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Abstract. In this paper, we prove new embedding theorems for generalized anisotropic
Sobolev spaces, W r1,...,rn

Λp,q(w)
and W

r1,...,rn

X , where Λp,q(w) is the weighted Lorentz space and

X is a rearrangement invariant space in Rn . The main methods used in the paper are based
on some estimates of nonincreasing rearrangements and the applications of Bp weights.
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1. Introduction

LetM (X, µ) be the class of all measurable and almost everywhere finite functions

on X . For f ∈ M (X, µ), a non-increasing rearrangement of f is the non-increasing

function f∗ on R+ = (0, +∞) that is equimeasurable with |f |. The rearrangement f∗

can be defined by the equality

f∗(t) = inf{λ : µf (λ) 6 t}, 0 < t < ∞,

where

µf (λ) = µ{x ∈ X : |f(x)| > λ}, λ > 0.

Assume that 0 < q, p < ∞. A function f ∈ M (X, µ) belongs to the Lorentz space

Lq,p(X) if

‖f‖q,p =

(
∫

∞

0

(t1/qf∗(t))p dt

t

)1/p

< ∞.

This work is in part supported by NSFC (No. 10931001, 10871173) and Natural Science
Foundation of Zhejiang Province (No. Y6110415).
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For 0 < p < ∞, the space Lp,∞(X) is defined as the class of all f ∈ M (X, µ) such

that

‖f‖p,∞ = sup
t>0

t1/pf∗(t) < ∞.

We also let L∞,∞(X) = L∞(X).

Let w be a weight on R+ (a nonnegative locally integrable function on R+). If

(X, µ) = (R+, w(t) dt), we replace Lq,p(X) with Lq,p(w). For 0 < p, q < ∞, or

0 < p 6 ∞ and q = ∞, the weighted Lorentz space Λp,q
Rn (w) = Λp,q(w) is defined

in [5, Ch. 2] by

Λp,q(w) = {f ∈ M (Rn) : ‖f‖Λp,q(w) = ‖f∗‖Lp,q(w) < ∞}.

If p = q, denote Λp(w) = Λp,p(w). It is well known [5, Ch. 2] that

Λp,q(1) = Lp,q(Rn)

and if 0 < p, q < ∞, then

Λp,q(w) = Λq(w̃),

where

w̃(t) = W q/p−1(t)w(t), W (t) =

∫ t

0

w(s) ds.

In the following part of this paper, we will always denote W (t) =
∫ t

0
w(s) ds.

The weighted Lorentz spaces have close connection with weights of Bp, B
∞

p,∞ for

0 < p < ∞ (see [5, Ch. 1]). Let A be the Hardy operator defined as follows:

Af(t) =
1

t

∫ t

0

f(s) ds, t > 0.

The space Lp
dec (L

p,∞
dec ) is the cone of all nonnegative non-increasing functions in Lp

(Lp,∞). We denote w ∈ Bp if

A : Lp
dec(w) → Lp(w)

is bounded and denote w ∈ B∞

p,∞ if

A : Lp,∞
dec (w) → Lp,∞(w)

is bounded.

Let 1 6 p < ∞ and r ∈ N. We denote by W r
p the isotropic Sobolev spaces for

functions f ∈ Lp(Rn) which have all generalized derivatives Dsf (s = (s1, . . . , sn))

of order

|s| = s1 + . . . + sn 6 r,
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which belong to Lp(Rn). It is well known that for

1 6 p < n/r and q∗ = np/(n − rp)

we get W r
p ⊂ Lq∗

(Rn) (see [15], [3]). This embedding has been generalized and

developed in different directions (see [7], [9], [12], [13], [14], [17], [18] for details and

references).

We denote by W r1,...,rn
p,s (1 6 p < ∞, 0 < s < ∞, r1, . . . , rn ∈ N) the anisotropic

space of functions f ∈ Lp,s that have generalized partial derivatives

Dri

i f =
∂rif

∂xri

i

∈ Lp,s.

We write r = n
( n

∑

i=1

r−1
i

)

−1

. In [6], V. I. Kolyada got that if 1 < p < n/r, q∗ =

np/(n − rp), then

W r1,...,rn
p,s ⊂ Lq∗,s,

which of course implies

W r1,...,rn
p ⊂ Lq∗,p and W r1,...,rn

p ⊂ Lq∗

.

Moreover, in the same paper it is also proved that if p < q < ∞ and 1/p−1/q < r/n,

then for any θ > 0

(∗) W r1,...,rn
p,s ⊂ Lq,θ.

Let w be a weight in R+. We denote W r1,...,rn

Λp,s(w) (1 6 p < ∞, 0 < s < ∞,

r1, . . . , rn ∈ N) the space of functions f ∈ Λp,s(w) which have generalized partial

derivatives Dri

i f ∈ Λp,s(w) and denote

‖f‖W
r1,...,rn
Λp,s(w)

= ‖f‖Λp,s(w) +

n
∑

i=1

‖Dri

i f‖Λp,s(w).

If a function f is defined on R
n, k ∈ N, ei is the unit coordinate vector, then we set

∆k
i (h)f(x) =

k
∑

j=0

(−1)k−j

(

k

j

)

f(x + jhei) (h ∈ R)

where x ∈ R
n, h ∈ R. Let 1 6 p, q < ∞, 1 6 s < ∞, α1, . . . , αn be positive numbers

and w be a weight in R+. Suppose ki > αi, ki ∈ N. We define Besov space Bα1,...,αn

Λq,p(w),s

as the space of functions f ∈ Λq,p(w) for which

‖f‖B
α1,...,αn
Λq,p(w),s

= ‖f‖Λq,p(w) +

n
∑

j=1

(
∫

∞

0

[

h−αj‖∆
kj

j (h)f‖Λq,p(w)

]s dh

h

)1/s

< ∞.
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We note that the definition of Bα1,...,αn

Λq,p(w),s does not depend on the choice of ki > αi

(see [3, Sec. 18], [10]).

In this paper, we prove in Theorem 3.1 that if w satisfies some special conditions,

and 1/q∗ = 1/p − r/n, then if 1 6 p < n/r, 0 < s < ∞ we get

W r1,...,rn

Λp,s(w) ⊂ Λq∗,s(w),

and if 1 6 p < q < q∗, 0 < s < ∞, then for any qs/q∗ < θ < ∞, we get

W r1,...,rn

Λp,s(w) ⊂ Λq,θ(w).

If we put p > 1, w = 1, then the range of θ may be enlarged to 0 < θ < ∞, and

the above embedding is the result in [6]. The other result, Theorem 3.4, extends

Theorem 4 in [6] by replacing the Lorentz space Lp,q by the weighted Lorentz space

Λp,q(w) where w satisfies some mild conditions, which assumes as

W r1,...,rn

Λp(w) ⊂ Bα1,...,αn

Λq,p(w),p,

where 1 < p < q < ∞, 1/p − 1/q < r/n, r = n
( n

∑

i=1

r−1
i

)

−1

, and αi = ri

[

1 −

nr−1(1/p− 1/q)
]

, i = 1, . . . , n.

On the other hand, we think it is meaningful if we can generalize (∗) into the rear-

rangement invariant spaces. Indeed, there are many mathematicians, e.g., Bastero,

Milman, Ruiz, Martín, Pustylnik, who have researched this kind of question and

found many meaningful and important results. The first result we get, Theorem 3.5,

can be regarded as an extension of Theorem 1.2 and Corollary 1.3 in [11]. The second

result is Theorem 3.7, which can be regarded as a generalization of Theorem 3 in [6]

in the background of the rearrangement invariant spaces.

Incidentally, in this paper, we do not deal with the situation of the limit indices.

For example, if we let p = n/r in Theorem 3.1, then q∗ = ∞. We prefer to leave this

kind of questions related to the weighted Lorentz spaces for further research.

Throughout this paper, we let r1, . . . , rn ∈ N and r = n
( n

∑

i=1

r−1
i

)

−1

. As usual,

f ≈ g will indicate the existence of a universal constant C > 0 (independent of all

parameters involved) so that (1/C)f 6 g 6 Cf .

This paper is organized as follows. Section 2 gives some necessary lemmas. In

Section 3 we state and prove the main results of this paper.
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2. Some lemmas

Set f∗∗(t) = t−1
∫ t

0
f∗(s) ds. Then we have

Lemma 2.1 (see [6, Lemma 8]). If f ∈ W r1,...,rn
p (1 6 p < ∞), then for any

0 < t < τ < ∞, there holds that

(2.1) f∗(t) 6 B

[

f∗(τ) +
(τ

t

)r

tr/n
n

∑

i=1

(Dri

i f)∗∗(τ)

]

,

where B depends only on r1, . . . , rn.

The following two lemmas disclose the relation between the weights in the weighted

Lorentz spaces.

Lemma 2.2. Let 0 < p, s < ∞. If w ∈ Bp, then

W (t)s/p−1w(t) ∈ Bs.

P r o o f. Let v(t) = W (t)s/p−1w(t). Since w ∈ Bp, by [5, Ch. 1] we get

∫ r

0

1

W (t)1/p
dt 6 C

r

W (r)1/p
, ∀ r > 0.

Then
∫ r

0

1

V (t)1/s
dt 6 C

r

V (r)1/s
, ∀ r > 0,

where

V (t) =

∫ t

0

v(t) dt.

So v ∈ Bs. �

The next result is an important discovery of J. Soria in 1998.

Lemma 2.3 (see [16], [5]). Bp = B∞

p,∞ (0 < p < ∞).
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3. Main results

Note that in the following the constants may differ from one occurrence to another.

Theorem 3.1. Let 1 6 p < ∞, 0 < s < ∞, and w be a weight on R+. Suppose

1/q∗ = 1/p− r/n. Let w satisfy the following conditions:

(i) w ∈ Bp,

(ii) there exists a number a > 0 such that

W (t) > at, ∀ t > 0,

(iii) there exists a constant β with β < 1 such that

(3.1) W
( t

ξ

)s/q∗

−1

w
( t

ξ

)

6 CξβW (t)s/q∗

−1w(t), ∀ t > 0, ∀ ξ > 1.

Then for every f ∈ W r1,...,rn

Λp,s(w) , there holds that if p < n/r, then

(3.2) ‖f‖Λq∗,s(w) 6 C

n
∑

i=1

‖Dri

i f‖Λp,s(w),

and if p < q < q∗, qs/q∗ < θ < ∞, and the condition (ii) is substituted by the

condition

(ii′) there exists a number a > 0 such that

W (t) > at, ∀ 0 < t < 1,

then

(3.3) ‖f‖Λq,θ(w) 6 C

(

‖f‖Λp,s(w) +

n
∑

i=1

‖Dri

i f‖Λp,s(w)

)

.

P r o o f. We first prove (3.2). Since f ∈ Λp,s(w) and q∗ > p, for any δ > 0 we

obtain

Iδ =

∫

∞

δ

(W (t)1/q∗

f∗(t))s w(t)

W (t)
dt < ∞.
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Set τ = At. Using Lemma 2.1 (inequality (2.1) is also applicable to the space

W r1,...,rn

Λp,s(w) ) and the condition W (t) > at, we get

Iδ 6 Bs

∫

∞

δ

[

W (t)1/q∗

(

f∗(At) + ArW (t)r/n
n

∑

i=1

(Dri

i f)∗∗(At)

)]s
w(t)

W (t)
dt

6 B1

(
∫

∞

δ

W (t)s/q∗

f∗s(At)
w(t)

W (t)
dt

+

n
∑

i=1

∫

∞

δ

W (t)(1/q∗+r/n)s−1w(t)(Dri

i f)∗∗s(t) dt

)

6 B1

(

1

A

∫

∞

δ

W (t/A)s/q∗

f∗s(t)
w(t/A)

W (t/A)
dt

)

+ B1

( n
∑

i=1

∫

∞

δ

W (t)(1/q∗+r/n)s−1w(t)(Dri

i f)∗∗s(t) dt

)

= B1(I1 + I2).

By (3.1), we get

I1 6
1

A1−β

∫

∞

δ

W (t)s/q∗

f∗s(t)
w(t)

W (t)
dt =

1

A1−β
Iδ.

Setting A = (2B1)
1/(1−β), we have

Iδ 6 B2I2.

So

I
1/s
δ 6 B3

n
∑

i=1

(
∫

∞

0

W (t)(1/q∗+r/n)s−1w(t)(Dri

i f)∗∗s(t) dt

)1/s

= B3

n
∑

i=1

(
∫

∞

0

W (t)s/p−1w(t)(Dri

i f)∗∗s(t) dt

)1/s

.

For w ∈ Bp, by Lemma 2.2 we get W s/p−1w ∈ Bs. Hence

I
1/s
δ 6 B3

n
∑

i=1

‖Dri

i f‖Λp,s(w),

i.e. (3.2) is proved.
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In the sequel, we prove the inequality (3.3). Firstly

J1 =

∫

∞

1

W (t)θ/q−1w(t)f∗θ(t) dt

6 sup
t>0

(W (t)1/pf∗(t))θ

∫

∞

1

W (t)(1/q−1/p)θ−1w(t) dt

6 C‖f‖θ
Λp,∞(w).

On the other hand,

Jδ =

∫

∞

δ

W (t)θ/q−1w(t)f∗θ(t) dt 6 J1 +

∫ 1

δ

W (t)θ/q−1w(t)f∗θ(t) dt.

As above, noticing that (3.1) is true if θ < qs/q∗ and applying it we get

Jδ 6 C

(

J1 +

n
∑

i=1

∫ 1

0

W (t)θr/n+θ/q−1w(t)(Dri

i f)∗∗θ(t) dt

)

6 C

(

J1 +

n
∑

i=1

(

sup
t>0

(W (t)1/p(Dri

i f)∗∗(t))

)θ

×

∫ 1

0

W (t)θ(r/n+1/q−1/p)−1w(t) dt

)

6 C

(

J1 +
n

∑

i=1

‖(Dri

i f)∗∗‖θ
Lp,∞(w)

)

.

Since w ∈ Bp, by Lemma 2.3, we get w ∈ B∞

p,∞. Thus

Jδ 6 C

(

J1 +

n
∑

i=1

‖(Dri

i f)∗‖θ
Lp,∞(w)

)

6 C

(

J1 +

n
∑

i=1

‖Dri

i f‖θ
Λp,s(w)

)

.

Now (3.3) is proved. �

Remark 3.2. There are many weights satisfying conditions of Theorem 3.1. For

example,

(i) w = t−α + a, where 0 < α < min(s/q∗, 1), 0 < a < ∞;

(ii)

w =

{

t−α, if 0 < t < 1,

1, if t > 1,

where 0 6 α < 1;

(iii) w is a positive constant (in the case p > 1).

For the weight w in (i) and (ii), it is easy to see that the weighted Lorentz space

Λp,q(w) for 0 < p, q < ∞ does not coincide with any Lorentz space Lr,s.
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Theorem 3.3. Let r1, . . . , rn ∈ N, 1 < p < q < ∞, 1/p − 1/q < r/n, r =

n
( n

∑

i=1

r−1
i

)

−1

, and αi = ri

[

1 − nr−1(1/p − 1/q
)]

, i = 1, . . . , n. If w satisfies the

conditions (i), (ii) in Theorem 3.1 and there exists a constant β with β < 1 such that

(3.4) W
( t

ξ

)p/q−1

w
( t

ξ

)

6 CξβW (t)p/q−1w(t), ∀ t > 0, ∀ ξ > 1,

then for every f ∈ W r1,...,rn

Λp(w) , the following inequality holds

(3.5)

n
∑

j=1

(
∫

∞

0

[h−αj‖∆
rj

j (h)f‖Λq,p(w)]
p dh

h

)1/p

6 C

n
∑

k=1

‖Drk

k f‖Λp(w),

where C is a constant that does not depend on f .

P r o o f. Due to Theorem 3.1, we know that f ∈ Λq,p(w) and ∆
rj

j (h)f ∈ Λq,p(w),

j = 1, . . . , n. We estimate the first term of the left-hand side of (3.5). Suppose

ϕh(x) = ∆r1
1 (h)f(x).

By virtue of (2.1), for any A > 1 it follows that

(3.6) ϕ∗

h(t) 6 B

[

ϕ∗

h(At) + ArW (t)r/n
n

∑

i=1

g∗∗i (t)

]

,

where gi = Dri

i f and B is a constant only depending on ri, i = 1, . . . , n. On the

other hand, there holds [3, Vol. 1, pp. 101] that

(3.7) ϕh(x) =

∫ h

0

. . .

∫ h

0

g1(x + (u1 + . . . + ur1)e1) du1 . . . dur1

for almost all x, and hence by (3.7) (see the proof of Theorem 3.1 in [8])

(3.8) ϕ∗∗

h (t) 6 hr1g∗∗1 (t).

Let β(h) be an increasing function with respect to h > 0, which will be chosen later.

Furthermore, it is obvious that the following inequality holds

‖ϕh‖Λq,p(w) 6

(
∫ β(h)

0

W (t)p/q−1w(t)ϕ∗p
h (t) dt

)1/p

(3.9)

+

(
∫

∞

β(h)

W (t)p/q−1w(t)ϕ∗p
h (t) dt

)1/p

.
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Now choosing a suitable number A, we get by (3.9), (3.6), (3.4), and (3.8)

‖ϕh‖Λq,p(w) 6
1

2
‖ϕh‖Λq,p(w)

+ C

[ n
∑

i=1

(
∫ β(h)

0

W (t)p/q+rp/n−1w(t)g∗∗p
i (t) dt

)1/p

+ hr1

(
∫

∞

β(h)

W (t)p/q−1w(t)g∗∗p
1 (t) dt

)1/p]

,

which gives

‖ϕh‖Λq,p(w) 6 C
[

n
∑

i=1

(
∫ β(h)

0

W (t)p/q+rp/n−1w(t)g∗∗p
i (t) dt

)1/p

+ hr1

(
∫

∞

β(h)

W (t)p/q−1w(t)g∗∗p
1 (t) dt

)1/p]

.

Thus

∫

∞

0

h−α1p−1‖ϕh‖
p
Λq,p(w) dh(3.10)

6 C

[ n
∑

i=1

∫

∞

0

h−α1p−1

∫ β(h)

0

W (t)p/q+rp/n−1w(t)g∗∗p
i (t) dt

+

∫

∞

0

h−α1p+r1p−1

∫

∞

β(h)

W (t)p/q−1w(t)g∗∗p
1 (t) dt

]

.

With the help of Fubini’s Theorem, (3.10) establishes

(
∫

∞

0

h−α1p−1‖ϕh‖
p
Λq,p(w) dh

)1/p

6 C

[ n
∑

i=1

(
∫

∞

0

[β−1(t)]−α1pW (t)p/q+rp/n−1w(t)g∗∗p
i (t) dt

)1/p

+

(
∫

∞

0

[β−1(t)]−α1p+r1pW (t)p/q−1w(t)g∗∗p
1 (t) dt

)1/p]

.

Now setting β−1(t) = W (t)r/(nr1), we have

(
∫

∞

0

h−α1p−1‖ϕh‖
p
Λq,p(w) dh

)1/p

6 C
n

∑

k=1

‖g∗∗i ‖Λp(w).

For w ∈ Bp, the inequality (3.5) is proved. �
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Before stating the following theorem, we recall some facts related to the rearrange-

ment invariant spaces.

A rearrangement invariant space (r.i. space), X = X(Rn), is a Banach space of

Lebesgue measurable functions on R
n with a norm ‖ · ‖X that satisfies the Fatou

property and is such that if g∗ = f∗, then ‖f‖X = ‖g‖X . Every r.i. space X has a

representation (see [2]) as a function space on X̂(0,∞) such that

‖f‖X(Rn) = ‖f∗‖X̂(0,∞).

Since the measure space will be always clear from the context it is convenient to drop

the hat and use the same letter X to indicate the different versions of the space that

we use.

The upper and lower Boyd indices associated with a r.i. space X are defined by

(3.11) αX = inf
s>1

lnhX(s)

ln s
, αX = sup

s<1

lnhX(s)

ln s
,

where hX(s) denotes the norm on X(0,∞) of the dilation operator Es (s > 0),

defined by

Esf(t) = f(t/s).

By [2, Ch. 3], we know

(3.12) αX = lim
s→∞

lnhX(s)

ln s
, αX = lim

s→0

lnhX(s)

ln s
.

Sometimes one considers a slightly different set of indices by means of replacing hX(s)

in (3.11) by

MX(s) = sup
t>0

ΦX(ts)

ΦX(t)
, s > 0,

where ΦX(s) is the fundamental function of X which is defined by

ΦX(s) = ‖χE‖X , with |E| = s.

The corresponding indices are denoted by βX , β
X
and will be referred to as the

upper and the lower fundamental indices of X . According to [2, Ch. 3, pp. 178], we

obtain that

βX = lim
s→∞

lnMX(s)

ln s
, β

X
= lim

s→0

lnMX(s)

ln s
,(3.13)

0 6 αX 6 β
X

6 βX 6 αX 6 1.

Let ri ∈ N, i = 1, . . . , n and X be a r.i. space in R
n. We denote W r1,...,rn

X the class

of all functions f ∈ X for which there exist generalized partial derivatives Dri

i f that

belong to X (i = 1, . . . , n).

Using a similar method as in the proof of (3.2) and considering (3.12), we can get
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Theorem 3.4. Let X be a r.i. space, αX > r/n, and αX < 1. Then for any

f ∈ W r1,...,rn

X ,

‖t−r/nf∗(t)‖X 6 C
n

∑

i=1

‖Dri

i f‖X .

Remark 3.5. If X = Lp,q, 1 < p < ∞, 1 6 q < ∞, then

αX = αX = 1/p.

Applying Theorem 3.4, we get that if 0 < p < n/r, 1 6 q < ∞, and f belongs to

W r1,...,rn

Lp,q , then

‖f‖Lq∗,q 6 C

n
∑

i=1

‖Dri

i f‖Lp,q , where q∗ = np/(n − rp),

which is the result of Theorem 3 in [6] in the context of r.i. space. Let us define

(see [11])

Xn(∞, k) ≡ {f : t−k/n(f∗∗(t) − f∗(t)) ∈ X(Rn)},

and

‖f‖Xn(∞,k) = ‖t−k/n(f∗∗(t) − f∗(t))‖X .

On the other hand, we define the space W r1,...,rn

0,X as follows:

W r1,...,rn

0,X = {f ∈ M (Rn) : f ∈ W r1,...,rn

X , and vanishes at infinity}.

By Lemma 2.6 and Lemma 2.7 in [11], we know that if αX > r/n (equivalent to the

Q(r)-condition there), then for all measurable functions f with f∗∗(∞) = 0,

‖t−r/nf∗(t)‖X ≈ ‖t−r/nf∗∗(t)‖X ≈ ‖t−r/n(f∗∗(t) − f∗(t))‖X = ‖f‖Xn(∞,r).

Hence, by Theorem 3.4, we get that if αX > r/n, αX < 1 (equivalent to the P -

condition in [11]), then

‖f‖Xn(∞,r) 6 C‖f‖W
r1,...,rn
X

, ∀ f ∈ W r1,...,rn

0,X ,

that is to say,

W r1,...,rn

0,X ⊂ Xn(∞, r),

which is the generalization, to some extent, of Theorem 1.2 and Corollary 1.3 in [11].
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Before outlining the next theorem, we give an important property of the r.i. spaces.

Suppose X is a r.i. space with the fundamental function Φ, then we obtain

E1 = {α : ‖Φ(t)αχ(0,1)(t)‖X < ∞} 6= ∅

and if β
X

> 0, then we also get

E2 = {α : ‖Φ(t)αχ(1,∞)(t)‖X < ∞} 6= ∅.

First, we note that [2, Th. II.6.6]

(3.14) L1 ∩ L∞ ⊂ X.

Now it is easy to get E1 6= ∅ by (3.14) and the property that Φ(t) is increasing on R+.

On the other hand, if β
X

> 0, it follows (see [10]) that for every 0 < γ < β
X
, there

exists positive constant Q such that

Φ(t) > Qtγ , ∀ 1 < t < ∞,

which in combination with (3.14) implies E2 6= ∅.

Let

L1 = sup{ξ : ‖Φ(t)−ξ−1+r/(nβX)χ(0,1)(t)‖X < ∞}

and

L2 = inf{ξ : ‖Φ(t)−ξ−1χ(1,∞)(t)‖X < ∞}.

Note that if βX < 1, then for every βX < η < 1, there exists a constant C̃ (see

Lemma 1 in [10]) such that

Φ(t) > C̃tη, ∀ 0 < t < 1.

Applying a method similar to the proof of (3.3), while considering (3.12) and (3.13),

we have the following theorem. The details are omitted.

Theorem 3.6. Let β
X

> 0, βX < 1. Suppose f ∈ W r1,...,rn

X . If E 6= ∅ where

E = {α : L2 < α < min(L1, αX/βX)},

then for every α ∈ E there holds

‖Φ(t)−αf∗(t)‖X 6 C

(

‖f‖X +

n
∑

i=1

‖Dri

i f‖X

)

,

where C is independent of f .
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Remark 3.7. (1) If X = Lp,q (1 < p < ∞, 1 6 q 6 p < ∞), then Φ(t) =

((p/q)t)1/p and L1 = rp/n, L2 = 0, αX = βX = 1/p. In the case of 1/p > r/n, the

above theorem implies that for 0 < α < rp/n,

‖t−αf∗(t)‖Lp,q 6 C

(

‖f‖Lp,q +

n
∑

i=1

‖Dri

i f‖Lp,q

)

,

which coincides with Theorem 3 in [6].

(2) If X = Λp(w) (p > 1) where

w =

{

t−α, if 0 < t 6 1,

t−β , if t > 1,

and 0 < α < β < 1, then L1 = rp/n, L2 = 0, αX = (1 − β)/p, βX = (1 − α)/p (use

Theorem 4.1 in [4] to calculate the indices), which implies

E =
(

0, min
(rp

n
,
1 − β

1 − α

))

.
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