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Abstract. Some sufficient conditions are provided that guarantee that the difference of
a compact mapping and a proper mapping defined between any two Banach spaces over K
has at least one zero. When conditions are strengthened, this difference has at most a finite
number of zeros throughout the entire space. The proof of the result is constructive and is
based upon a continuation method.
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1. Preliminaires

Let X and Y be two Banach spaces. If u : D(F ) ⊆ X → Y is a continuous

mapping, then one way of solving the equation

(1) u(x) = 0

is to embed (1) in a continuum of problems

(2) H(x, t) = 0 (0 6 t 6 1),

which can easily be resolved when t = 0. When t = 1, the problem (2) becomes (1).

In the case when it is possible to continue the solution for all t in [0, 1] then (1) is

solved. This method is called continuation with respect to a parameter [1]–[9].

In this paper some sufficient conditions are provided in order to guarantee that

the difference of a compact and a proper weakly coercive C1-mapping has at least

This work is partially supported by D.G.E.S. Pb 96-1338-CO 2-01 and the Junta de
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one zero. If these conditions are conveniently strengthened this difference has at

most a finite number of zeros on X . Other conditions, sufficient to guarantee the

existence of fixed points, have been given by the author in a finite-dimensional setting,

see for example [7], and in an infinite-dimensional setting, see for example [8]. A

continuation method was used in the proofs of these papers. The proofs supply

the existence of implicitly defined continuous mappings whose ranges reach zero

points [1]–[9]. A continuation method is also used here. The key is the use of the

surjective implicit function theorem [10], and the properties of proper and Fredholm

C1-mappings (see [9]).

We briefly recall some theorems and concepts to be used.

Definitions [26], [27]. Henceforth we will assume that X and Y are Banach

spaces over K, where K = R or K = C.

A mapping F : D(F ) ⊆ X → Y is called weakly coercive if and only if ‖F (x)‖ →

∞ as ‖x‖ → ∞.

A mapping F : D(F ) ⊆ X → Y is said to be compact whenever it is continuous

and the image F (B) is relatively compact (i.e. its closure F (B) is compact in Y ) for

every bounded subset B ⊂ D(F ).

A mapping F is said to be proper whenever the pre-image F−1(K) of every com-

pact subset K ⊂ Y is also a compact subset of D(F ).

The symbol dim means dimension, codim means codimension, ker means kernel,

R(L) stands for the range of the mapping L.

That L : X → Y is a linear Fredholm mapping means that L is linear and con-

tinuous and both the numbers dim(ker(L)) and codim(R(L)) are finite, and there-

fore ker(L) = X1 is a Banach space and has the topological complement X2, since

dim(X1) is finite. The integer number Ind(L) = dim(ker(L))−codim(R(L)) is called

the index of L.

Let F : D(F ) ⊆ X → Y . If D(F ) is open, then the mapping F is said to be

a Fredholm mapping if and only if F is a C1-mapping and F ′(x) : X → Y is a

Fredholm linear mapping for all x ∈ D(F ). If Ind(F ′(x)) is constant with respect to

x ∈ D(F ), then we call this number the index of F and write it as Ind(F ).

X, Y are called isomorphic if and only if there is a linear homeomorphism (iso-

morphism) L : X → Y.

Let F(X, Y ) denote the set of all linear Fredholm mappings A : X → Y.

Let L(X, Y ) denote the set of all linear continuous mappings L : X → Y.

Let Isom(X, Y ) denote the set of all isomorphisms L : X → Y .

Let F : D(F ) ⊆ X → Y with D(F ) open be a C1-mapping. The point u ∈ X

is called a regular point of F if and only if F ′(u) ∈ L(X, Y ) maps onto Y . A point
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v ∈ Y is called a regular value of F if and only if the pre-image F−1(v) is empty or

consists solely of regular points.

Theorem 1. The Surjective Implicit Function Theorem. [10, Section 4–13, The-

orem 4–H]. Let X, Y, Z be Banach spaces over K = R or K = C, and let

F : U(u0, v0) ⊆ X × Y → Z

be a C1-mapping on an open neighbourhood of the point (u0, v0). Suppose that

(i) F (u0, v0) = 0, and

(ii) Fv(u0, v0) : Y → Z is surjective.

Then the following assertion is true:

Let r > 0. There is a number ̺ > 0 such that, for each given u ∈ X with

‖u − u0‖ < ̺, the equation

F (u, v) = 0

has a solution v such that ‖v − v0‖ < r.

Theorem 2 [9, Section 7–9, Theorem 7–33]. Let g : D(g) ⊆ X → Y be a com-

pact mapping, where a ∈ D(g) and D(g) is open. If the derivative g′(a) exists, then

g′(a) ∈ L(X, Y ) is also a compact mapping.

Theorem 3 [9, Section 8–4, Example 8–16]. Let S ∈ F(X, Y ). The perturbed

mapping S + C verifies S + C ∈ F(X, Y ) and Ind(S + C) = Ind(S) provided C ∈

L(X, Y ) and C is a compact mapping.

2. Weakly coercive mappings sharing a value

Clearly, if we define u := f − g, then u has a zero if and only if f and g share a

value, that is, there is x ∈ X with f(x) = g(x). We thereby establish our result in

terms of f, g.

Theorem 4. Let f, g : D ⊆ X → Y be two C1-mappings, where X and Y are

two Banach spaces over K = R or K = C, and D is open.

We assume

(i) f is a compact mapping, g is a proper mapping and tf(x) − g(x) is weakly

coercive, jointly in both coordinates.

(ii) The mapping g has a zero, x0.

(iii) For any fixed t, belonging to [0, 1], the zero of Y is a regular value of the

mapping tf(x) − g(x).
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Then the following assertion holds

(a) f and g share at least one value, i.e., there is at least one x∗ such that

f(x∗) = g(x∗).

If in addition the condition

(iv) g is a Fredholm mapping of index zero is satisfied, then in addition we have

(b) f and g share at most a finite number of values on D, and at least one

value.

P r o o f.

(a) Conclusion (a) will be proved in this section.

(a1) Let us define a mapping

H : D × [0, 1] ⊆ X × [0, 1] → Y, where H(x, t) := tf(x) − g(x).

We will prove here that H is a proper mapping, which will imply that H−1(0) is a

compact set, since {0} ⊂ Y is a compact set and H is proper.

Let C be any fixed compact subset of Y , and let a sequence be fixed such that

(H(xn, tn))n>1 belongs to C. It suffices to show that the sequence ((xn, tn))n>1

contains a convergent subsequence ((xn′′′ , tn′′′))n′′′>1, which will imply that H−1(C)

is relatively compact, and since

(xn′′′ , tn′′′) → (u, t) as n′′′ → ∞,

H is continuous and C compact, therefore H(u, t) ∈ C, that is, (u, t) ∈ H−1(C), and

hence H−1(C) is compact.

Since the set C is bounded and the mapping H is weakly coercive, ((xn, tn))n>1 is a

bounded sequence. Consequently (xn)n>1 and (tn)n>1 are bounded sequences. Since

f is a compact mapping and (xn)n>1 a bounded sequence, there exists a subsequence

(xn′)n′>1 such that

f(xn′) → w′ as n′ → ∞

for some w′ ∈ Y, and furthermore, since (tn)n>1 is a bounded sequence of real

numbers, there is t ∈ R with

tn′ → t as n′ → ∞.

Therefore

tn′f(xn′) → tw′ := w as n′ → ∞

for some w ∈ Y.
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AllH(xn′ , tn′), n′ > 1 lie in the compact set C and therefore, there is a subsequence

(H(xn′′ , tn′′))n′′>1 such that

H(xn′′ , tn′′) → v as n′′ → ∞

for some v ∈ C. Therefore

g(xn′′ ) → w − v as n′′ → ∞.

Since g is proper, (xn′′ ) has a convergent subsequence

xn′′′ → u as n′′ → ∞.

On the other hand,

tn′′′ → t as n′′′ → ∞,

hence

(xn′′′ , tn′′′) → (u, t) as n′′′ → ∞

as required.

(a2) Let us suppose that

(3) H(xa, ta) = 0

for a fixed (xa, ta). We will prove that there is ̺ > 0 such that for any t ∈ (ta − ̺,

ta + ̺), there exists x = x(t) such that H(x(t), t) = 0.

Since zero is a regular value for the mappings {tf(x) − g(x)} by hypothesis (iii),

Hx(x, t) = tf ′(x) − g′(x) ∈ L(X, Y )

is surjective for every pair (x, t) such that H(x, t) = 0. In particular, the mapping

Hx(xa, ta) = taf ′(xa) − g′(xa) ∈ L(X, Y )

is surjective, which together with identity (3) and Theorem 1 implies the existence

of ̺ > 0, r > 0 such that for any t ∈ (ta − ̺, ta + ̺) there is x(t) with H(x(t), t) = 0

and ‖x(t) − xa‖ < r.

(a3) We will prove that for every t in [0, 1] there exists x(t) such thatH(x(t), t) = 0.

Let M denote the set of all t such that there is a solution x(t). By assumption

(ii) this set is not empty. By (a2), the set is relatively open. Finally, since the set

is the projection of H−1(0) into the second component (i.e. the t component), and

since the set is the image of a compact set by the continuous function projection,
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it is therefore compact, and hence also closed. However, a relatively open, closed,

non-empty subset of [0, 1] is the whole interval, since [0, 1] is connected.

Thus

H(x(1), 1) = f(x(1)) − g(x(1)) = 0 ⇒ f(x(1)) = g(x(1)),

which is conclusion (a) of the theorem, where x∗ := x(1).

(b) We include the hypothesis (iv) in Section (b).

(b1) We will see that the C1-mapping u : D ⊆ X → Y, u := f − g is a proper

Fredholm mapping of index zero.

Since f is a compact mapping, Theorem 2 implies that for each x ∈ X, the mapping

f ′(x) ∈ L(X, Y ) is also a compact mapping.

Since f ′(x) is a linear compact mapping and given that g′(x) is a linear Fredholm

mapping of index zero, Theorem 3 implies that

u′(x) = f ′(x) − g′(x) ∈ L(X, Y ), ∀x ∈ D

is a Fredholm linear mapping and Ind(u′(x)) = Ind(g′(x)) = 0, ∀ x ∈ D. Therefore

the non-linear C1-mapping u is a Fredholm mapping of index zero.

Furthermore, Section (a1) implies that u is a proper mapping. In fact, this is the

particular case in which t = 1, i.e. u(x) = H(x, 1).

(b2) We will see that, if any x ∈ D exists which verifies u(x) = 0, then u is a local

C1-diffeomorphism at x.

Let x ∈ D exist such that u(x) = 0. Since zero is a regular value of u, the

linear Fredhom mapping u′(x) maps onto Y , and since Ind(u′(x)) = 0, therefore

dim(ker(u′(x))) = 0. Thus u′(x) ∈ Isom(X, Y ). By the Local Inverse Theorem [10],

u is a local diffeomorphism at x.

(b3) We will prove here that f and g share at most a finite number of values on D.

Since u is proper, u−1(0) is a compact set. If there were an infinite sequence

(xn)n>1 ⊂ D with xn 6= xm when n 6= m

verifying u(xn) = 0, ∀n ∈ N, there would be a subsequence (xn′)n′>1 ⊂ u−1(0),

which would converge at a point x ∈ u−1(0), and x would be an non-isolated zero

of u. However, since u is a local diffeomorphism at x, given in Section (b2), x is an

isolated zero of u. This is a contradiction. Hence there is not an infinite number of

zeros of u on D. Thus f and g share at most a finite number of values on D. �

Example. Let us consider an integral mapping

(Au)(x) =

∫ b

a

F (x, y, u(y)) dy, ∀x ∈ [a, b],
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where −∞ < a < b < +∞. Define

Q := {(x, y, u) ∈ R
3 : x, y ∈ [a, b] and |u| < r for fixed r > 0}.

Suppose that the function

F : {(x, y, u) ∈ R
3 : x, y ∈ [a, b] and |u| 6 r} → R

is twice continuously differentiable. Define X := C[a, b] and M := {u ∈ X :

‖u‖ < r}, where ‖u‖ = max
a6y6b

|u(y)|. It can be easily proved that the mapping

A : M → X is compact, and it is twice cotinuously differentiable.

Let B be the mapping B : M× [0, 1] → X, B(u, t) = u which is C∞(M× [0, 1], X),

is proper, has a zero, and since it is defined only on a bounded set, it is trivially

weakly coercive.

The mapping H(u, t) = t(Au)− (Bu) : M × [0, 1] → X is weakly coercive, since it

is defined only on a bounded set. Theorem 4 implies that if zero is a regular value,

then there is u ∈ M such that

(Au)(x) = (Bu)(x), ∀x ∈ [a, b].

If we do not know that zero is a regular value, it is possible to prove the existence

of u ∈ M with (Au)(x) as near to u(x), ∀x ∈ [a, b] as wanted in the following way:

Since B′(u, t) ∈ L(X ×R, X) is surjective and dim(ker(B′(u, t))) = 1 for ∀(u, t) ∈

M × [0, 1], B is a Fredholm mapping of index one.

Define a mapping A∗ : M × [0, 1] → X, A∗(u, t) := t(Au) that is differentiable and

compact. Theorem 2 implies that (A∗)′(u, t) is compact. Theorem 3 implies that

H ′(u, t) is a linear Fredholm mapping of index one for ∀(u, t) ∈ M × [0, 1], and hence

H(u, t) is a Fredholm mapping of index one. Thus we obtain from the Sard-Smale

theorem [9, Theorem 4.K] that the set of regular values of the proper mapping H is

open and dense in X .

Acknowledgment. I am deeply indebted to the referee for helpful suggestions.
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