y1, y2).

P r o o f . Write F = 24 × MO3. Let us first show that the set {x, y} generates
F . Let us denote by S the subalgebra of F generated by {x, y}. Suppose that
a ∈ F . Then a = (a1, a2) = (a1, 0) ∨ (0, a2), where a1 ∈ 24 and a2 ∈ MO3. We
therefore have to show that all elements of the form (a1, 0), (0, a2) lie in S. Since
x, x⊥, y, y⊥ are elements of S, so are the elements x ∧ y, x ∧ y⊥, x⊥ ∧ y, x⊥ ∧ y⊥.
Taking into account that x2 ∧ y2 = x2 ∧ y⊥

2 = x⊥
2 ∧ y2 = x⊥

2 ∧ y⊥
2 = 0, we infer

that all elements (x1 ∧ y1, 0), (x1 ∧ y⊥
1 , 0), (x⊥

1 ∧ y1, 0), (x⊥
1 ∧ y⊥

1 , 0) belong to S. But
x1 ∧ y1, x1 ∧ y⊥

1 , x⊥
1 ∧ y1, x⊥

1 ∧ y⊥
1 are precisely all atoms of the Boolean algebra

24. This implies that (a1, 0) ∈ S. As a consequence, (a1, 1) ∈ S. Further, observing
(0, x2) = (x⊥

1 , 1) ∧ (x1, x2), we see that (0, x2) ∈ S. Analogously, (0, y2) ∈ S and,
also, (0, z2) = (0, x2) △ (0, y2) ∈ S. We have shown that S = F .

In order to show that F is free, let K be an ODL and let f0 : {x, y} → K be a
mapping. We have to show that f0 can be extended as a homomorphism f : F → K.
Write s = f0(x), t = f0(y) and suppose that L is the subalgebra of K generated
by the set {s, t}. Set a = (s ∧ t) ∨ (s ∧ t⊥) ∨ (s⊥ ∧ t) ∨ (s⊥ ∧ t⊥). By Prop. 2.2
we have that a ∈ C(L) and, moreover, there exist homomorphisms g : 24 → La,

h : MO3 → La⊥

such that
g(x1) = πa(s), g(y1) = πa(t),
h(x2) = πa⊥(s), h(y2) = πa⊥(t).

Let i : L → La×La⊥

be the isomorphism of Prop. 1.12. Let us consider the mapping
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g × h defined by setting (g × h)(p, q) = (g(p), h(q)), where (p, q) ∈ 24 × MO3.

Obviously, g × h : 24 × MO3 → La × La⊥

is a homomorphism. Let us set f =
(g×h)◦ i−1, i. e. for any (p, q) ∈ 24×MO3 let us set f(p, q) = i−1(g(p), h(q)). Then
f : 24×MO3 → L is a homomorphism and since L is a subalgebra of K, we see that
f : 24 × MO3 → K is a homomorphism, too. Moreover, f(x) = i−1(g(x1), h(x2)) =
i−1(πa(s), πa⊥(s)) = i−1(i(s)) = s = f0(x). Analogously, f(y) = f0(y). We have
verified that f extends f0 and the proof is complete. �

It should be noted in the conclusion of this paragraph that the result of Thm. 2.3
has already been obtained in [11] (a student thesis under the supervision of the
authors of this paper). However, the methods used here differ considerably from
those of [11] and allow us to prove the result in a simpler way.

3. THERE IS AN ODL WITH THREE GENERATORS THAT IS NOT SET-
REPRESENTABLE (SO THE FREE ODL WITH THREE GENERATORS
IS NOT SET-REPRESENTABLE)

In this section we develop an embedding technique of OMLs into ODLs. This will
allow us to prove the assertion stated in the heading of this paragraph. Let us start
with a few conventions.

Let N stand for the set of all natural numbers, N = {0, 1, 2, . . .}. Let B be the
Boolean algebra of all finite and cofinite subsets of N . Let us denote by ∆ the stan-
dard set-theoretic difference on B. In considering countable ODLs we can visualise,
with the help of B, the operation △ set-theoretically. The following proposition
formalizes it.

Proposition 3.1. If L = (X,∧,∨,⊥ , 0, 1,△) is at most countable ODL, then the
algebra (X,△, 0, 1) can be embedded into the algebra (B, ∆, 0B, 1B), where 0B = ∅,
1B = N .

P r o o f . Let us choose a Boolean algebra B′ such that B′ is a sub-algebra of B
and card(B′) = card(X). Obviously, the algebra (B′, ∆, 0B, 1B) is a sub-algebra
of the algebra (B, ∆, 0B, 1B). Moreover, the study of ultrafilters in (X,△, 0, 1)
made in [13], Prop. 7.7 implies that the algebras (B′, ∆, 0B, 1B) and (X,△, 0, 1)
are isomorphic. �

The above result will be frequently used in the sequel. First, let us agree on
a convention. In order to avoid rather inconvenient referring to finite and cofinite
subsets of N , let us make use of the standard coding of finite subsets of N by natural
numbers. If A is finite, A ⊂ N , let us assign to A the number k(A) as follows:
k(∅) = 0, k({a1, . . . , an}) = 2a1 + . . . + 2an . Thus, so defined k is nothing but the
famous Gödel’s coding. As known, the assignment k is injective. Let us choose some
new elements 0̄, 1̄, 2̄, . . . (intuitively, these elements play a role of certain copies of
0, 1, 2, . . .). For any cofinite B, B = N \ A with A finite, let us set k(B) = k(A).
Denoting by D∞ the set {0, 0̄, 1, 1̄, 2, 2̄, . . .}, we see that k is a bijection of B onto
D∞. Further, let us introduce an operation, ⊕, on the set D∞ by setting x ⊕ y =
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k(k−1(x) ∆ k−1(y)). The following two assertions bring out the properties of the
operation ⊕. The proofs are not difficult and we omit them.

Lemma 3.2. The mapping k is an isomorphism of the algebra (B, ∆, 0B, 1B) onto
the algebra (D∞,⊕, 0, 0̄).

Lemma 3.3. If n ∈ N , then the set {0, 0̄, 1, 1̄, . . . , 2n − 1, 2n − 1} is a subalgebra of
the algebra (D∞,⊕, 0, 0̄).

We shall utilize the following mapping ⋆ : D∞ → D∞. If n ∈ N , we set n⋆ = n̄ and
(n̄)⋆ = n.

Lemma 3.4. If x ∈ D∞, then x⋆ = x ⊕ 0̄ = 0̄ ⊕ x.

P r o o f . We have x⊕0̄ = k(k−1(x) ∆ k−1(0̄)) = k(k−1(x) ∆ N) = k(N \k−1(x)). If
x = n, then k(N \k−1(x)) = k(k−1(x)) = x̄ = x⋆. Alternatively, suppose that x = n̄.
Take a set A such that k(A) = n. We then see that x = n̄ = k(A) = k(N \ A), i. e.
k−1(x) = N \ A. Consequently, k(N \ k−1(x)) = k(N \ (N \ A)) = k(A) = n = x⋆.

Since ⊕ is commutative, we infer that 0̄ ⊕ x = x⋆ and this completes the
proof. �

The objective of the following consideration is to show that mappings into D∞

allow us to embed certain OMLs into ODLs. Let us first introduce a few new notions.

Definition 3.5. Let K be an OML and let L be an ODL. Let us agree to write
K ≪ L if K is a sub-OML of Lsupp and a △ b ∈ K for any a, b ∈ K with a ∨ b < 1.

Lemma 3.6.

(1) Let K be an OML and let L be an ODL. Let us suppose that there is an OML
M such that Lsupp is a horizontal sum of OMLs K and M . Then K ≪ L.

(2) Let L be an ODL and let K be a sub-ODL of L. Then Ksupp ≪ L.

P r o o f . It is routine and we omit it. �

Let K be an OML and let Bl(K) be the set of all blocks (= the set of all maximal
Boolean subalgebras) of K. Let At(K) stand for the set of all atoms of K. Let
us denote by OML8 the class of all OMLs K such that card(B) = 8 for any B ∈
Bl(K). So, for instance, each horizontal sum of 8-element Boolean algebras belongs
to OML8 and so does the projection lattice L(R3). More involved examples will be
encountered in the sequel.

Let K ∈ OML8 and let p, q ∈ At(K). Let us write p ≈ q provided p 6= q and
p C q. Further, let us write p ∼ q if there exists an r ∈ At(K) such that p C r and
r C q and, moreover, p does not commute with q.

Lemma 3.7. Let K ∈ OML8 and let p, q ∈ At(K) with p ∼ q. Let r ∈ At(K) such
that r C p and r C q. Then r = p⊥ ∧ q⊥.
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P r o o f . Since p does not commute with q, we have p 6= q. Further, the element
r ∈ At(K) with r C p and r C q must be different from both p and q. Since p C r

and p 6= r we see that r ≤ p⊥. For an analogous reason, r ≤ q⊥. As a result,
r ≤ p⊥ ∧ q⊥ < p⊥. We infer that r = p⊥ ∧ q⊥ and this completes the proof. �

Definition 3.8. Let K ∈ OML8 be finite and let l : At(K) → D∞ be a mapping.
We say that l is a labelling of the atoms in K if

(1) for any pair a, b ∈ At(K) with a 6= b we have l(a) 6= l(b), l(a) 6= l(b)⋆,

(2) for any B ∈ Bl(K) such that At(B) = {a, b, c} we have l(a) ⊕ l(b) ⊕ l(c) = 0̄,

(2) for any pair a, b ∈ At(K) with a ∼ b there is an s ∈ At(K) such that s ≈ a⊥∧b⊥

and l(s) = l(a) ⊕ l(b).

Before justifying this definition in the next theorem, let us explicitely formulate the
following simple fact.

Lemma 3.9. Suppose that l is a labelling of the atoms of K and suppose that
a ∈ At(K). Then l(a) 6∈ {0, 0̄}.

P r o o f . Let B be a block in K with a ∈ B. Let At(B) = {a, b, c}. Then l(a) ⊕
l(b) ⊕ l(c) = 0̄. If l(a) = 0, then l(b) ⊕ l(c) = 0̄. This means that l(b) = l(c)⋆ which
is absurd. If l(a) = 0̄, then l(b) ⊕ l(c) = 0. This means that l(b) = l(c) which is
again absurd. �

Theorem 3.10. Let K ∈ OML8 be finite. Then the following two statements are
equivalent:

(1) There is a finite ODL, L, such that K ≪ L,

(2) there is a labelling of the atoms of K.

P r o o f . Suppose first that there is a finite ODL, L, such that K ≪ L. Then
there is an embedding, f , of the algebra (L,△, 0, 1) into the algebra (D∞,⊕, 0, 0̄)
(Prop. 3.1 and Lemma 3.2). Let l be the restriction of f to the set At(K). In order
to show that l is a labelling, we are to verify three conditions.

(1) Suppose that a, b ∈ At(K) with a 6= b. Then a 6= b⊥ and the rest follows from
the injectivity of f .

(2) Let B ∈ Bl(K). Write At(B) = {a, b, c}. Then a ∆B b ∆B c = 1. Since B is a
Boolean sub-algebra of L we have a △ b △ c = a ∆B b ∆B c (Prop. 1.4). It means
that a △ b △ c = 1, and therefore f(a) ⊕ f(b) ⊕ f(c) = 0̄.

(3) Suppose that a, b ∈ At(K) with a ∼ b. Obviously, a ∨ b < 1. Set s = a △ b ∈ L.
Then s ∈ K (compare the Def. 3.5). If s = a∨ b, then a ⊥ b in view of a∨ b = a△ b

(Prop. 1.8). This is a contradiction. If s = 0, then a = b and this is again a
contradiction. Summarizing the previous considerations, we conclude that 0 < s <

a ∨ b. And this implies that s ∈ At(K). Since s ≤ a ∨ b, we have s C (a ∨ b) and
therefore s C (a⊥ ∧ b⊥). If s = a⊥ ∧ b⊥, then (a ∨ b)⊥ ≤ a ∨ b which cannot be the
case since this would imply a ∨ b = 1. We conclude that s ≈ a⊥ ∧ b⊥ and therefore
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l(s) = f(s) = f(a△ b) = f(a)⊕ f(b) = l(a)⊕ l(b). So the implication (1) ⇒ (2) has
been verified.

Conversely, assume that there is a labelling l : At(K) → D∞. We can suppose
that K ∩ D∞ = ∅. Choose an n, n ∈ N , such that l[At(K)] ⊆ {1, 1̄, 2, 2̄, . . . , 2n −
1, 2n − 1}. Rewrite the set {1, 1̄, 2, 2̄, . . . , 2n−1, 2n − 1}\{l(a), l(a)⋆; a ∈ At(K)} as
{i1, i1, i2, i2, . . . , im, im}. Let M be the copy of MOm, where M = {0, 0, i1, i1, i2, i2,
. . . , im, im} under the understanding of ik = i⊥k , 1 ≤ k ≤ m. Consider the horizontal
sum K with M and denote it by L′. It remains to show that there is an ODL L

such that Lsupp = L′.
Let e : L′ → {0, 0̄, 1, 1̄, . . . , 2n − 1, 2n − 1} be the mapping that is defined as

follows:

e(0L′) = 0, e(1L′) = 0̄,

e(a) = l(a), e(a⊥) = l(a)⋆ for a ∈ At(K),

and e acts as identity on {i1, i1, i2, i2, . . . , im, im}.

Obviously, e is a bijection of L′ onto {0, 0̄, 1, 1̄, . . . , 2n − 1, 2n − 1}. Let us set, for
x, y ∈ L′, x △ y = e−1(e(x) ⊕ e(y)) and verify that L = (L′,△) is an ODL.

The associativity as well as the commutativity follow immediately from the alge-
bra isomorphism of (L′,△) on ({0, 0̄, 1, 1̄, . . . , 2n−1, 2n − 1},⊕). Further, x△1L′ =
e−1(e(x)⊕e(1L′)) = e−1(e(x)⊕ 0̄) = e−1(e(x)⋆). Consider now the possibilities for x

in order. If x ∈ K, then e−1(e(x)⋆) = e−1(l(x)⋆) = e−1(l(x⊥)) = e−1(e(x⊥)) = x⊥.
If x = ik, then x △ 1L′ = e−1(e(ik)⋆) = e−1(i⋆k) = e−1(ik)) = ik = i⊥k . Finally,

if x = ik, then x △ 1L′ = e−1(e(ik)⋆) = e−1(ik
⋆
) = e−1(ik) = ik = ik

⊥
. Thus,

x △ 1L′ = x⊥ for any x ∈ L′.
It remains to check the last axiom of ODL’s, x △ y ≤ x ∨ y. Let x, y ∈ L′. If

x∨ y = 1, there is nothing to check. If x = y, then x△ y = 0L′ and the inequality in
question is clear. Let us finally suppose that x ∨ y < 1 with x 6= y. Then x, y ∈ K.
Let us discuss the possibilities for x, y ∈ K which may occur.

First, suppose that x C y. Let us choose a block B, B ∈ Bl(K) such that x, y ∈ B.
Then either both x, y are atoms or not. In the former case, when At(B) = {x, y, z},
we have l(x)⊕ l(y)⊕ l(z) = 0̄. It means that x△ y = e−1(e(x)⊕ e(y)) = e−1(l(x)⊕
l(y)) = e−1(l(z)⋆) = e−1(e(z⊥)) = z⊥ = x ∨ y. In the latter case, when at least
one of x and y is not an atom, we have x 6= y and x ∨ y < 1. Thus, exactly one
of x and y is a coatom. Suppose, for instance, that x is an atom and y a coatom.
Then x ≤ y. Suppose that At(B) = {x, y⊥, z}. Then l(x) ⊕ l(y⊥) ⊕ l(z) = 0̄ and
therefore l(x) ⊕ l(y⊥)⋆ = l(z). Further, we obtain x △ y = e−1(e(x) ⊕ e(y)) =
e−1(e(x) ⊕ e(y⊥⊥)) = e−1(l(x) ⊕ l(y⊥)⋆) = e−1(l(z)) = e−1(e(z)) = z ≤ y = x ∨ y.
Again, x △ y ≤ x ∨ y.

Secondly, suppose that x does not commute with y (abbr., x¬ C y). Then neither
of x and y coincides with 0 or 1. We are going to show that both x and y are atoms.
Looking for a contradiction, suppose that x is a coatom. Then x ≤ x ∨ y < 1 and
therefore x = x ∨ y and this means that y ≤ x – a contradiction with x¬ C y.
We see that both x and y are atoms. So x < x ∨ y < 1 and therefore x ∨ y

is a coatom. If we set z = (x ∨ y)⊥, we obtain that x ∼ y. According to the
condition (3) in the definition of labelling, an element s ∈ At(K) is guaranteed
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such that s ≈ z and l(s) = l(x) ⊕ l(y). Consequently, one derives the equalities
x△y = e−1(e(x)⊕e(y)) = e−1(l(x)⊕l(y)) = e−1(l(s)) = e−1(e(s)) = s ≤ z⊥ = x∨y.
This completes the proof. �

The previous result will be applied in our final construction to provide a proof of
a main result of this paper.

Theorem 3.11. There is an ODL L with 3 generators that is not set-representable.
A consequence: The free ODL on 3 generators is not set-representable.

P r o o f . Consider the OML K portrayed by the following figure. Let us make use
in the figure the conventions of the Greechie paste job ([9, 12]) and the labelling
notation agreed on in Thm. 3.10.
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As shown in [8], in each set-representable OML (and, in turn, in each set-representab-
le ODL) the following inequality holds true: x ∧ (y ∨ z) ≤ ϕx(y) ∨ ϕy⊥(z), where
ϕa(b) = (b ∨ a⊥) ∧ a is the well-known Sasaki projection ([1, 12]).

Let us see that the above inequality fails in the OML K depicted by the figure.
Indeed, let us take x = 16⋆, y = 4 and z = 6⋆. Then x ∧ (y ∨ z) = 16⋆ ∧ (4 ∨ 6⋆) =
16⋆ ∧ 2⋆ = 1 whereas ϕx(y) = (4 ∨ 16) ∧ 16⋆ = 8⋆ ∧ 16⋆ = 24⋆ and ϕy⊥(z) =
(6⋆ ∨ 4) ∧ 4⋆ = 2⋆ ∧ 4⋆ = 6⋆ which gives us ϕx(y) ∨ ϕy⊥(z) = 24⋆ ∨ 6⋆ = 32⋆. But
1 6≤ 32⋆.

By Thm. 3.10, there is an ODL, M , such that K ≪ M . Let L be the sub-ODL
of M generated by x, y and z. Then the inequality x ∧ (y ∨ z) ≤ ϕx(y) ∨ ϕy⊥(z)
does not hold true in L and therefore L is not set-representable. Obviously, L has 3
generators and we have completed the proof. �
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Remark 3.12. In our opinion, the argument used in the above proof of Thm. 3.11
is reasonably clear and convincing. However, if one wants to have more tangible L

one could find the ODL M with the help of the construction in the proof of Thm.
3.10. This procedure would result in M that is isomorphic to the horizontal sum of
K and MO34. Moreover, M is then generated by the elements x, y and z and we
have L = M .

In the series of papers [13] – [16] together with this note we have iniciated a systematic
study of axiomatic symmetric difference. The algebras which came into existence, the
ODLs, lie between orthomodular lattices and Boolean algebras and might therefore
find application in quantum logic theory or elsewhere in algebra. In the former area
of application it would be desirable to investigate ‘states’ on ODLs. In the latter
area, a natural step in the effort to understand the intrinsic structure of ODLs is
the investigation of free objects in the variety ODL (the complexity of this problem
indicates the analogous study in OMLs, see [2]). A problem linked with the last
question is whether this variety is locally finite. Though we conjecture it is not, the
problem is still open to us.
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