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1. Introduction

The study of nonlocal Cauchy problems in Banach spaces begins in 1991 with

the work of Byszewski [6]. In that paper the author emphasizes the importance

of nonlocal conditions, which are more general than the initial ones and make it

possible to describe physical problems which cannot be studied by means of classical

Cauchy problems. As an example, the nonlocal results can be applied to kinematics

to determine the evolution t 7→ y(t) of the location of a physical object for which the

positions y(0), y(t1), . . . , y(tp) are not known, but we know the following nonlocal

condition:

y(0) +

p∑

k=1

cky(tk) = x0, ck ∈ R \ {0}.

Later on, several authors have studied nonlocal Cauchy problems governed by ordi-

nary differential equations or inclusions either with autonomous or non-autonomous

linear parts. We refer for instance to the recent papers [2], [10], [23].
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Nowadays, some practical situations gave rise to the necessity to study the con-

trollability of this kind of problems. For example, they are a useful tool for obtaining

the controllability of the size structured population equation (see [4]).

This fact explains the growing interest by several authors (see e.g. [11], [17]) in

the investigation of controllability for nonlocal problems.

In the present paper we consider a Cauchy problem with a nonlocal condition

governed by a nonautonomous semilinear differential inclusion.

In Section 3, we estabilish the existence of mild solutions for our problem by

requiring the nonlinearity to possess a Scorza-Dragoni property in the sense of lower

semicontinuity and the linear part to satisfy the usual conditions. The main tool

used in this section is a selection theorem presented in [8].

Then, in Section 4, we study the controllability of a nonlocal Cauchy problem.

In the main result of this section we make use again of the selection theorem cited

above.

Our existence and controllability results extend in a broad sense some recent the-

orems existing in literature (see Remarks 3.1 and 4.3).

2. Preliminaries

Let X ,Y be Hausdorff topological spaces and, if necessary, let Y be also linear.

In the sequel we make use of the following notation: P(Y ) = {H ⊂ Y : H 6= ∅};
Pc(Y ) = {H ∈ P(Y ) : H convex}; Pf (Y ) = {H ∈ P(Y ) : H closed}; Pk(Y ) =

{H ∈ P(Y ) : H compact}; Pfc(Y ) = Pf (Y ) ∩ Pc(Y ); etc.

Moreover, we also consider the family D(Y ), introduced by Michael in [18], defined

as

(2.1) D(Y ) = {H ∈ Pc(Y ) : H ⊃ I(H)}

with I(H) = {x ∈ H : x /∈ S, S supporting set for H}. We recall that a set S called
a supporting set for H if it is a proper closed and convex subset of the (closed and

convex) set H which satisfies the condition that for every segment [x1, x2] ⊂ H such

that ]x1, x2[ ∩ S 6= ∅, the whole segment [x1, x2] is contained in S.

Recall also that for the family D(Y ) the chain inclusion

(2.2) Pfc(Y ) ⊂ D(Y ) ⊂ Pc(Y )

holds (cf. [18]).

A multifunction F : X → P(Y ) is said to be lower semicontinuous at x0 ∈ X if

for every open set Ω ⊆ Y with F (x0) ∩ Ω 6= ∅ there exists a neighborhood V of x0

such that F (x) ∩ Ω 6= ∅ for every x ∈ V (see e.g. [13], [15]).
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Let [a, b] be an interval of the real line endowed with the usual Lebesgue measure

λ defined on the Lebesgue σ-algebra Λ. A multifunction F : [a, b] → Pf (Y ) is said

to be: strongly measurable if F−(C) = {t ∈ [a, b] : F (t) ∩ C 6= ∅} ∈ Λ for every

closed C ⊂ Y ; measurable if F−(A) ∈ Λ for every open A ⊂ Y ; graph measurable

if GrF = {(t, y) ∈ [a, b] × Y : y ∈ F (t)} ∈ Λ × B(Y ) (where B(Y ) is the Borel

σ-algebra on Y ).

If Y is a separable Banach space the three definitions are equivalent (cf. [13],

Theorem 2.1.35). Further, if the multifunction takes on compact values, they are

also equivalent to the following property (cf. [15], Theorem 1.3.1): there exists a

sequence (Fn)n∈N of step multifunctions such that lim
n→+∞

h(Fn(t), F (t)) = 0 for a.e.

t ∈ [a, b] (where h is the Hausdorff metric on Pk(Y )).

A multifunction F : [a, b] ×X → P(Y ) is said to have the lower Scorza-Dragoni

property if

(l-SD) for every ε > 0 there exists a compact Kε ⊂ [a, b] such that λ([a, b] \Kε) < ε

and F|Kε×X. is lower semicontinuous;

whereas it is said to be a Michael map if it verifies the condition

(M) for every closed set Z ⊂ [a, b]×X such that F|Z. is lower semicontinuous, there

exists a continuous selection of F|Z. (i.e. there exists a continuous function

f : Z → Y such that f(t, x) ∈ F (t, x) for every (t, x) ∈ Z).

Let (E, ‖ · ‖) be a real Banach space. For 1 6 p < +∞, Lp([a, b], E) denotes

all (equivalence classes) of Bochner integrable functions x : [a, b] → E such that

‖x‖Lp = (
∫ b

a ‖x(t)‖p dt)1/p < +∞.
Given a multifunction F : [a, b] → P(E), we will consider the set S 1

F = {f ∈
L1([a, b], E) : f(t) ∈ F (t) for a.e. t ∈ [a, b]} and denote ‖F (t)‖ = sup

x∈F (t)

‖x‖, t ∈ [a, b].

Finally, let us recall that a two parameter family {T (t, s)}(t,s)∈∆, ∆ = {(t, s) ∈
[a, b] × [a, b] : s 6 t}, T (t, s) : E → E a bounded linear operator, is an evolution

system if

j) T (t, t) = I, t ∈ [a, b]; T (t, r)T (r, s) = T (t, s), a 6 s 6 r 6 t 6 b;

jj) (t, s) 7→ T (t, s) is strongly continuous on ∆ (i.e. the map (t, s) 7→ T (t, s)x is

continuous on ∆ for every x ∈ E).

Of course, there exists D > 0 such that

(2.3) D = sup
(t,s)∈∆

‖T (t, s)‖L (E)

where L (E) is the space of bounded linear operators from E to itself.
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3. Existence of mild solutions

In this section we consider the nonlocal Cauchy problem in a separable Banach

space E

(P)

{
y′(t) ∈ A(t)y(t) + F (t, y(t)), t ∈ [0, b],

y(0) + θ(y) = x0

where {A(t)}t∈[0,b] is a family of linear (not necessarily bounded) operators A(t) :

D(A) ⊆ E → E, with D(A) not depending on t and dense in E, generating

an evolution system {T (t, s)}(t,s)∈∆; F : [0, b] × E → P(E) is a multifunction;

θ : C([0, b], E) → E is a function and x0 ∈ E.

We recall that a family {A(t)}t∈[0,b] generates an evolution system {T (t, s)}(t,s)∈∆

if on the region D(A) each operator T (t, s) is strongly differentiable (see, e.g. [16])

relative to t and s, while

∂T (t, s)

∂t
= A(t)T (t, s) and

∂T (t, s)

∂s
= −T (t, s)A(s), (t, s) ∈ ∆.

A function y ∈ C([0, b], E) is called a mild solution for (P) if

y(t) = T (t, 0)(x0 − θ(y)) +

∫ t

0

T (t, s)f(s) ds, t ∈ [0, b]

where f ∈ S 1
F (·,y(·)).

The existence of mild solutions for problem (P) is provided by the following the-

orem.

Theorem 3.1. Let E be a separable Banach space. Suppose that F : [0, b]×E →
P(E) possesses properties (l-SD) and (M). Assume

(F1) there exists m ∈ L1([0, b];R) such that for every x ∈ E

‖F (t, x)‖ 6 m(t)(1 + ‖x‖), a.e. t ∈ [0, b];

(F2) there exists h ∈ L1([0, b];R) such that for every bounded Ω ⊂ E

χ(F (t,Ω)) 6 h(t)χ(Ω), a.e. t ∈ [0, b],

where χ is the Hausdorff measure of non-compactness;

(Θ1) θ : C([0, b], E) → E is a compact mapping such that there exist ζ, η > 0 with

‖θ(y)‖ 6 ζ‖y‖C + η, y ∈ C([0, b];E).

Then problem (P) has at least one mild solution on the interval [0, b].
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P r o o f. We observe that the Lebesgue measure on the Borel σ-algebra of the

interval [0, b] is a Radon measure (cf. [13], Theorem A.2.67, and [14], Definition 7.6.8).

Since the multifunction F verifies the hypotheses of the Selection Theorem in [8],

we can say that F has a Carathéodory selection, i.e. there exists a function f :

[0, b] × E → E such that f(t, ·) is continuous for every t ∈ [0, b], f(·, x) is Borel-
measurable for every x ∈ E, f(t, x) ∈ F (t, x) for a.e. t ∈ [0, b] and for every x ∈ E.

Now, defining the multifunction G : [0, b] × E → Pkc(E) as

G(t, x) = {f(t, x)}, (t, x) ∈ [0, b]× E

and the mapping g : C([0, b];E) → E by

(3.1) g(y) = x0 − θ(y),

we consider the nonlocal Cauchy problem

(3.2)

{
y′(t) ∈ A(t)y(t) +G(t, y(t)), t ∈ [0, b],

y(0) = g(y).

First of all, we check that G satisfies hypotheses (H1), (H2), (H3) of Theorem 3.1

in [2].

As for (H1), we observe that obviously G(t, ·) is upper semicontinuous; moreover,
since f(·, x) is a Borel-measurable selector of G(·, x) and E is a separable Banach
space, we have that the selector f(·, x) is also strongly measurable.
Then, (F1) implies that G satisfies (H2). Further, the monotonicity of the Haus-

dorff measure of non-compactness and (F2) allow us to deduce that G satisfies (H3).

Let ζ̃ > max{ζ ; (1 −D‖m‖L1)/D}, where ζ is from (Θ1) and D is from (2.3).

By (3.1), we have the estimate

‖g(y)‖ 6 ‖x0‖ + ζ̃‖y‖C + η, y ∈ C([0, b];E).

So, putting c = ζ̃ and d = ‖x0‖ + η, we can conclude that the function g verifies

hypothesis (H4) of Theorem 3.1 in [2].

Finally, ζ̃ 6= (1 −D‖m‖L1)/D implies condition (3.1) of Theorem 3.1 in [2].

Therefore we can apply the theorem just mentioned (see also Theorem 3.1 in [23])

and claim that there exists a mild solution for the nonlocal Cauchy problem (3.2).

This function is a mild solution for (P) too. �

In Theorem 3.1, if the multifunction takes on values in the family D(E) (see (2.1))

then assumption (M) is easily verified (cf. [18], Theorem 3.1′′′). Therefore we deduce

the following
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Corollary 3.1. Let E be a separable Banach space. Suppose that F : [0, b]×E →
D(E) satisfies hypotheses (l-SD), (F1), (F2) and (Θ1).

Then problem (P) has at least one mild solution on the interval [0, b].

Remark 3.1. Our existence results extend in a broad sense Theorem 3.1 in [2],

Theorem 3.1 in [23] and Theorem 3.2 in [10]. This follows from the fact that the

inclusion of Pfc(E) in D(E) is proper: this is obvious if E is a finite dimensional

space since in this caseD(E) = Pc(E) (cf. [18]); whereas, if E is infinite dimensional,

the strict inclusion is proved by Example 3.2 in [8].

4. Controllability

We will deal with the nonlocal Cauchy problem with controls

(CP)

{
y′(t) ∈ A(t)y(t) + F (t, y(t)) +Bu(t), t ∈ [0, b],

y(0) + θ(y) = x0

where E, {A(t)}t∈[0,b], F : [0, b] × E → P(E), θ : C([0, b], E) → E and x0 are as

problem (P); U is a Banach space; B : U → E is a linear operator.

A function y ∈ C([0, b], E) is called a mild solution for (CP) if

y(t) = T (t, 0)(x0 − θ(y)) +

∫ t

0

T (t, s)(f(s) +Bu(s)) ds, t ∈ [0, b]

where f ∈ S 1
F (·,y(·)) and u ∈ L2([0, b], U).

The nonlocal Cauchy problem (CP) is said to be controllable on [0, b] if for every

x1 ∈ E there exists a mild solution for (CP) satisfying

(4.1) y(b) + θ(y) = x1.

A pair (yx1
, ux1

) ∈ C([0, b], E)×L2([0, b], U) satisfying (CP) and (4.1) will be called

a solution of the controllability problem.

In the sequel we will work in the following setting.

(A) the family {A(t)}t∈[0,b] generates an evolution system {T (t, s)}(t,s)∈∆ such that

for every (t, s) with t− s > 0 the operator T (t, s) is compact;

(B) the linear operator B : U → E is bounded and such that the operator W :

L2([0, b], U) → E defined by

Wu =

∫ b

0

T (b, s)Bu(s) ds

is onto.
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Remark 4.1. We wish to note that it is allowable to require the surjectivity of

W in property (B). In fact, we can endow ImW with a suitable norm in such a way

that it becomes a separable Banach space.

To show this, we consider the operator W̃ : L2([0, b], U)/KerW → Im W̃ defined

by

W̃ [u] = Wu, [u] ∈ L2([0, b], U)/KerW

which is univocally determined, linear, bounded and invertible (see e.g. [19], §10.2).

Now we endow the set Im W̃ the norm

‖x‖Im W̃
= ‖W̃−1x‖L2/ KerW ,

where

‖[u]‖L2/ Ker W = inf
u∈[u]

‖u‖L2.

Taking into account that (L2([0, b];U)/KerW, ‖ · ‖L2/ KerW ) is a Banach space (see

e.g. [21], chap. II, Theorem 5.1), since W̃ is an isometry we can conclude that also

(Im W̃ , ‖ · ‖Im W̃
) is a Banach space.

The separability of this space is a consequence of the homeomorphism chain

(Im W̃ , ‖ · ‖
Im W̃

) ≃ (L2([0, b];U)/KerW, ‖ · ‖L2/ Ker W ) ≃ (ImW, ‖ · ‖)

and the last space is a separable space, E being separable.

Finally, since ImW = Im W̃ , we have proved that (ImW, ‖ · ‖Im W̃
) is a separable

Banach space (cf. [3]).

Remark 4.2. We notice that

‖[u]‖L2/Ker W
= min

u∈[u]
‖u‖L2.

In fact, [u] is a closed and convex subset of the Hilbert space L2([0, b];U). Hence,

by Theorem 2.1.16 of [1], there exists a unique element ū ∈ [u] such that

(4.2) ‖ū‖L2 = ‖[u]‖L2/Ker W
.

Now, let us denote by M1, M2 the constants which bound B, W̃
−1 respectively

and let D be the positive number from (2.3). In the next theorem we will use

(4.3)
K1 = D(1 +M1M2

√
b+M1M2D

√
b),

K2 = D +M1M2D
2
√
b.
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Theorem 4.1. Let U and E be Banach spaces, with E separable. Assume

hypotheses (A), (B) and

(Θ2) the mapping θ : C([0, b], E) → E is compact and there exists α > 0 such that

lim sup
‖y‖→+∞

‖θ(y)‖
‖y‖ = α.

Suppose that F : [0, b] × E → P(E) possesses properties (l-SD), (M) and

(Φ) there exists a sequence (ϕn)n∈N, ϕn ∈ L1([0, b];R), such that

sup
‖x‖6n

‖F (t, x)‖ 6 ϕn(t), a.e. t ∈ [0, b], n ∈ N.

Moreover, put β = lim inf
n→+∞

1
n

∫ b

0
ϕn(s) ds, and let

(4.3) K1α+K2β < 1.

Then (CP) is controllable on [0, b].

P r o o f. As in Theorem 3.1, we can find a Carathéodory selector g : [0, b]×E →
E for the multifunction F .

Let us fix x1 ∈ E and consider the mapping R : C([0, b];E) → C([0, b];E), where,

for every y ∈ C([0, b];E), the function R(y) is defined by

(4.5) R(y)(t) = T (t, 0)(x0 − θ(y)) +

∫ t

0

T (t, s)(g(s, y(s)) +Buy(s)) ds, t ∈ [0, b]

where uy is the representative of the class

W̃−1

(
x1 − θ(y) − T (b, 0)(x0 − θ(y)) −

∫ b

0

T (b, s)g(s, y(s)) ds

)

verifying (4.2) (cf. Remark 4.2). In the sequel we will use the identification

(4.6) uy(t) = W̃−1

(
x1 − θ(y) − T (b, 0)(x0 − θ(y)) −

∫ b

0

T (b, s)g(s, y(s)) ds

)
(t),

t ∈ [0, b].

We will show that R has a fixed point. The proof is given in several steps.

Step 1. Let us show that there exists n0 ∈ N such that R(Bn0
(0)) ⊆ Bn0

(0), where

Bn0
(0) is the ball of radius n0 centered at 0 in the space C([0, b];E).
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Suppose by contradiction that for every n ∈ N there exists a function yn ∈
C([0, b];E) such that

(4.7) ‖yn‖C 6 n and ‖R(yn)‖C > n.

From (Φ), by considering a subsequence if necessary, we have

(4.8) lim
n→+∞

1

n

∫ b

0

ϕn(s) ds = β.

Fixing t ∈ [0, b], from (4.5) and (Φ), we have

‖R(yn)(t)‖ 6 ‖T (t, 0)x0‖ + ‖T (t, 0)θ(yn)‖(4.9)

+

∥∥∥∥
∫ t

0

T (t, s)g(s, yn(s)) ds

∥∥∥∥ +

∥∥∥∥
∫ t

0

T (t, s)Buyn
(s) ds

∥∥∥∥

6 D
(
‖x0‖ + ‖θ(yn)‖

)
+

∫ t

0

D
(
‖g(s, yn(s))‖ + ‖B‖L (U ;E)‖uyn

(s)‖
)
ds

6 D

(
‖x0‖ + ‖θ(yn)‖ +

∫ b

0

ϕn(s) ds+M1

√
b‖uyn

‖L2

)
,

whereM1, D are the constants which have been introduced in order to define K1,K2

(see (4.3)) and L (U ;E) is the space of bounded linear operators from U to E.

Moreover, from (4.6) and (4.7) we obtain the estimate

(4.10) ‖uyn
‖L2 6 M2

(
‖x1‖ + (1 +D)‖θ(yn)‖ +D‖x0‖ +D

∫ b

0

ϕn(s) ds

)
,

M2 being the latter constant used in (4.3).

From (4.7), (4.9) and (4.10) we deduce

n < ‖R(yn)‖C 6 (D +M1M2D
2
√
b)‖x0‖ +M1M2D

√
b‖x1‖

+ (D +M1M2D
√
b+M1M2D

2
√
b)‖θ(yn)‖

+ (D +M1M2D
2
√
b)

∫ b

0

ϕn(s) ds.

Taking into account (4.3) and (4.4) and dividing by n, we get

(4.11) 1 <
1

n

(
C +K1‖θ(yn)‖ +K2

∫ b

0

ϕn(s) ds

)

where C = (D +M1M2D
2
√
b)‖x0‖ +M1M2D

√
b‖x1‖.
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Now, if the set {yn : n ∈ N} is bounded, then by (Θ2), the set {θ(yn) : n ∈ N} is
bounded too. Hence

lim
n→+∞

‖θ(yn)‖
n

= 0 6 α.

Then, passing to the limit for n→ +∞ in (4.11), from (4.8) and (4.4) we obtain the
contradiction

1 6 K1α+K2β < 1.

Otherwise, if {yn : n ∈ N} is not bounded, there exists a subsequence (ynk
)k∈N such

that lim
k→+∞

‖ynk
‖ = +∞. Now, by (4.7) and (Θ2), we deduce

lim sup
k→+∞

‖θ(ynk
)‖

nk
6 lim sup

‖ynk
‖→+∞

‖θ(ynk
)‖

‖ynk
‖ 6 lim sup

‖y‖→+∞

‖θ(y)‖
‖y‖ = α,

and so, by considering (4.11) relative to the subsequence, with the same reasoning

as before, we obtain again the above contradiction.

Step 2. We prove that R(Bn0
(0)) is a relatively compact subset of C([0, b];E).

We start by showing that the set R(Bn0
(0))(t) is relatively compact in E, for every

t ∈ [0, b].

Consider the set

(4.12) S = {g(·, y(·)) ∈ L1([0, b];E) : y ∈ Bn0
(0)}.

Since L1([0, b];E) is a separable space, S is a separable set. It is easy to see that

there exists a countable subset of S

(4.13) {gn(·) = g(·, yn(·)) : n ∈ N}

which is dense in S.

Let us define a multifunction G1 : [0, b] → P(E) in the following way:

G1(t) = co{gn(t) : n ∈ N}, t ∈ [0, b].

First we prove that G1 is measurable. It is enough to show that (cf. [13], Proposi-

tion 2.2.3) there exists a countable set Γ of measurable selectors of G1 such that

G1(t) = Γ(t), t ∈ [0, b].

To this aim, we define a countable set of functions

Γ =

{
γ : [0, b] → E : γ(t) =

+∞∑

n=1

qngn(t), t ∈ [0, b], (qn)n ∈ Q

}
,
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where

Q =

{
(qn)n∈N :

+∞∑

n=1

qn = 1, qn ∈ Q
+
0 , ∃ k ∈ N : qn = 0, n > k

}
.

Clearly, every γ ∈ Γ is a measurable selector of G1. Now, for a fixed t ∈ [0, b], we

prove that

(4.14) Γ(t) = G1(t).

Obviously,

(4.15) Γ(t) ⊂ G1(t).

To get the other inclusion it is sufficient to prove that co{gn(t) : n ∈ N} ⊂ Γ(t).

Let p(t) =
+∞∑
n=1

αngn(t), where αn ∈ [0, 1],
+∞∑
n=1

αn = 1 and there exists k ∈ N such

that αn = 0, n > k.

We note that there exist k sequences (q1m)m∈N, . . . , (q
k
m)m∈N of rational non nega-

tive numbers converging respectively to α1, . . . , αk.

So we have p(t) = lim
m→+∞

( k∑
n=1

qn
mgn(t)

)
∈ Γ(t).

Since (4.14) is proved, we can conclude that G1 is measurable.

We prove now that G1 is integrably bounded. From (4.13) and (Φ), recalling that

yn ∈ Bn0
(0), n ∈ N, for almost every t ∈ [0, b] we have

‖co{gn(t) : n ∈ N}‖ 6 sup
‖x‖6n0

‖F (t, x)‖ 6 ϕn0
(t).

Then it follows immediately that

(4.16) ‖G1(t)‖ 6 ϕn0
(t), a.e. t ∈ [0, b].

We denote N1 = {t ∈ [0, b] : ‖G1(t)‖ > ϕn0
(t)}.

Now we setK = {Buy : y ∈ Bn0
(0)}, where uy is the function defined in (4.6). Let

us note that the function Buy : [0, b] → E, (Buy)(t) = Buy(t), is Bochner integrable.

As for the set S defined in (4.12), it is possible to say that there exists a countable

subset of K, {Bun : n ∈ N}, dense in K.
Let G2 : [0, b] → P(E) be the multifunction defined by

G2(t) = co{Bun(t) : n ∈ N}, t ∈ [0, b].

By proceeding as for G1, it is possible to claim that G2 is measurable.
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Furthermore, also G2 is integrably bounded. In fact, first of all we observe that

(4.17) ‖co{Bun : n ∈ N}‖L1 6 sup
n∈N

‖Bun‖L1 6 M1 sup
y∈Bn0

(0)

‖uy‖L2 ,

since ‖B‖L (U ;E) 6 M1.

Now, since (4.10) is true also for every y ∈ Bn0
(0), by applying (Θ2) we get

(4.18) ‖uy‖L2 6 M2

(
‖x1‖ + (1 +D)‖θ(y)‖ +D‖x0‖ +D

∫ b

0

ϕn0
(s) ds

)

6 M2

(
‖x1‖ + (1 +D)‖θ(Bn0

(0))‖ +D‖x0‖ +D

∫ b

0

ϕn0
(s) ds

)

:= M4.

So from (4.17) and (4.18), the following estimate holds:

‖G2‖L1 6 M1M4.

Then, putting ψ(t) = M1M2/b, t ∈ [0, b], we can deduce

(4.19) ‖G2(t)‖ 6 ψ(t), a.e. t ∈ [0, b],

i.e. we have the integrable boundedness of G2.

Now, put N2 = {t ∈ [0, b] : ‖G2(t)‖ > ψ(t)} and consider the set N = N1 ∪ N2.

For every t ∈ [0, b], let Φt : [0, t] → P(E) be the multifunction defined by

Φt(s) =

{
T (t, s)(G1(s) +G2(s)), s ∈ [0, t] \N,
{0}, s ∈ [0, t] ∩N.

From (4.16) and (4.19), taking into account (A), it is easy to see that Φt has compact

and convex values and that ‖T (t, s)(G1(s)+G2(s))‖ 6 D(ϕn0
(s)+ψ(s)), s ∈ [0, t]\N

(cf. (2.3)). The integrable boundedness of Φt immediately follows.

Now we shall prove that Φt is graph measurable.

The multifunctions G̃i : [0, t]× E → P(E), i = 1, 2, defined by

G̃i(s, x) = Gi(s), (s, x) ∈ [0, t] × E,

are obviously measurable, i.e. G̃−
i (A) ∈ Λ × B(E) for every open A ⊂ E.

Hence, they have property (l-SD) (cf. [22], Theorem 2.3.2). Therefore for every

i = 1, 2 and every ε > 0 there exists a compact Ki
ε ⊂ [0, t] with λ([0, t] \Ki

ε) < ε/2
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such that G̃i|Ki
ε×E is lower semicontinuous and hence, equivalently, Gi|Ki

ε
is lower

semicontinuous.

Now we prove that the multifunction Φ̃t : [0, t]× E → Pkc(E) defined as

Φ̃t(s, x) = Φt(s), (s, x) ∈ [0, t] × E

has property (l-SD).

To this aim, put Φ∗
t (s) = T (t, s)(G1(s) + G2(s)), s ∈ [0, t]. By Proposition 1.2.6

of [13] and the continuity of T (t, ·) in [0, t], the multifunction Φ∗
t : [0, t] → P(E) is

lower semicontinuous in Kε = K1
ε ∩ K2

ε . Hence, Proposition 1.2.38 of [13] implies

that Φt is lower semicontinuous in Kε and so we have lower semicontinuity of Φ̃t

in Kε × E. Observing that λ([0, t] \Kε) < ε, we conclude that Φ̃t verifies property

(l-SD).

Now, by Theorem 2.3.2 of [22] we get measurability of Φ̃t; hence Φt is graph

measurable (see [13], Proposition 2.1.7).

At this point all the assumptions of Theorem 2.5.23 in [13] are verified so that,

following its proof, we get ∫ t

0

Φt(s) ds ∈ Pkc(E).

Consider now the set

H(t) =

{∫ t

0

T (t, s)( g(s, y(s)) +Buy(s)) ds : y ∈ Bn0
(0)

}
.

It is easy to see that H(t) ⊆
∫ t

0
Φt(s) ds, so we can deduce its relative compactness.

Hence, since (4.5) implies the inclusion

(4.20) R(Bn0
(0))(t) ⊂ T (t, 0)[x0 − θ(Bn0

(0))] +H(t)

and thanks to (A) and (Θ2), we can state that the set R(Bn0
(0))(t) is relatively

compact in E.

Next, we prove that R(Bn0
) is equicontinuous.

Fixed y ∈ Bn0
and ε > 0, let t1, t2 ∈ [0, b] with 0 6 t1 < t2. Put γ ∈]0, t1[. Using

constants M1,M2, D (cf. (4.3) and (2.3)), we obtain the following estimate:

‖R(y)(t2) −R(y)(t1)‖
6 ‖T (t2, 0) − T (t1, 0)‖L (E)‖x0 − θ(y)‖

+

∫ t2

t1

‖T (t2, s)‖L (E)‖g(s, y(s)) +Buy(s)‖ ds

+

∫ t1

0

‖T (t2, s) − T (t1, s)‖L (E)‖g(s, y(s)) +Buy(s)‖ ds
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6 ‖T (t2, 0) − T (t1, 0)‖L (E)‖x0 − θ(y)‖ +

∫ t2

t1

Dϕn0
(s) ds

+

∫ t2

t1

DM1‖uy(s)‖U ds+

∫ t1−γ

0

‖T (t2, s) − T (t1, s)‖L (E)ϕn0
(s) ds

+

∫ t1−γ

0

‖T (t2, s) − T (t1, s)‖L (E)M1‖uy(s)‖U ds

+

∫ t1

t1−γ

2Dϕn0
(s) ds+

∫ t1

t1−γ

2DM1‖uy(s)‖U ds,

and using (4.18), we have

‖R(y)(t2) −R(y)(t1)‖ 6 ‖T (t2, 0) − T (t1, 0)‖L (E)‖x0 − θ(y)‖

+D

∫ t2

t1

ϕn0
(s) ds+DM1M4

√
t2 − t1

+

∫ t1−γ

0

‖T (t2, s) − T (t1, s)‖L (E)ϕn0
(s) ds

+M1M4

( ∫ t1−γ

0

‖T (t2, s) − T (t1, s)‖2
L (E) ds

)1/2

+ 2D

∫ t1

t1−γ

ϕn0
(s) ds+ 2DM1M4

√
γ.

Put k = ‖x0‖+‖θ(Bn0
(0))‖+D+M1DM4+

∫ b

0
ϕn0

(s) ds+M1M4

√
b+2D+2M1DM4.

There exists a constant δ1(ε/7k) > 0 for which, if γ < min{δ1(ε/7k), (ε/7k)2}, we
have

(4.21) 2D

∫ t1

t1−γ

ϕn0
(s) ds <

ε

7
and 2M1DM4

√
γ <

ε

7
.

By virtue of jj) of the evolution systems and the summability of ϕn0
, there exists

δ2(ε/7k) > 0 such that, if t1, t2 verify 0 < t2 − t1 < δ2(ε/7k), we have

(4.22) ‖T (t2, s) − T (t1, s)‖L (E) <
ε

7k
, s ∈ [0, t1] and D

∫ t2

t1

ϕn0
(s) ds <

ε

7
.

Putting δ(ε) = min{(ε/7k)2 ; δ1(ε/7k); δ2(ε/7k)}, from (4.21) and (4.22) we get

‖R(y)(t2) −R(y)(t1)‖ < ε, 0 < t2 − t1 < δ(ε).

At this point, by applying the Ascoli-Arzelà theorem, we have that the set R(Bn0
)

is relatively compact in C([0, b];E).
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Step 3. Let us prove that R|Bn0
(0) : Bn0

(0) → Bn0
(0) is continuous.

Fixing y ∈ Bn0
(0), let (yn)n, yn ∈ Bn0

(0), be a sequence converging to y in

C([0, b];E). From (4.5), for every t ∈ [0, b] and every n ∈ N we have

‖R(yn)(t) −R(y)(t)‖ 6 ‖T (t, 0)(θ(yn) − θ(y))‖

+

∫ t

0

‖T (t, s)(g(s, yn(s)) − g(s, y(s))) ds+ T (t, s)(Buyn
(s) −Buy(s))‖ ds

6 D‖θ(yn) − θ(y)‖ +

∫ b

0

D‖g(s, yn(s)) − g(s, y(s))‖ ds

+

∫ b

0

D‖Buyn
(s) −Buy(s)‖ ds;

so, bearing in mind the fact thatM1 andM2 bound the linear operators B and W̃
−1

respectively, from (4.6) we obtain

‖R(yn)(t) −R(y)(t)‖ 6 D‖θ(yn) − θ(y)‖ +D

∫ b

0

‖g(s, yn(s)) − g(s, y(s))‖ ds

+M1M2D

∫ b

0

(
‖θ(yn) − θ(y)‖ +D‖θ(yn) − θ(y)‖

+D

∫ b

0

‖g(r, yn(r)) − g(r, y(r))‖ dr

)
ds

6 (D + bM1M2D + bM1M2D
2)‖θ(yn) − θ(y)‖

+ (D + bM1M2D
2)

∫ b

0

‖g(r, yn(r)) − g(r, y(r))‖ dr.

Therefore we have

(4.23) ‖R(yn) −R(y)‖C

6 (D + bM1M2D + bM1M2D
2)‖θ(yn) − θ(y)‖

+ (D + bM1M2D
2)

∫ b

0

‖g(r, yn(r)) − g(r, y(r))‖ dr, n ∈ N.

Hence, we can conclude that (R(yn))n∈N converges to R(y) in C([0, b];E).

Step 4. Now we are in position to apply the Schauder Theorem to the function

R|Bn0
(0) and claim that there exists y ∈ C([0, b];E) such that

y(t) = T (t, 0)(x0 − θ(y)) +

∫ t

0

T (t, s)(g(s, y(s)) +Buy(s)) ds, t ∈ [0, b].

Further, it is immediately seen that y also satisfies the terminal condition (4.1).

Therefore, the controllability of (CP) is proved. �
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As for Corollary 3.1, in case that the multifunction takes on values in the family

D(E), from Theorem 4.1 we can deduce

Corollary 4.1. Let U and E be Banach spaces, with E separable. Assume

hypotheses (A), (B) and (Θ2) hold. If F : [0, b] × E → D(E) has properties (l-SD),

(Φ) and (4.4), then (CP) is controllable on [0, b].

Obviously (2.2) yields that the values of the multifunction in the previous corollary

are convex.

Otherwise, if the values of the multifunction are compact and not necessarily

convex, we can provide another controllability theorem where hypothesis (M) is

removed.

To this aim, we recall beforehand the following lemma (cf. [20], 4.3 Fact 14).

Lemma 4.1. Let E be a Banach space. For a multifunction F : [0, b]×E → P(E)

the following conditions are equivalent:

(I) F has property (l-SD);

(II) F is almost lower semicontinuous, i.e. there exists a sequence of disjoint compact

sets (Ik)k∈N, Ik ⊂ [0, b], such that λ
(
[0, b] \

+∞⋃
k=1

Ik

)
= 0 and F|Ik×E , k ∈ N, is

lower semicontinuous.

Theorem 4.2. Let U and E be Banach spaces, with E separable. Assume

hypotheses (A), (B) and (Θ2) hold. If F : [0, b]×E → Pk(E) has properties (l-SD),

(Φ) and (4.4), then (CP) is controllable on [0, b].

P r o o f. We consider the Nemitsky map N : C([0, d];E) → P(L1([0, b];E))

defined by

N(y) = S1
F (·,y(·)), y ∈ C([0, b];E).

First of all we note that N is well defined. In fact, from Lemma 3.1 in [7] and taking

into account Lemma 4.1, we can say that for every y ∈ C([0, b];E) there exists a

(strongly) measurable selector fy : [0, b] → E of F (·, y(·)). By (Φ) the selector fy is

Bochner integrable, hence S 1
F (·,y(·)) 6= ∅.

In order to prove that N has closed values, we fix y ∈ C([0, b];E) and consider a

sequence (fn)n∈N, fn ∈ N(y), converging to f in L1([0, b];E). Since the sequence also

a.e. converges in [0, b] to f and F has closed values, we can conclude that f ∈ N(y).

Moreover, it is easy to see that, for a fixed y ∈ C([0, b];E), N(y) is a decomposable

set, i.e. fχM + gχ[0,b]\M ∈ N(y) for every f, g ∈ N(y) and every measurable M ⊂
[0, b].

Let us show that N is lower semicontinuous.
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By virtue of Proposition 1.2.66 in [13], it is sufficient to prove that, for a fixed

y ∈ C([0, b];E), for every ε > 0 there exists σ(ε, y) > 0 such that for every y ∈
C([0, b];E) with ‖y − y‖C 6 σ(ε, y) we have

N(y) ⊂ Bε(N(y)),

where Bε(N(y)) = {z ∈ L1([0, b];E) : ̺L1(z,N(y)) 6 ε} and ̺L1 is the distance

from a point to a set in L1([0, b];E).

We start showing that for every z ∈ L1([0, b];E) we have

(4.24) ̺
L1

(z,N(y)) =

∫ b

0

̺
E
(z(s), F (s, y(s))) ds, y ∈ C([0, b];E)

where ̺E is defined analogously to ̺L1 .

In fact, using again Lemma 4.1, from Lemma 5.5.2 of [15] we can conclude that

for every y ∈ C([0, b];E) there exists a function w ∈ N(y) such that

(4.25)

∫ b

0

̺
E
(z(s), F (s, y(s))) ds =

∫ b

0

‖z(s) − w(s)‖ ds.

Since w ∈ N(y), we can also write

̺
L1

(z,N(y)) 6

∫ b

0

‖z(s) − w(s)‖ ds.

Now suppose, by contradiction, that strict inequality holds in the expression above.

Then a function v ∈ N(y) such that

∫ b

0

‖z(s)− v(s)‖ ds <

∫ b

0

‖z(s) − w(s)‖ ds

had to exist and so, using (4.25) too, we would get

∫ b

0

‖z(s) − v(s)‖ ds <

∫ b

0

̺
E
(z(s), F (s, y(s))) ds 6

∫ b

0

‖z(s) − v(s)‖ ds.

Clearly it is a contradiction.

So we can conclude that ̺
L1

(z,N(y)) =
∫ b

0
‖z(s) − w(s)‖ ds.

Hence, even (4.24) is satisfied.

Now, by applying Lemma 5.5.1 of [15], for a fixed ε > 0 there exists a σ =

σ(ε/b, y) > 0 such that for every y ∈ C([0, b];E) with ‖y − y‖C 6 σ we can write

(4.26) F (t, y(t)) ⊂ Bε/b(F (t, y(t))), a.e. t ∈ [0, b].
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Fixing z in N(y), from (4.24) and (4.26) we deduce that for every y ∈ C([0, b];E)

with ‖y − y‖C 6 σ the following estimate holds:

̺
L1

(z,N(y)) =

∫ b

0

̺
E
(z(s), F (s, y(s))) ds 6

∫ b

0

ε

b
ds = ε.

Hence we get

(4.27) N(y) ⊂ Bε(N(y)).

Now we are in position to use the Bressan-Colombo selection theorem (cf. [5]). Hence

there exists a continuous function r : C([0, b];E) → L1([0, b];E) such that r(y) ∈
N(y) for every y ∈ C([0, b];E).

Fixing x1 ∈ E, we consider the function R̂ : C([0, b];E) → C([0, b];E) defined by

R̂(y)(t) = T (t, 0)(x0 − θ(y)) +

∫ t

0

T (t, s)(r(y)(s) +Buy(s)) ds, t ∈ [0, b]

where for the representative uy, chosen as in the proof of Theorem 4.1, we use the

identification

uy(t) = W̃−1

(
x1 − θ(y) − T (b, 0)(x0 − θ(y)) −

∫ b

0

T (b, s)r(y)(s) ds

)
(t), t ∈ [0, b].

Proceeding as in Theorem 4.1, we can claim that there exists n0 ∈ N such that

R̂(Bn0
(0)) ⊆ Bn0

(0), R̂(Bn0
(0)) is compact in C([0, b];E) and R̂|Bn0

(0) is continuous.

Therefore we can apply the Schauder fixed point theorem and obtain the existence

of y ∈ Bn0
(0) such that

y(t) = T (t, 0)(x0 − θ(y)) +

∫ t

0

T (t, s)(r(y)(s) +Buy(s)) ds, t ∈ [0, b].

Moreover, it is easy to see that y also verifies y(b) + θ(y) = x1.

Hence, we can conclude the controllability of problem (CP). �

Remark 4.3. We wish to note that Theorem 4.1 covers a large class of multi-

functions since no assumptions are required on the values of the multifunction.

Moreover, we observe that our results extend in a broad sense the analogous ones

in [17] as the following example shows.

Example 4.1. Put E = R, let us suppose that the constant in assumption (Θ2)

is α = 0.
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We consider the multifunction F : [0, 1]× R → Pkc(R) defined by

F (t, x) =

{
[0,−β|x| log t], (t, x) ∈ ]0, 1] × R,

{0}, otherwise

with β > 0.

It is easy to check that F verifies (M) and (l-SD). Obviously (4.4) is true for β

sufficiently small. Further, by considering

ψn(t) =

{
−nβ log t, t ∈ ]0, 1],

0, t = 0,
n ∈ N,

we can see that F verifies also (Φ).

On the other hand, by the definition of F every sequence (ϕn)n∈N of summable

functions with sup
‖x‖6n

‖F (t, x)‖ 6 ϕn(t), for a.e. t ∈ [0, 1], n ∈ N, is such that

lim inf
n→+∞

1

n

∫ 1

0

ϕn(s) ds > β 6= 0.

So the assumption required in [17] cannot be satisfied, which shows that our results

improve also those in [17].

Remark 4.4. In order to obtain the controllability, with respect to Section 3

here we strengthen the hypothesis on the linear part of the differential inclusion by

requiring property (A), but concerning the nonlinearity we omit hypothesis (F2) and

substitute (F1) with the weaker (Φ).

The fact that (Φ) is weaker than (F1) is immediately seen by considering the

sequence (ϕn)n∈N defined by ϕn(t) = m(t)(1 + n), t ∈ [0, b] (where m is from (F1)).

It should be clarified that conditions (A) and (B), assumed in several papers in

order to obtain the controllability (see for instance the recent [9], [17]), implicitly

imply that the Banach space E has finite dimension, as proved by Hernández and

O’Regan in [12].

Therefore, for lower Scorza-Dragoni nonlinearities the controllability in infinite-

dimensional Banach spaces is an open problem at present.

243



References

[1] R.Abraham, J. E.Marsden and T. S. Ratiu: Manifolds, Tensor Analysis, and Applica-
tions. Second Edition, Springer-Verlag, New York, 1988.

[2] R.A.Al-Omair and A.G. Ibrahim: Existence of mild solutions of a semilinear evolution
differential inclusion with nonlocal conditions. Electron. J. Differential Equations 42
(2009), 11 pp.

[3] K.Balachandran and J. P.Dauer: Controllability of nonlinear systems in Banach spaces:
a survey. J. Optim. Theory Appl. 115 (2002), 7–28.

[4] S.Boulite, A. Idrissi and L.Maniar: Controllability of semilinear boundary problems
with nonlocal initial conditions. J. Math. Anal. Appl. 316 (2006), 566–578.

[5] A.Bressan and G.Colombo: Extensions and selections of maps with decomposable val-
ues. Studia Math. 90 (1988), 69–85.

[6] L.Byszewski: Theorems about the existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494–505.

[7] T.Cardinali and S. Panfili: Global mild solutions for semilinear differential inclusions
and applications to impulsive problems. PU.M.A. 19 (2008), 1–19.

[8] T.Cardinali, F. Portigiani and P.Rubbioni: Local mild solutions and impulsive mild
solutions for semilinear Cauchy problems involving lower Scorza-Dragoni multifunctions.
Topol. Methods Nonlinear Anal. 32 (2008), 247–259.

[9] Y.-K.Chang, W.-T. Li and J. J.Nieto: Controllability of evolution differential inclusions
in Banach spaces. Nonlinear Anal. 67 (2007), 623–632.

[10] L.Górniewicz, S. K.Ntouyas and D.O’Regan: Existence results for first and second order
semilinear differential inclusions with nonlocal conditions. J. Comput. Anal. Appl. 9
(2007), 287–310.

[11] L.Górniewicz, S.K.Ntouyas and D.O’Regan: Controllability of semilinear differential
equations and inclusions via semigroup theory in Banach spaces. Rep. Math. Phys. 56
(2005), 437–470.

[12] E.M.Hernández and D.O’Regan: Controllability of Volterra-Fredholm type systems in
Banach spaces. J. Franklin Inst. 346 (2009), 95–101.

[13] S.Hu and N. S.Papageorgiou: Handbook of Multivalued Analysis. Vol. I: Theory. Math-
ematics and its Applications, 419. Kluwer Academic Publishers, Dordrecht, 1997.

[14] S.Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Vol. II: Applications.
Kluwer Academic Publishers, Dordrecht, 2000.

[15] M.Kamenskii, V. V.Obukhovskii and P. Zecca: Condensing Multivalued Maps and Semi-
linear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis
and Applications, 7. Berlin: de Gruyter, 2001.

[16] S.G.Krein: Linear Differential Equations in Banach Spaces. Amer. Math. Soc., Provi-
dence, 1971.

[17] G.Li and X.Xue: Controllability of evolution inclusions with nonlocal conditions. Appl.
Math. Comput. 141 (2003), 375–384.

[18] E.Michael: Continuous selections I. Ann. Math. 63 (1956), 361–382.

[19] H.L. Royden: Real Analysis. Macmillan Publishing Company, New York, 1988.

[20] H. J. Sussman: Needle variations and almost lower semicontinuous differential inclusions.
Set-Valued Analysis 10 (2002), 233–285.

[21] A.E. Taylor and D.C. Lay: Introduction to Functional Analysis. Robert E. Krieger Pub-
lishing Co., Inc., Malabar, FL, 1986.

[22] A.Tolstonogov: Differential Inclusions in a Banach Space. Kluwer Academic Publishers,
Dordrecht, 2000.

244



[23] L. Zhu and G. Li: On a nonlocal problem for semilinear differential equations with upper
semicontinuous nonlinearities in general Banach spaces. J. Math. Anal. Appl. 341 (2008),
660–675.

Authors’ addresses: T i z i a n a C a r d i n a l i, University of Perugia, Perugia, Italy,
e-mail: tiziana@dmi.unipg.it; Fr a n c e s c o Po r t i g i a n i, University of Modena-Reggio
Emilia, Modena, Italy, e-mail: francesco.portigiani@unimore.it; P a o l a R u b b i o n i
(corresponding author), University of Perugia, Perugia, Italy, e-mail: rubbioni@dmi.
unipg.it.

245


		webmaster@dml.cz
	2020-07-03T19:12:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




