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Abstract. Let A be a square (0, 1)-matrix. Then A is a Hall matrix provided it has a
nonzero permanent. The Hall exponent of A is the smallest positive integer k, if such exists,
such that Ak is a Hall matrix. The Hall exponent has received considerable attention, and
we both review and expand on some of its properties. Viewing A as the adjacency matrix
of a digraph, we prove several properties of the Hall exponents of line digraphs with some
emphasis on line digraphs of tournament (matrices).
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1. Introduction

A nonnegative matrix A = [aij ] of order n has been called a Hall matrix [11]

provided there is a permutation i1, i2, . . . , in of {1, 2, . . . , n} such that

a1i1a2i2 . . . anin
6= 0;

equivalently, the permanent of A is nonzero. With A we can associate a bipartite

graph G(A) and a digraph D(A) as follows: G(A) has 2n vertices corresponding to

the n rows and n columns of A with an edge between a row vertex i and a column

vertex j if and only if aij 6= 0 (1 6 i, j 6 n). D(A) has n vertices 1, 2, . . . , n, corre-

sponding simultaneously to the rows and columns of A with an edge from a vertex i

to a vertex j if and only if aij 6= 0 (1 6 i, j 6 n). The matrix A is the adjacency

matrix of this digraph.

We have that A is a Hall matrix if and only if G(A) has a perfect matching. Also,

A is a Hall matrix if and only if the vertices of D(A) can be partitioned into sets such
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that each is the set of vertices of a directed cycle of D(A) (this corresponds to the

factorization of a permutation into permutation cycles). The well-known Frobenius-

König theorem [5] is equivalent to the fact that A is a Hall matrix if and only if A

does not have a p by q zero submatrix for some p and q with p+q > n+1. We assume

that the reader is familiar with the relationship between matrices and digraphs or

bipartite graphs, and refer the reader to [5] for undefined terms and basic results.

Thus A is a Hall matrix if and only if given any nonempty set U of vertices of D(A),

the set W of terminal vertices of the edges with their initial vertex in U satisfies

|W | > |U |. Note that W and U need not be disjoint.

In investigating Hall matrices, there is no loss of generality in assuming, as we do,

that our matrices are (0, 1)-matrices with Boolean arithmetic used so that 1+1 = 1.

We let Bn denote the set of all (0, 1)-matrices of order n. Via the adjacency matrix,

there is a one-to-one correspondence between matrices in Bn and digraphs with

vertices labeled as 1, 2, . . . , n. As a result, we identifyBn also with the set of digraphs

with vertices labeled 1, 2, . . . , n and freely interchange a matrix and a digraph. For

X ⊆ {1, 2, . . . , n} and t > 0, let Rt(X) be the set of all vertices that can be reached

by a walk of length t starting from a vertex in X . Then by the Frobenius-König

theorem, h(A) (or h(D(A))) equals the smallest t such that

|Rt(X)| > |X | (X ⊆ {1, 2, . . . , n}).

Let Hn denote the set of all Hall matrices of order n (or their digraphs), and let

H̃n denote the Hall class of all (0, 1)-matrices of order n (or their digraphs) some

positive power of which is a Hall matrix:

H̃n = {A ∈ Bn : Ak ∈ Hn for some k > 1}.

In the digraph interpretation, Ak ∈ Hn means that there is a permutation σ of

{1, 2, . . . , n} such that there is a walk of length k from a vertex i to a vertex σ(i)

for i = 1, 2, . . . , n. If A ∈ H̃n, then the Hall exponent h(A) of A is the smallest

positive integer k such that Ak ∈ Hn. Clearly, Hn ⊆ H̃n and indeed for A ∈ H̃n,

h(A) = 1 if and only if A ∈ Hn. In view of our identification of matrices in Bn with

digraphs, we can also refer to the Hall exponent and, later, the strict Hall exponent

of a digraph.

Recall that a matrix A is irreducible if and only is its digraph D(A) is strongly

connected. Thus A is irreducible if and only if for each set U of vertices with

∅ ⊂ U ⊂ {1, 2, . . . , n} there is at least one edge with its initial vertex in U and its

terminal vertex in its complement U , that is, R1(U) ∩ U 6= ∅. In investigating the
Hall class H̃n, it is natural to consider only irreducible matrices (strongly connected
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digraphs), since according to Theorem 1 of [4], A ∈ H̃n if and only if A does not

have an irreducible component equal to the zero matrix of order 1. For the remainder

of this paper, we assume that n > 2 and confine our attention to the class In of

irreducible matrices in Bn, that is, the irreducible matrices in H̃n.

In [4] the strict Hall class H ∗
n is defined to be the class of all (0, 1)-matrices

of order n such that Ap ∈ Hn for all sufficiently large positive integers p. The

strict Hall exponent h∗(A) of a matrix A ∈ H ∗
n is the smallest integer k such that

Ap ∈ Hn for all p > k. Clearly, h(A) 6 h∗(A). Let d be the index of imprimitivity

of an irreducible matrix A, that is, the greatest common divisor of the lengths of

the cycles in the digraph D(A). Then [5] there is a partition of {1, 2, . . . , n} into
sets U1, U2, . . . , Ud such that all edges of D go from a vertex in Ui to a vertex in

Ui+1 (where Ud+1 = U1). The sets U1, U2, . . . , Ud are called the sets of imprimitivity

of A and of D(A), and their cardinalities are the imprimitivity parameters of A and

of D(A). In [4] it is shown that for an irreducible matrix A ∈ Bn, A ∈ H ∗
n if and

only if its imprimitivity parameters are all equal. Clearly,Hn ⊆ H ∗
n ⊆ H̃n. Finally,

recall that a matrix A ∈ Bn is primitive if d = 1 and this is equivalent to some

positive power of A having no 0s; the smallest such power e(A) is the (primitive)

exponent of A. It follows easily that if A is primitive, then Ak has no 0s for all

k > e(A). Let Pn denote the class of all primitive matrices of order n. Then

Pn ⊆ H ∗
n , and if A ∈ Pn, then h∗(A) 6 e(A).

We now briefly summarize some known facts about the exponents h(A) and h∗(A)

for irreducible matrices A ∈ In that are relevant to our investigations. First we note

that both the Hall and strict Hall exponents are invariant under simultaneous row

and column permutations.

Fact (i) [4] If A has s 1s on its main diagonal (D(A) has s loops) where 1 6 s 6 n−1,

then h∗(A) 6 n − s. (If s = n, that is, A has all 1s on its main diagonal, then

A ∈ H ∗
n and h∗(A) = 1.) The maximum (strict) Hall exponent of an irreducible

matrix in Bn with nonzero trace is n − 1.

Fact (ii) [4] If the digraph D(A) of A has a cycle of length r and there are s vertices

in the union of all cycles of length r in D(A), then

h(A) 6

{
r if s = n,

r(n − s) if 1 6 s 6 n − 1.

(In fact, there is a small error in the proof in [4]. We fix this error in the next

section, and indeed prove a somewhat better inequality.)

Fact (iii) [4] h(A) 6
⌊

1
4 (n2 − 1)

⌋
if n > 3. It was conjectured that in fact h(A) 6

2n − 8 for n > 8, which was the largest Hall exponent of a matrix constructed

in [4].
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Fact (iv) [8] If A ∈ Pn has at least one pair of symmetrically opposite 1s (D(A) has

a cycle of length 2), then h∗(A) 6 2n− 3. More generally, if there are s rows that

contain a 1 whose symmetrically opposite 1 is also in A, then h∗(A) 6 2n− s− 1.

Fact (v) [8] The maximum strict Hall exponent of a symmetric matrix inH ∗
n is n−2

if n is even and n − 1 if n is odd.

Fact (vi) [9] The maximum Hall exponent of a matrix in Pn with at least one pair

of symmetrically opposite 1s is 2n − 8 for n > 8, thus verifying the conjecture

in (iii) for this restricted class of matrices. In [7] the conjecture is also verified

for primitive matrices having a set of cycles with at least one common vertex the

lengths of which have the greatest common divisor equal to 1.

Fact (vii) [9] The maximum Hall exponent of a symmetric matrix inPn is 2 if n > 2.

There are other more specialized results in the papers [4], [8], [9] that we do not

quote here.

We now briefly summarize the contents of this paper. First, we improve the bound

in Fact (ii) for the Hall exponent We also find some bounds for the Hall exponent

of a matrix with additional assumptions on the matrix; in particular, we obtain

the bound 2n − 8 for another class of matrices. Our main emphasis is on the Hall

exponent of tournament digraphs (matrices) and their line digraphs, and we obtain

several bounds on their Hall exponents.

2. Hall exponents of matrices

We begin with an improvement (and corrected proof) of Corollary 3 in [4]

(Fact (ii)).

Theorem 2.1. Let A be a matrix in In with sets of imprimitivity U1, U2, . . . , Ud

and imprimitivity parameters n1 = |U1|, n2 = |U2|, . . ., nd = |Ud|. Assume that
D(A) has a cycle of length r and that for i = 1, 2, . . . , d, there are ui vertices of Ui

that belong to cycles of length r. Then

h(A) 6 r max {1, max{n1 − u1, n2 − u2, . . . , nd − ud}}
6 r max{1, n− s},

where s = u1 + u2 + . . . + ud is the number of vertices of D(A) belonging to cycles

of length r.

P r o o f. Note that if all vertices of D(A) belong to a cycle of length r, then Ar

has all 1s on its main diagonal.
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There exists a permutation matrix such that PAP t has the form




On1
A1 O . . . O

O On2
A2 . . . O

...
...

...
. . .

...

O O O . . . Ad−1

Ad O O . . . Ond




where the sets U1, U2, . . . , Ud correspond to the rows of A1, A2, . . . , Ad and the

columns of Ad, A1, . . . , Ad−1, respectively (see [5]). Each cycle of the digraph D(A)

is a multiple of d and contains the same number of vertices from each Ui. Hence d|r
and each cycle of length r contains r/d vertices of each Ui. Without loss of generality

we may assume that A itself has the form given in (2.1). Then

Ad = diag(B1, B2, . . . , Bd)

where B1, B2, . . . , Bd are primitive matrices (see [5]), and

Ar = (Ad)r/d = diag(C1, C2, . . . , Cd),

where Ci = B
r/d
i for i = 1, 2, . . . , r.1 The matrices Ci being powers of a primi-

tive matrix are also primitive and have ui 1s on their main diagonals. By Fact (i),

h∗(Ci) 6 max{1, ni − ui} for i = 1, 2, . . . , d. Hence

h∗(A) 6 r max {1, max{n1 − u1, n2 − u2, . . . , nd − ud}} 6 r max{1, n − s}.

�

Corollary 2.2. If in Theorem 2.1 the imprimitivity parameters are all equal and

D(A) contains a cycle of length d, then A ∈ H ∗
n and

h(A) 6 h∗(A) 6 max{1, n− d}.

P r o o f. Equality of the imprimitivity parameters implies that A ∈ H ∗
n . If d = n,

then h(A) = h∗(A) = 1. Suppose that d < n. Then

Ad = diag(B1, B2, . . . , Bd),

where each Bi is a primitive matrix of order n/d and has at least one 1 on its main

diagonal. Hence

h(A) 6 h∗(A) 6 d
(n

d
− 1

)
= n − d.

�

1 In [4], it is asserted that Ar is irreducible, which is clearly false.
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By Fact (vi), if A is a primitive matrix (i.e. d = 1) andD(A) has a cycle of length 2,

then h(A) 6 2n − 8 for n > 8. We show that the assumption of primitivity can be

removed and replaced by the assumption that the index of imprimitivity is 2.

Theorem 2.3. Let A be a matrix in In with index of imprimitivity d = 2.

Assume that the digraph D(A) contains a cycle of length 2. Then

h(A) 6 2n − 8 (n > 6).

P r o o f. Let the imprimitivity parameters of A be n1 and n2 where n1 > n2.

Suppose that n2 = 1. Then the only length of cycles in D(A) is 2, and D(A) is

uniquely determined with h(A) = 2 (D(A) consists of n − 1 cycles of length 2 each

containing one specified vertex). We have 2 6 2n − 8 if and only if n > 5. Now

suppose that n2 = 2. Then the only lengths of cycles are 2 and possibly 4, and

h(A) 6 4. We have 4 6 2n − 8 if and only if n > 6. Finally suppose that n2 > 3.

Then n1 6 n − 3 and by Theorem 2.1,

h(A) 6 2 max{1, max{n1 − u1, n2 − u2, . . . , nd − ud} 6 2(n1 − 1) 6 2(n − 4).

�

If in D(A) there is not a cycle of length 2 but there is a cycle of length 4, then we

have the following result.

Theorem 2.4. Let A be a matrix in In with index of imprimitivity d = 2.

Assume that the digraph D(A) does not contain a cycle of length 2 but does contain

a cycle of length 4. Then

h(A) 6 4n − 10.

If the imprimitivity indices of A are equal, then

h(A) 6 2n − 6.

P r o o f. The matrix A can be assumed to have the form

A =

[
On1

A1

A2 On2

]
.

We have

A2 = diag(A1A2, A2A1),
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where A1A2 and A2A1 are primitive matrices of orders n1 and n2, respectively, whose

digraphs contain a cycle of length 2. Hence by Fact (iv), h∗(A1A2) 6 2n1 − 3 and

h∗(A2A1) 6 2n2 − 3. Thus

h(A) 6 2 max{2n1 − 3, 2n2 − 3} 6 4n − 10.

If n1 = n2 = 1
2n, then we obtain

h(A) 6 2 max{2n1 − 3, 2n2 − 3} = 2 max{n− 3, n − 3} = 2n − 6.

�

One way to construct a digraph D∗ with index of imprimitivity 2 without a cycle

of length 2 is to take a digraph D with index of imprimitivity 2 and subdivide each

edge by replacing it with a path of length 2. Let A be an adjacency matrix of D, and

let A∗ be an adjacency matrix of D∗ where the vertices of D are listed first. Then

(A∗)2 = A ⊕ B,

where B is an adjacency matrix of the line digraph LD(A) of D(A) (see the next

section).

More bounds on the Hall exponent of a matrix in In can be obtained if additional

information on the matrix is available.

Proposition 2.5. Let A be a matrix in H ∗
n with index of imprimitivity d and

suppose that D(A) contains a cycle of length d. Then h(A) 6 n − d.

P r o o f. Since A ∈ H ∗
n , its imprimitivity parameters are all equal. Hence we

have Ad =diag(B1, B2, . . . , Bd) where the Bi are primitive matrices of order n/d.

Since D(A) has a cycle of length d, each Bi has at least one 1 on its diagonal. Hence

by Fact (i), h∗(Bi) 6 n/d − 1, and hence B
n/d−1
i ∈ Hn. Thus Ad(n/d−1) ∈ Hn and

h(A) 6 d(n/d − 1) = n − d. �

We note that a similar argument shows that if in the hypotheses we assume that

D(A) has a cycle of length 2d, rather than of length d, then h(A) 6 2(n − d).

Other information on the index of imprimitivity d can also be used to bound the

Hall exponent.

Proposition 2.6. Let A be a matrix in In with index of imprimitivity equal

to d.

(i) If d > 1
2n, then h(A) 6 d.

(ii) If 1
3n < d 6 1

2n, then h(A) < n.

(iii) If 1
4n < d 6 1

3n, then h(A) 6 2n.
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P r o o f. Since the index of imprimitivity of A is d, the lengths of all cycles in

D(A) are multiples of d. First consider (i). In this case, all cycles of D(A) have

length equal to d and hence every vertex is on a cycle of length d. Hence Ad has all

1s on its diagonal and thus h(A) 6 d. In case (ii), each cycle of D(A) has length d or

2d, and hence h(A) 6 2d 6 n. Now case (iii). Each cycle of D(A) has length d, 2d,

or 3d, and hence the least common multiple of the cycle lengths is at most 6d. Hence

Al has all 1s on its main diagonal for some l 6 6d and hence h(A) 6 6d 6 2n. �

3. Hall exponents of line digraphs

In this section we initiate a discussion of the Hall properties of adjacency matrices

of line digraphs.

Let A ∈ Bn have a total of m 1s, that is, D(A) has m edges. The line digraph [6]

of D(A) is the digraph LD(A) whose vertices are the m edges α1, α2, . . . , αm ofD(A)

with an edge from αi to αj if and only if the terminal vertex of αi is the same as

the initial vertex of αj . Thus the edges of LD(A) correspond to walks of length 2 in

D(A). If n > 3 and D(A) has no isolated vertices, then D(A) is strongly connected

if and only if LD(A) is strongly connected [1]. Moreover, A is primitive if and only

if LD(A) is primitive, in which case

(3.1) e(LD(A)) = e(A) + 1.

This is a consequence of the observation that if there is a walk of length t from a

vertex i to a vertex j, then there is a walk of length t + 1 in LD(A) from any edge

with the terminal vertex i to any edge with the initial vertex j. It follows from (3.1)

that

h(LD(A)) 6 h∗(LD(A)) 6 e(A) + 1.

We denote the adjacency matrix of the line digraph of a digraph by M . Thus,

assuming that A is irreducible, as we have done, both A andM have a Hall exponent

but there is no simple relationship between these two Hall exponents.

Examples. Let

A =




0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

1 0 0 0 0 0

1 1 0 0 0 0

0 1 0 0 0 0




.
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Then the adjacency matrix of LD(A) is

M =




0 0 1 1 1 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0




.

It is easy to check that h(A) = h(M) = 2. Now let

A =




0 1 0 0

0 0 1 0

1 0 0 1

1 1 0 0


 .

Then the adjacency matrix of LD(A) is

M = P




1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1




Q

for some permutation matrices P and Q. Then h(A) = 1, and it is easy to check

that h(M) = 3. Finally, let

A =




0 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0


 .

Then the adjacency matrix M of LD(A) is

M = P




1 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1




Q
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for some permutation matrices P and Q. Thus h(A) = 2 and h(M) = 1. In general,

if A ∈ In with h(A) = 1, then h(M) can be n − 1. One needs only to take a full

cycle permutation matrix of order n (its digraph is a cycle of length n) and put in

a chord cutting off one vertex. The resulting matrix A and the matrix of its line

digraph satisfy h(A) = 1 and h(M) = n − 1.

The adjacency matrixM of the line digraph of the digraphD(A) is a Hall matrix if

and only if the edges of D(A) can be partitioned into closed walks. If the indegree of

each vertex of D(A) equals its outdegree and D(A) is strongly connected, it contains

a closed walk using each edge exactly once, and hence the adjacency matrix M of

LD(A) is a Hall matrix.

The adjacency matrix M of LD(A) has order m and has a special structure, as

illustrated in the previous examples. Consider a vertex v of D(A) and the set Ev of

edges of which v is the terminal vertex and the set Fv of which v is the initial vertex.

Let kv = |Ev| and lv = |Fv|. Then this pair of sets of edges corresponds inM to a kv

by lv submatrix Jkv ,lv matrix of all 1s. These 1s account for all the 1s in M and it

follows that the adjacency matrix of LD(A) is given by

M = P (⊕vJkv ,lv )Q

for some permutation matrices P and Q. Here the direct sum is over all vertices v of

D(A). Whether or notM is a Hall matrix, and if it is, the value of its Hall exponent,

depends on P and Q.

Proposition 3.1. Let A ∈ Bn. Then the adjacency matrix of LD(A) is a Hall

matrix if and only if the indegree of each vertex of D(A) equals its outdegree. In

particular, this holds when D(A) is a regular digraph.

P r o o f. Using the above notation, the adjacency matrix of LD(A) is a Hall ma-

trix if and only if
⊕
v

Jkv,lv is a Hall matrix and, by the Frobenius-König theorem,

the latter is so if and only if kv = lv for all vertices v. �

It follows from Proposition 3.1 that one can tell immediately if the adjacency

matrix of the line digraph of D(A) is a Hall matrix by checking if a row i contains

the same number of 1s as the column i for each i. It also follows that A can be

a Hall matrix while the adjacency matrix M of LD(A) is not a Hall matrix. One

needs only to construct a Hall matrix for which the number of 1s in some row does

not equal the number of 1s in the corresponding column.

We next turn to the main focus of this paper, namely tournaments.
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4. Hall exponents of tournaments and their line digraphs

A tournament of order n is a digraph obtained from the complete graph Kn of

order n by giving a direction to each of its edges. A tournament T of order n

has
(

n
2

)
(directed) edges. The sequence (r1, r2, . . . , rn) of outdegrees of the vertices

{1, 2, . . . , n} of T , ordered so that r1 6 r2 6 . . . 6 rn, is called the score sequence

of T . By Landau’s theorem (see [2] for a recent proof), a nondecreasing sequence

R = (r1, r2, . . . , rn) of nonnegative integers is the outdegree sequence of a tournament

if and only if

k∑

i=1

ri >

(
k

2

)
(k = 1, 2, . . . , n)

with equality for k = n. The sequence of indegrees of the vertices of T is given by

(s1 = n − 1 − r1, s2 = n − 1 − r2, . . . , sn = n − 1 − rn)

and satisfies s1 > s2 > . . . > sn. We have ri + si = n − 1 for i = 1, 2, . . . , n. In the

tournament T ′ obtained from T by reversing the direction of each edge, the indegree

sequence and outdegree sequence are interchanged; the score vector of T ′ equals

(s1, s2, . . . , sn) with the si in nonincreasing order. In fact, the adjacency matrix of

T and that of T ′ are transposes of each other. A tournament of order n is regular

provided each vertex has its outdegree and indegree equal to 1
2 (n − 1). Regularity

requires that n is odd. If n is even, a tournament of order n is nearly regular provided

its outdegree sequence is (1
2n, . . . , 1

2n, 1
2n − 1, . . . , 1

2n − 1) with an equal number of

occurrences of the two values of the outdegree. Standard examples of the adjacency

matrices of regular and nearly regular tournaments are

P + P 2 + . . . + P (n−1)/2 (n odd),

where P is the full cycle permutation matrix with 1s in positions (1, 2), (2, 3), . . .,

(n − 1, n), (n, 1), and




Un/2 In/2U
t
n/2

U t
n/2 Un/2




(n even)
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where Un/2 is the upper triangular matrix with 1s everywhere above the main diag-

onal. For example, when n = 7 and 8 we get




0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 0 1 1 1

1 0 0 0 0 1 1

1 1 0 0 0 0 1

1 1 1 0 0 0 0




and




0 1 1 1 1 0 0 0

0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1

1 0 0 0 0 0 1 1

1 1 0 0 0 0 0 1

1 1 1 0 0 0 0 0




.

Another special tournament of which we shall make use is the tournament T ∗
n

with the score vector (1, 1, 2, 3, . . . , n − 3, n− 2, n− 2) obtained by taking the lower

triangular matrix U t
n and deleting the 1s on the subdiagonal and replacing the 0s on

the superdiagonal with 1s. For example,

T ∗
6 =




0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

1 1 0 0 1 0

1 1 1 0 0 1

1 1 1 1 0 0




.

Recall that if x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two n-tuples of real

numbers in nonincreasing order, then x � y (read x is majorized by y or x is domi-

nated by y) provided

k∑

i=1

xi 6

k∑

i=1

yi (k = 1, 2, . . . , n),

with equality for k = n; equivalently, provided

n∑

i=k+1

xi >

n∑

i=k+1

yi (k = 0, 1, . . . , n − 1),

with equaliy for k = 0. If x and y are not assumed to be in nonincreasing order, then

x � y provided their nonincreasing rearrangements x′ and y′ satisfy x′ � y′. The

score sequence of T ∗
n is the largest in the majorization order, and the score sequence

of the regular (n odd), and nearly regular (n even) tournaments are the smallest [3].
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As is often done, we shall use T to denote both a tournament and its adjacency

matrix, called a tournament matrix. We usually just say tournament in referring to

both.

A regular tournament T of order n > 3 is a Hall matrix and hence h(T ) = h∗(T ) =

1. The regular tournament T is strongly connected and the indegree and outdegree

of each vertex equal 1
2 (n−1). Hence the adjacency matrixM of the line digraph of a

regular tournament is a matrix each of whose row and column sums equals 1
2 (n− 1)

and so is a Hall matrix, that is, h(M) = h∗(M) = 1.

A nearly regular tournament of order n > 4 is also a Hall matrix since such a

tournament must be strongly connected and strongly connected tournaments have

Hamilton cycles. This latter fact is also a consequence of the next proposition.

Proposition 4.1. A zero submatrix of a nearly regular tournament Tn of order n

that does not meet the main diagonal has size r by s for some integers r and s with

r + s 6
2

3
(n + 1)

where we have strict inequality if either r > 1
2n or s > 1

2n.

P r o o f. Suppose that Tn has an r by s zero submatrix Ors not meeting the main

diagonal. Without loss of generality, Tn has the form



Tr Ors

Jsr Ts


 ,

where Tr and Ts are tournaments of orders r and s, respectively. Considering the

first r columns we see that (
r

2

)
+ sr 6 r

n

2
,

with strict inequality if r > 1
2n, since then one of these columns must sum to 1

2n−1.

Simplifying, we get

(4.1) r + 2s 6 n + 1.

Similarly, considering the last s rows, we get

(4.2) s + 2r 6 n + 1.

Adding (4.1) and (4.2) we get

r + s 6
2

3
(n + 1)

with strict inequality if either r > 1
2n or s > 1

2n. �
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Equality can occur in the inequality in Proposition 4.1. For example, if n = 8, the

nearly regular tournament




0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 0

1 0 0 1 1 0 0 0

0 0 0 0 0 1 1 1

0 0 0 1 0 1 1 1

1 1 1 0 0 0 1 0

1 1 1 0 0 0 0 1

1 1 1 0 0 1 0 0




has a 3 by 3 zero submatrix with 3 + 3 = 2
3 (8 + 1).

For a nearly regular tournament we have the following result.

Theorem 4.2. Let T be a nearly regular tournament of order n. Let M be the

adjacency matrix of LD(T ). Then h(M) = 2 for n > 6. If n = 4, then h(M) = 3.

P r o o f. By Proposition 3.1, h(M) > 2. We first show that h(M) 6 2 if n > 10.

Let E be a set of edges of T , and let U be the set of terminal vertices of the edges in

E. For a given U , the set E is largest when E is the set of all edges whose terminal

vertices are in U , and it is enough to consider E to be this extremal set. Let F

be the set of all edges with initial vertices in U , and let V be the set of terminal

vertices of edges in F . Finally, let G be the set of edges whose initial vertices are

in V . Pictorially we have
E−→ U

F−→ V
G−→ .

In order that M2 be a Hall matrix, we must have |G| > |E|. Hence we may assume
that |U | 6 n − 1. If |U | > n − 3, then since T is nearly regular, and n > 10,

V = {1, 2, . . . , n} and hence |G| =
(
n
2

)
> |E|.

Now assume that |U | 6 n−4. Since T is a tournament, its induced subdigraph on

the set of vertices in U is also a tournament TU , and thus TU has at most one vertex

of outdegree equal to 0. Hence |U ∩ V | > |U | − 1. After simultaneous permutations

of rows and columns we may take T in the form

[
TU X Ork

]
,

where k is a nonnegative integer and where |U | = r and each column of X contains

at least one 1 (thus the vertices of T corresponding to the columns of X all belong to

V as do all but at most one vertex in U). The tournament TU has at most one zero
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row and at most one zero column. In fact, since T is nearly regular, if |U | > 1
2 (n+2),

then TU cannot have a zero row or zero column.

First suppose that k = 0. Then |V | > n − 1. If |V | = n, then clearly |G| > |E|.
Assume that |V | = n−1, so that |G| >

(
n
2

)
− 1

2n = 1
2n(n−2). Then TU has one zero

column and, since T is nearly regular, |U | 6 1
2n+1. Hence |E| 6 1

2n · 1
2n+ 1

2n− 1 =
1
2n(1

2n + 1) − 1, and it follows that |G| > |E|. Now suppose that k > 1 so that

the zero matrix Ork is not vacuous. By Proposition 4.1, r + k 6 2
3 (n + 1), that is,

k 6 2
3 (n + 1) − |U |. Hence

|V | > (|U |−1)+(n−k−|U |) = n−k−1 > n−
(

2

3
(n + 1) − |U |

)
−1 >

n − 5

3
+ |U |.

Now |E| 6 1
2n|U | and |G| > 1

2 (n − 2)|V | where

n − 2

2
|V | >

n − 2

2

(
n − 5

3
+ |U |

)
=

n − 2

2
· n − 5

2
+

n − 2

2
|U |.

Thus |G| > |E| provided that

n − 2

2
· n − 5

2
+

n − 2

2
|U | >

n

2
|U |,

that is, provided that
n − 2

2
· n − 5

3
> |U |.

Since |U | 6 n − 4, this holds if n > 10.

It is not difficult to check by hand that h(M) = 2 if n = 6 or 8. Up to isomorphism

there is only one nearly regular tournament of order 4, namely,

T ∗
4 =




0 1 0 0

0 0 1 0

1 0 0 1

1 1 0 0


 ,

and the Hall exponent of the adjacency matrix of its line digraph is 3. �

We now consider the strict Hall exponent of the line digraph of a regular or nearly

regular tournament. In [12], it is stated that the primitive exponent of a regular or

nearly regular tournament of order n is 3 for n > 7. The proof is based on a lemma

which, contrary to what is claimed, does not apply to nearly regular tournaments.

We now extend that lemma so that it applies to nearly regular tournaments for all

orders n > 10.
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Lemma 4.3. Let T be a tournament of order n > 9 with score sequence

(r1, r2, . . . , rn). If
n − 2

2
6 ri 6

n

2
(i = 1, 2, . . . , n),

then for every ordered pair of vertices i and j there exists a walk from i to j of

length 3.

P r o o f. Tournaments whose outdegrees satisfy the inequalities in the lemma are

either regular or nearly regular. The tournament T must be strongly connected and

hence every vertex is in a cycle of length 3. We now prove that if i and j are distinct

vertices, then there is a walk from i to j of length 3. For a vertex p, let

N+(p) = {k : there is an edge p → k from p to k},

and

N−(p) = {k : there is an edge k → p from k to p}.

Thus N+(i) (N−(i)) consists of the vertices dominated by the vertex i (respectively,

dominating the vertex i). Note that since T is a tournament, N+(p) and N−(p) are

disjoint and their union is {1, 2, . . . , n} \ {p}.
First consider the case when i → j. Since n > 9, |N+(i) \ {j}| > 1

2 (n − 2) − 1.

If there are distinct vertices p, q 6= j that are dominated by i and dominate j, then

since p → q or q → p, there is a walk of length 3 from i to j. Now assume that there

is at most one such vertex. Thus j dominates at least |N+(i) \ {j})| − 1 vertices in

N+(i) \ {j}. At most |N+(j)| − |N+(i) \ {j}| − 1 vertices of N−(i) are dominated

by j, and so j is dominated by at least

|N−(i)| − (|N+(j)| − (|N+(i) \ {j}| − 1)) = n − 1 − |N+(j)| − 2 >
n

2
− 3

vertices of N−(i). Since n > 9, there are at least two such vertices p and q. If

N+(i)\ {j} ⊆ N+(p) then, since i, j ∈ N+(u), we have |N+(p)| > |N+(i)|+1. Since

|N+(u)| 6 9
2 , we conclude that N+(u) = N+(i)∪ {i}. If we also have N+(i) \ {j} ⊆

N+(q), then using this argument we conclude that N+(u) = N+(v), a contradiction

since T is a tournament. So e.g. u is dominated by a vertex w in N+(i) \ {j}. We
thus have a walk i → w → u → j of length 3 from i to j.

A very similar argument works if i → j is not an edge of T . �

Corollary 4.4. The primitive exponent of a nearly regular tournament of order

n > 10 equals 3.
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It is well-known [10] that a strongly connected tournament T of order n > 4 is

primitive and that its exponent satisfies

d(T ) 6 e(T ) 6 d(T ) + 3 6 n + 2 (n > 5),

where d(T ) is the diameter of T . It thus follows that if A is the adjacency matrix

of a strongly connected tournament of order n > 4, then Ak is irreducible for every

positive integer k. In [12] it is shown that a strongly connected tournament of order

n > 5 satisfies e(T ) = n + 2 if and only if it is isomorphic to T ∗
n . As a corollary we

get

Corollary 4.5. Let T be a strongly connected tournament of order n > 5. Then

h(LD(T )) 6 h∗(LD(T )) 6 e(LD(T )) 6 n + 3.

Moreover, e(LD(T )) = n + 3 if and only if T is isomorphic to T ∗
n .

The bound for the Hall exponent of the line digraph of a tournament as given

in Corollary 4.5 is rather weak and we now turn to improving it.

Theorem 4.6. Let T be a strongly connected tournament of order n > 4. Then

h(LD(T )) 6 4 − n +
√

2n2 − 2n + 1 ≈ (
√

2 − 1)n.

P r o o f. Let A be the adjacency matrix of T . Since T is strongly connected and

n > 4, Ak is irreducible for k > 1. Let W ⊆ {1, 2, . . . , n} be a nonempty subset of
vertices of T . We denote the score sequence of T by d1 6 d2 6 . . . 6 dn. The proof

begins with four claims.

Claim 1. |W | = |R0(W )| 6 |R1(W )| 6 |R2(W )| 6 |R3(W )| 6 . . . .

Let t be a nonnegative integer. Since T is strongly connected, the claim holds

with equality throughout if W = {1, 2, . . . , n}. Thus Rt+1(W ) = Rt(W ) if Rt(W ) =

{1, 2, . . . , n}. Suppose that Rt(W ) ⊂ {1, 2, . . . , n}. Then T restricted to the vertices

in Rt(W ) is a tournament. Since Rt+1(W ) = R1(Rt(W )), we have |Rt+1(W ) ∩
Rt(W )| > |Rt(W )| − 1. Since T is irreducible, Rt+1(W ) ∩ Rt(W ) 6= ∅. Hence
|Rt+1(W )| > |Rt(W )|.
Claim 2. If |W | + t 6 n, then |Rt+4(W )| > |W | + t.

Since T is strongly connected, every vertex belongs to a cycle of each length

3, 4, . . . , n, and hence for all t > 0, Rt(W ) ⊆ Rt+p(W ) for p = 3, 4, . . . , n. Thus
t⋃

k=1

Rk(W ) ⊆ Rt+3(W ). Strong connectivity also implies that Rt(W ) \
t⋃

k=1

Rk(W ) 6=
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∅ if
t−1⋃
k=0

Rk(W ) 6= {1, 2, . . . , n}. Thus
∣∣∣

t⋃
k=0

Rk(W )
∣∣∣ >

∣∣∣
t−1⋃
k=0

Rk(W )
∣∣∣ if

t−1⋃
k=0

Rk(W ) 6=

{1, 2, . . . , n}. By Claim 1, |R1(W )| > |W |, and we now conclude that
∣∣∣

t⋃
k=1

Rk(W )
∣∣∣ >

|W | + t − 1. Thus |Rt+3(W )| > |W | + t − 1, and this implies the claim.

Note that Claim 2 implies that |Rt+3({i})| > t for each vertex i.

Claim 3. Let e = i → j be any edge of T . Then the sum of the outdegrees of the

vertices reachable from j by a walk of length t + 3 is at least
t∑

i=1

di. Thus in LD(T )

the number of edges reachable from e by a walk of length t + 4 is at least
t∑

i=1

di.

By Claim 2, |Rt+3(j)| > t. The smallest sum of t of the outdegrees of T is
t∑

i=1

di.

In a similar way one verifies the next claim.

Claim 4. Let W ⊆ {1, 2 . . . , n} and let F be the set of edges whose terminal

vertices are in W . Then in LD(T ) the number of edges reachable from F by a walk

of length t + 5 is at least
∑min{t+|U|,n}

i=1 di.

Continuing with the notation in Claim 4, we have |F | 6
∑n

i=n−|U|+1| di. Since

the score sequence (1, 1, 2, . . . , n − 3, n − 2, n − 2) is the largest in the majorization

order, we have

|F | 6

n∑

i=n−|U|+1

(i − 1) =
1

2
(2n|U | − |U |2 − |U |).

By Claim 4, in the line digraph, F can reach by a walk of length t + 5 at least

t+|U|−1∑

k=1

k =
1

2
(t2 + t(2|U | − 1) + |U |2 − |U |)

edges. Thus h(LD(T )) 6 t + 5 provided that

1

2
(2n|U | − |U |2 + |U | − 2n) 6

1

2
(t2 + t(2|U | − 1) + |U |2 − |U |),

and this holds provided that

(4.3) t >
1

2

(
−2|U | + 1 +

√
8n|U | − 4|U |2 − 4|U |+ 1

)
.

The derivative of the expression on the right hand side of (4.3) is 0 when

|U | =
1

2

(
2n − 1 −

√
2n2 − 2n + 1

)
.
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Using this in (4.3), we get

t > 1 − n +
√

2n2 − 2n + 1.

Thus

h(LD(T )) 6 6 − n +
√

2n2 − 2n + 1.

�

We now show that the upper bound for the Hall exponent in Theorem 4.6 cannot

be improved by much, by obtaining a lower bound for the Hall exponent of the line

digraph of the special tournament T ∗
n .

Theorem 4.7. Let n > 4. Then

h(LD(T ∗
n)) > 2 − n +

√
2n2 − 2n − 7 ≈ (

√
2 − 1)n.

P r o o f. The score sequence of T ∗
n is (1, 1, 2, 3, . . . , n − 3, n − 2, n − 2). Let l > 3

and consider the set U of the l vertices with outdegrees 1, 1, 2, 3, . . . , l− 1 and hence

with indegrees n− 2, n− 2, n− 3, . . . , n− l. Let F be the set of edges with terminal

vertex in U . Thus

|F | = (n − 2) +

l−1∑

i=1

(n − i − 1) = −1 + nl − 1

2
(l2 + l).

Let 1 6 k < n. It is easy to check that there exist walks of length k − 1 from each

vertex in U to at least one of the vertices with outdegrees 1, 1, 2, 3, . . . , l + k − 2 and

to no other vertices. Thus in LD(T ∗
n) the number of edges reachable from F by a

walk of length k is at most

1 +

l+k−2∑

i=1

i = 1 +
1

2
((l + k − 2)(l + k − 1)).

In order that h(LD(T ∗
n)) 6 k we must have

1 +
1

2
((l + k − 2)(l + k − 1)) > −1 + nl − l2 + l

2
,

equivalently,

k2 + (2l − 3)k + (2l2 − 2l − 2nl + 6) > 0.

This implies that

(4.4) k >
3

2
− l +

1

2

√
−15 − 4l − 4l2 + 8nl.
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The right hand side of (4.4) is maximum when

l = −1

2
+ n − 1

2

√
2n2 − 2n− 7.

Substituting this into (4.4), we get

k > 2 − n +
√

2n2 − 2n − 7.

It follows that

h(LD(T ∗
n)) > 2 − n +

√
2n2 − 2n − 7.

�

We conclude with some questions for possible further exploration.

1. In view of Theorems 4.6 and 4.7, does LD(T ∗
n) have the largest Hall exponent

among all strongly connected tournaments of order n?

2. The Hall exponent of every strongly connected tournament of order n is 1. What

is the maximum Hall exponent of line digraphs of digraphs of order n with Hall

exponent 1?

3. Does h∗(LD(T )) = h(LD(T )) for all tournaments T ?

4. What is the connection between the degree sequence of a tournament and the

Hall exponent of its line digraph?
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