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Abstract. Let 1 6 q < p < ∞ and 1/r := 1/pmax(q/2, 1). We prove that L
(c)
r,p , the

ideal of operators of Gel’fand type lr,p, is contained in the ideal Πp,q of (p, q)-absolutely
summing operators. For q > 2 this generalizes a result of G.Bennett given for operators on
a Hilbert space.
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1. Notation

Throughout this note standard definitions concerning the theory of operator ideals

are taken from [9] and [10]. For the convenience of the reader we here collect some

of them.

In the following E and F denote real or complex Banach spaces. L (E, F ) is the

Banach space of all (bounded linear) operators acting from E into F .

If T ∈ L (E, F ) and n = 1, 2, . . ., then the n-th approximation number and the

Gel’fand number are defined by

an(T ) := inf{‖T − L‖ : rank (L) < n}

and

cn(T ) := inf{‖TJE
M‖ : codim (M) < n}

respectively, where JE
M denotes the embedding map from M into E. Let 0 < r,

w < ∞. The quasi-Banach operator ideal L
(a)
r,w consists of all operators T such that

‖T | L
(a)
r,w‖ :=

( ∞
∑

n=1

[n1/r−1/wan(T )]w
)1/w

< ∞.
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The quasi-Banach operator idealL
(c)
r,w determined by the Gel’fand numbers is defined

in the same way.

Let 1 6 q 6 p < ∞. An operator T ∈ L (E, F ) is called absolutely (p, q)-summing

if there exists a constant c such that

( n
∑

k=1

‖Txk‖
p

)1/p

6 c sup

{( n
∑

k=1

| 〈xk, a〉 |q
)1/q

: ‖a‖ 6 1

}

for all finite families of elements x1, . . . , xn ∈ E. The class of these operators is

denoted by Πp,q. It follows that Πp,q becomes a Banach operator ideal if we define

‖T | Πp,q‖ := inf c.

For 1 6 q 6 s 6 ∞, [Ms,q, µs,q] denotes the Banach operator ideal of (s, q)-mixing

operators (cf. also [9, (20.1.1)]).

Excellent references for the interpolation theory are [3] and [11]. We recall the

so-called real-interpolation method. Let 0 < θ < 1 and 0 < w < ∞. For every

quasi-Banach interpolation couple (E0, E1) we denote by (E0, E1)θ,w the collection

of all elements x ∈ E0 + E1 such that the expression

‖x | (E0, E1)θ,w‖ :=

(
∫

∞

0

[t−θK(t, x, E0, E1)]
w dt

t

)1/w

is finite. Here K(t, x, E0, E1) is the Peetre K-functional defined by

K(t, x, E0, E1) := inf{‖x0 | E0‖ + t‖x1 | E1‖ : x = x0 + x1}.

Then (E0, E1)θ,w becomes a quasi-Banach space with respect to the quasi-norm just

defined.

2. Results

It was proved by Bennett [1] that on the Hilbert space l2 the inclusion

L
(a)
2p/q,p(l2, l2) ⊆ Πp,q(l2, l2) for 2 < q < p < ∞

holds. The converse inclusion is given in [2]. In order to study the above result for

operators acting between arbitrary Banach spaces, we start with
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Lemma. Let 1 6 q 6 p < ∞ and 1/r := 1/p max(q/2, 1). Then

L
(c)
r,1 ⊆ Πp,q.

P r o o f. Given an operator T ∈ L (E, F ) with rank (T ) 6 n we write the

factorization

T : E
T0−→ T (E)

I
−→ T (E)

J
−→ F

where T0 is the restriction of T , I is the identity operator on T (E) and J the natural

injection. Put 1/s := 1/q − 1/p. Since dimT (E) 6 n, by [4] we have

µs,q(I) 6 n1/p max(q/2,1).

Hence

µs,q(T ) 6 n1/p max(q/2,1)‖T ‖

and from [10, (2.3.10)] we obtainL
(a)
r,1 ⊆ Ms,q. Using the inclusion Ms,q ⊆ Πp,q (see [9,

(20.1.11)]), then we haveL
(a)
r,1 ⊆ Πp,q. Since Πp,q is inyective the preceding inclusion

is also valid for the operator ideal L
(c)
r,1 . �

Theorem 2.1. Let 1 6 q < p < ∞ and 1/r := 1/p max(q/2, 1). Then

L
(c)
r,p ⊆ Πp,q.

P r o o f. Choose p0, p1 and θ such that 1/p = (1 − θ)/p0 + θ/p1, q < p0 < p <

p1 < ∞ and 0 < θ < 1. If

1/ri := 1/pi max(q/2, 1) for i = 0, 1,

we have 0 < r0 < r1 < ∞ and 1/r = (1 − θ)/r0 + θ/r1. Then an interpolation result

due to Peetre/Sparr [7] and König [5] (cf. also [6, (2.c.6)] and [10, (2.3.14)]) yields

(L
(a)
r0,1(E, F ), L

(a)
r1,1(E, F ))θ,p = L

(a)
r,p (E, F ).

Also, we know from [5] (see also [6, (2.c.10)] and [10, (1.2.6)]) that

(Πp0,q(E, F ), Πp1,q(E, F ))θ,p ⊆ Πp,q(E, F ).

The preceding Lemma yields

L
(a)
ri,1

(E, F ) ⊆ Πpi,q(E, F ) for i = 0, 1,

and from the above formulas we obtain L
(a)
r,p (E, F ) ⊆ Πp,q(E, F ). Hence L

(c)
r,p ⊆

Πp,q, since Πp,q is injective. �

An immediate consequence of the preceding result is
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Theorem 2.2. If 2 < q < p < ∞, then L
(c)
2p/q,p ⊆ Πp,q.

Supplement. Now, we prove that the inclusions stated in the preceding results

are strict. A well-known result (see [9, (6.5.4)]) says that the embedding map I from

l1 into l2 is absolutely (1, 1)-summing. Hence

I ∈ Πp,q(l1, l2) for 1 6 q 6 p < ∞.

However, I is not compact and consequently

I 6∈ L
(c)
r,w(l1, l2) for 0 < r, w < ∞.

Remark. Taking 2 = q < p < ∞ in Theorem 2.1 we have L
(a)
p,p ⊆ Πp,2, an

inclusion proved by Pietsch in [8], from which he obtained, in the context of Weyl

numbers, that L
(x)
p,p ⊆ Πp,2 (see also [10, (2.7.5)]).
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