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Abstract. In this paper, we extend some results of D.Dolzan on finite rings to profi-
nite rings, a complete classification of profinite commutative rings with a monothetic
group of units is given. We also prove the metrizability of commutative profinite rings
with monothetic group of units and without nonzero Boolean ideals. Using a property
of Mersenne numbers, we construct a family of power 2ℵ0 commutative non-isomorphic
profinite semiprimitive rings with monothetic group of units.
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1. Introduction

The class of profinite rings can be viewed as a natural generalization of the class

of finite rings. Some results about finite rings can be generalized in a natural form

to compact ones. The well-known Kaplansky’s theorem (see [8]) on the structure of

compact semiprimitive rings can be considered a natural extension of Wedderburn-

Artin theorem about the structure of semiprimitive artinian rings to compact rings.

Moreover, the proofs of some results which are easy for finite rings need highly

non-trivial arguments of algebraic and topological nature in the compact case. For

instance, in [13] it has been proved that every compact nil ring has a finite nilindex.

As well as finite rings, compact rings usually have many idempotents. Recently,

in [4], Dolzan has proved that some multiplicative properties of idempotents of finite

rings imply that these rings are products of local rings. In Section 3, we extend these

results to the class of compact rings, countably compact rings and linearly compact

rings.
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By [6], [7] and [11], a classification of finite rings with identity whose group of

units is cyclic has been given. In Section 4, we do the following:

(i) classify compact rings with 1 that have a monothetic group of units;

(ii) show that compact rings with a monothetic group of units without nonzero

closed Boolean ideals are metrizable;

(iii) using properties of Mersenne numbers, we construct a set of cardinality of con-

tinuum of compact commutative rings with 1 having a monothetic group of

units; and

(iv) derive some results about commutative linearly compact rings with 1 whose

groups of units are topologically finitely generated.

2. Notation and conventions

All topological rings are assumed to be associative, Hausdorff and with 1. By the

radical of a ring R we mean its Jacobson radical, denoted by J(R), or briefly by J .

By R(·) we denote the multiplicative semigroup ofR. A ring R is called semiprimitive

if J(R) = 0, and is called radical if R coincides with its radical (i.e. J(R) = R).

Sometimes we use the term a profinite ring instead of a totally disconnected compact

ring. By a profinite ring we mean an inverse limit of finite rings. Following [3] we say

that a compact group is said to be monothetic if it contains a dense cyclic subgroup.

To [13] we refer for the notions of monocompact and primary rings: a topological

ring R is said to be monocompact if every element of R is contained in a compact

subring. By a primary profinite ring we mean a ring R for which R/J(R) is a finite

simple ring. Under the last condition, R is a matrix ring over a profinite local ring.

We define (see [9]) a left linearly compact ring to be a topological ring having a

fundamental system of neighborhoods of zero consisting of left ideals in which the

intersection of every filter basis consisting of closed cosets with respect to left ideals

is non-empty. For two idempotents of a ring R, we write e 6 e′ if ee′ = e′e = e. A

non-zero idempotent e is said to be minimal in R if there is no non-zero idempotent

e1 6= e such that e1 6 e. From [10] we recall that a ring R with 1 is said to be clean

provided that every element in R is the sum of an idempotent and a unit.

The closure of a subset A of a topological space X will be denoted by cl(A). We

refer to [1] for the notion and properties of summable sets in topological Abelian

groups.

An ideal I of a ring R is called cofinite if the subgroup I is of finite index. The

fact that I is a left ideal or a 2-sided ideal of a ring R is denoted by Il E R or I E R,

respectively. We recall that a topological ring 〈R, T 〉 is totally bounded provided its

completion 〈c(R), c(T )〉 is compact (see [13]).
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3. Idempotents of compact rings

Lemma 1. If R is a compact ring with identity, then for every a ∈ R there exists

an idempotent e such that eR =
⋂

n∈N
anR.

P r o o f. It is well-known that every compact semigroup contains an idempotent

(see [13]). Let a ∈ R and let e ∈ cl{ai : i ∈ N} be an idempotent. For a fixed n ∈ N
and for any open ideal V of R there exist k ∈ N and v ∈ V such that e = ak+v. Since

V is an ideal of R, we may assume that k > n and then e = anak−n + v ∈ anR + V .

It follows that e ∈ anR and hence eR ⊂
⋂

n∈N
anR. Conversely, let V be an open ideal

of R. Then there exist k ∈ N and v ∈ V such that ak = e + v. Then akR ⊂ eR + V

and hence
⋂

n∈N
anR ⊂ eR + V . Since V is arbitrary, we have

⋂

n∈N
anR ⊂ eR. �

Lemma 2. Let R be a ring with identity 1 and let I = aR = Rb be an ideal of R

which is a left and right principal ideal. Then In = anR = Rbn for every n ∈ N.

P r o o f. Induction on n. The lemma is obviously true for n = 1. If Ik = akR =

Rbk, then Ik+1 = aRakR. Since akR is an ideal, aRakR ⊂ aakR = ak+1R ⊂ Ik+1,

and hence Ik+1 = ak+1R. In an analogous way, Ik+1 = Rbk+1. �

Theorem 1. Let R be a profinite ring with 1 in which every open ideal is left

and right principal. Then R is a product of profinite primary rings.

P r o o f. By Kaplansky’s theorem (see [8]), R/J(R) ∼=top

∏

α<τ

Rα where each Rα

is a finite simple ring with identity gα and τ is a cardinal. We identify R/J(R) with
∏

α<τ

Rα and denote by π the canonical homomorphism of R onto R/J(R). By [13],

there exists an idempotent eα ∈ R such that π(eα) = gα, α < τ . If Aα = π−1(Rα),

then Aα is open and hence there exist a, b ∈ R such that Aα = aR = Rb. By

Lemma 2, An
α = anR = Rbn for every n ∈ N. Set Bα =

⋂

n∈N
An

α. Then, by Lemma 1,

Bα is a topological direct summand with identity hα. By compactness of R, we have

π(Bα) =
⋂

n∈N
π(An

α). Obviously, π(hα) = gα and π(Rhα) = Rα, which means that

Rhα is a primary ring. We have constructed a family {hα}α<τ of central idempotents

such that

(i) π(hα) = gα, α < β; and

(ii) Rhα is a primary ring for α < β.

We claim that the idempotents hα, α < τ , are orthogonal. Indeed, hαhβ ∈ J(R)

for α 6= β, which implies that hαhβ = 0. The set {hα : α ∈ Ω} is summable. If

h =
∑

α<τ

hα, then h − 1 ∈ J(R), and hence h = 1. By standard arguments, the

topological ring R is the product of rings Rhα, α < τ . �
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Remark 1. Let R be a ring and I El R a left ideal. For any x ∈ R, the left

coset x + I is a subsemigroup of the multiplicative semigroup R(·) of R if and only

if Ix ⊂ I and x2 − x ∈ I.

Obviously, x2 − x ∈ I. If i ∈ I, then there exists i1 ∈ I such that (x + i)(x + i) =

x + i1, which implies that ix = x − x2 + i1 − xi − i2 ∈ I.

Conversely, let i, i1 ∈ I; then (x + i)(x + i1) = x + x2 − x + xi1 + ix + ii1 ∈ x + I,

i.e. x + I is a subsemigroup of R(·).

The following result is a generalization of a theorem of Eckstein on I = J(R)

(see [5]).

Theorem 2. Let R be a left linearly compact ring and I a closed 2-sided ideal

of R such that x + I is an idempotent of the factor ring R/I. Then the set x + I

contains an idempotent.

P r o o f. Let M = {y + H : cl (H) = H El R}, where y + H is a subsemigroup

of R (·). For any chain N of subsemigroups inM, its intersection satisfies
⋂

N ∈ M.

Also, by Zorn’s Lemma,M has a minimal element S = s+K. Then SsSs ⊂ Ss ⊂ S

and Ss = s2 + Ks where Ks is a closed left ideal of R, as R is left linearly compact,

and hence Ss ∈ M. By minimality of S we obtain that Ss = S, hence there exists

s0 ∈ S such that s0s = s, s2
0s = s0s and so (s2

0 − s0)s = 0. Set L = {x ∈ K : xs = 0}

and let s0 = s + k ∈ s + K = S; then s2
0 − s0 = s2 − s + sk + ks + k2 − k ∈ K. Hence

s2
0−s0 ∈ L and Ls0 = L(s+k) ⊂ Ls+Lk ⊂ Ks+Kk ⊂ K. Moreover, Ls0s = Ls = 0

implies that Ls0 ⊂ L. By minimality of S, we have s0 + L = s + K, which implies

that K = L. Then (s2 − s)s = 0 implies that s3 = s2; i.e. s4 = s3 = s2and hence

e = s2 ∈ S is an idempotent. �

A similar technique and argument can be used to prove the following result.

Theorem 3. Let R be a left linearly compact ring and I " J(R) a 2-sided ideal

(not necessarily closed) of R. Then I contains a non-zero idempotent.

Open question. Let R be a left linearly compact ring with 1 and I El R,

I " J(R). Is it true that I contains a non-zero idempotent?

We note here that this assertion is true for compact rings.

Lemma 3. Every set {eα : α ∈ Ω} of central orthogonal idempotents of a left

linearly compact ring with identity is summable.

P r o o f. By the Cauchy Criterion (see [1]), it suffices to check that the set

Ω0 = {α ∈ Ω: eα /∈ V } ⊂ Ω is finite for every open left ideal V of R. On the contrary,
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assume that there exists an open left ideal V of R for which the set Ω0 is infinite. If

α1, . . . , αn ∈ Ω, r1, . . . , rn ∈ R such that (r1eα1
+ V ) + . . . + (rneαn

+ V ) = V , then

rieαi
∈ V for i = 1, . . . , n. This shows that

∑

α∈Ω

((Reα +V )/V ) =
⊕

α∈Ω

((Reα +V )/V ).

A contradiction, since the R-module R/V is finite-dimensional in the sense of Goldie.

�

Theorem 4. Let R be a linearly compact ring with 1. Then every idempotent of

R is central if and only if R is a topological product of local rings.

P r o o f. Obviously, if R is a product of local rings, then every idempotent of

R is central (see [13]). Now, if every idempotent of R is central, it is well-known

that J(R) is closed. It follows from Theorem 2 that every idempotent of R/J(R)

is central. By Leptin’s theorem (see [9]), the factor ring R/J(R) is isomorphic to a

product
∏

α∈Ω

∆α, where each factor ∆α is the ring of endomorphisms rings of a vector

space over a division ring. Since idempotents of R/J(R) are central, each factor ∆α

is a division ring. Consider the set {e′α : α ∈ Ω}, where e′α is the identity of ∆α,

α ∈ Ω. By Theorem 2, for each α ∈ Ω there exists an idempotent eα of R such

that eα + J(R) = e′α. By Lemma 3, the set {eα : α ∈ Ω} is summable. Obviously,

Reα/J(Reα) is isomorphic to ∆α. As 1 −
∑

α∈Ω

eα ∈ J(R), we have 1 =
∑

α∈Ω

eα and

hence the ring R is isomorphic to
∏

α∈Ω

Reα. �

Lemma 4. A monocompact subring with 1 of a compact local ring is local.

P r o o f. Let S be a monocompact subring with 1 of a compact local ring R. Since

S/S∩J(R) ∼= S +J(R)/J(R) ⊂ R/J(R) is a field, we have J(S) ⊂ S∩J(R). As the

subring S∩J(R) consists of topologically nilpotent elements, we have S∩J(R) ⊂ J(S)

and hence J(S) = S ∩ J(R). �

Theorem 5. A countably compact ring R with 1 is local if and only if its com-

pletion c(R) is local.

P r o o f. On the contrary, assume that R is local but not c(R). Then c(R) can

be mapped continuously on a finite ring S which has an idempotent e′ /∈ {0, 1}.

Let f : R → S be a continuous surjective homomorphism. Then there exists an

idempotent e ∈ R such that f(e) = e′; obviously, e /∈ {0, 1}, a contradiction.

The converse follows from Lemma 4. �

Lemma 5. An idempotent e of a countably compact ring R with 1 is minimal if

and only if the subring eRe is local.
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P r o o f. On the contrary, assume that 1 is minimal in R but eRe is not local.

Since eRe is countably compact, then (by Theorem 5) its completion c(eRe) is not

local. Therefore there exists a continuous surjective homomorphism f : cl(eRe) → S,

where S has an idempotent e′ /∈ {0, 1}. Since f(eRe) = S, the ring eRe contains an

idempotent e /∈ {0, 1}, a contradiction.

The converse is obvious. �

Corollary 1. Let R and R′ be countably compact rings with 1 and let f : R → R′

be a surjective continuous ring homomorphism. If e ∈ R is a minimal idempotent

of R, then f(e) is a minimal idempotent of R′ or f(e) = 0.

A topological ring R is a subdirect product of rings Rα, α ∈ Ω, if there exists

a topological isomorphism on its image f : R →
∏

α∈Ω

Rα such that the composition

prα ◦f is surjective and open for every α ∈ Ω.

Theorem 6. Let R be a totally bounded monocompact ring with 1 in which all

idempotents are central. Then R is a subdirect product of finite local rings.

P r o o f. The completion c(R) of R is compact. We claim that every idempotent

of c(R) is central. If V is an open ideal of c(R), then pV (c(R)) = pV (R), where

pV is the canonical homomorphism of c(R) onto c(R)/V . Let e be an idempotent

of R. Since pV is surjective and pV (e) is an idempotent of c(R)/V , there exists

an idempotent e′ ∈ R such that pV (e′) = pV (e). This implies that e is a central

idempotent of c(R). The ring c(R) =
∏

α∈Ω

Rα is a product of compact local rings.

Let 0 6= x ∈ R ; then there exists α ∈ Ω such that prα(x) 6= 0. Then by Lemma 4,

prα(R) is a local ring. Let W be an open ideal of prα(R) such that prα(x) /∈ W .

Then V = pr−1
α (W ) ∩ R is an open ideal of R, the ring R/V is local and x /∈ V . �

Corollary 2. A countably compact ring with 1 whose all idempotents are central

is a subdirect product of finite local rings.

Theorem 7. Every left linearly compact ring with 1 and with bounded factor

ring R/J(R) is a clean ring.

P r o o f. By Leptin’s Theorem (see [9]), R/J(R) is a direct product of discrete

matrix rings over division rings. By [10], every matrix ring a division ring is clean.

Then, obviously, R/J(R) is a clean ring which implies that R is a clean ring. �

The next theorem needs the following three basic results.

Lemma 6. Let f : R → R′ be a continuous homomorphism of compact rings.

If e′ in f(R) is an idempotent, then there exists an idempotent e in R such that

f(e) = e′.
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Corollary 3. Let f : R → R′ be a contiuous surjective homomorphism of compact

rings. If T and T ′ are the sets of all idempotents of R and R′, respectively, then

f(T ) = T ′.

Corollary 4. Let f : R → R′ be a contiuous surjective homomorphism of compact

rings and let T and T ′ be the sets of all idempotents of R and R′, respectively.

If T is a subsemigroup of the semigroup R(·), then T ′ is a subsemigroup of the

semigroup R′(·).

Theorem 8. If R is a compact ring with 1 and T is the set of all idempotents

of R, then T is a subsemigroup of the multiplicative semigroup R(·) of R if and only

if R is a product of compact local rings.

P r o o f. Suppose that T is a subsemigroup of R(·). Then, by Corollary 4, the set

of all idempotents ofR/J(R) is a subsemigroup of its multiplicative semigroup. Thus,

by Kaplansky’s Theorem (see [8]), the ring R/J(R) is a product of matrix rings over

finite fields, hence it is a product of finite fields. We claim that each idempotent e

of R is central. It suffices to show that e commutes with every idempotent f of R.

Since ef(1 − fe) is an idempotent in J(R), we have ef(1 − fe) = 0 and hence

ef = efe. Similarly, fe = efe and therefore every idempotent of R is central. As

every idempotent of a compact ring is central, hence R is a product of local rings. �

We omit the proof of the following result:

Remark 2. The set of all idempotents of a compact ring (not necessarily with 1)

is a semigroup if and only if the ring is a product of a connected ring (with trivial

multiplication) and compact local rings.

Theorem 9. Let R be a totally bounded monocompact ring with 1 for which the

set T of idempotents is a subsemigroup of R(·). Then R is a subdirect product of

finite local rings.

P r o o f. The completion c(R) of R is a compact ring. Let x ∈ R \ V , x 6= 0,

for a fixed open ideal V of c(R). If p is the canonical homomorphism of c(R) onto

c(R)/V , then p(R) = c(R)/V since R is dense in c(R). We claim that the set T ′ of

idempotents in c(R)/V is a subsemigroup of (c(R)/V )(·). Since R is monocompact,

the idempotents of c(R)/V can be lifted in R. This implies that T ′ is a subsemigroup

of c(R)/V . By Theorem 8, c(R)/V is a direct product P1 × P2 × . . . × Pn of local

rings and there exists i, 1 6 i 6 n, such that p(x) 6= 0. �

Corollary 5. Let R be a countably compact ring with 1 for which the set T of

idempotents is a subsemigroup of R(·). Then R is a subdirect product of finite local

rings.
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Theorem 10. Let R be a compact ring with 1 and letM be the set of all minimal

idempotents of R. Then M ∪ {0} is a subsemigroup of R(·) if and only if R is a

product of compact local rings.

P r o o f. Consider the ring R/J(R) and the canonical homomorphism ϕ : R →

R/J(R). Let e′ be a minimal idempotent of R/J(R). Then, by Lemma 5 we obtain

that e′(R/J(R))e′ is a field. If e ∈ ϕ−1(e′) is an idempotent of R, then ϕ(eRe) =

e′(R/J(R))e′ is a field and ker(ϕ ↾eRe) = eRe ∩ J(R), which is equal to J(eRe).

This implies that eRe is a local ring. Thus, by Lemma 5, e is a minimal idempotent

of R, and hence M ′ ∪ {0} is a subsemigroup of R/J(R), where M ′ is the set of all

minimal idempotents of R/J(R). This implies that R/J(R) is a product
∏

α∈Ω

Fα of

fields (see [4]).

For each α ∈ Ω, let us fix an idempotent eα in ϕ−1(e′α). Then each eα is minimal

in R. If α 6= β, α, β ∈ Ω, then eαeβ is either 0 or an idempotent. In fact, eαeβ = 0

as it belongs to J(R). Therefore there exists e ∈ R which is equal to the sum
∑

α∈Ω

eα. But e = 1 since 1 − e ∈ J(R). By a standard argument, we can prove that

R =
∏

α∈Ω

eαReα, where each eαReα is a local ring. �

We note that Theorem 8 and Theorem 10 are closely related to Theorem 5.5 and

Corollary 5.6 of [4].

4. Compact rings with monothetic group of units

In [7], Gilmer has characterized commutative rings with 1 having a cyclic multi-

plicative group. Another proof can be found in [11].

Recall that a topological ring R is called left linear provided it has a basis at zero

consisting of left ideals. It is well known that the group U(R) of units of a compact

ring R with 1 is closed and is a topological group. Below Zp, p being a prime number,

denotes the compact ring of p-adic integers.

Remark 3. If f : R → R′ is a surjective homomorphism of local rings, then

f(U(R)) = U(R′).

Indeed, f(1) = 1 and f(U(R)) ⊂ U(R′). If x′ = f(x) ∈ U(R′), then x ∈ U(R),

otherwise x ∈ J(R) would imply x′ ∈ J(R′), a contradiction.

Lemma 7. Every commutative artinian ring with identity whose group of units

is finitely generated, is finite.

P r o o f. Since every commutative artinian ring is a product of finite number

of artinian local rings, we can assume without loss of generality that R is a local

516



commutative artinian ring. Then the field R/J(R) is finitely generated as a ring.

Then, by Hilbert’s Nullstellensatz, the ring R/J(R) is finite. Since J(R) is nilpotent,

we obtain that R has a finite characteristic. The subset 1 + J(R) is a subgroup of

U(R), therefore it is finitely generated. Let a1, . . . , an be the generators of 1 + J(R)

and b1, . . . , bn their quasiinverses. Then for every x ∈ J(R) there exist non-negative

integers k1, . . . , k2n such that 1 + x = (1 + a1)
k1 . . . (1 + bn)k2n . Expanding this

application, we obtain that x ∈ 〈a1, . . . , bn〉. We proved that J(R) = 〈a1, . . . , bn〉.

Since J(R) is a nilpotent ring of finite characteristic, it is finite and so R is finite. �

We call a topological Abelian group polythetic if it has a dense finitely generated

subgroup.

Theorem 11. Every commutative linearly compact ring R with polythetic group

of units is compact.

P r o o f. It is well-known (see [2]) that R is a product of local linearly compact

rings. According to Theorem of Tykhonov, we may assume that R is a local ring.

The ring R is an inverse system of local rings whose group of units is monothetic.

Therefore, without loss of generality, we may assume that R is a discrete linearly

compact ring with polythetic group of units. Since R is countable, it is artinian.

Then, by Lemma 7, R is finite. �

Corollary 6. Every commutative linearly compact ring R with monothetic group

of units is compact.

Theorem 12. An infinite compact local ring R has a monothetic U(R) if R is

isomorphic to Zp for an odd prime number p.

P r o o f. Let V be a proper open ideal of R. According to Remark 3, the group

of units of the ring R/V is cyclic. By Gilmer’s Theorem (see [11]), the factor ring

R/V is isomorphic to one of the following rings: GF (pm), p any prime and m > 1;

Z/(pm), p an odd prime and m > 2; F [X ]/(X2), where F is a finite prime field of

finite order; Z/(4); F [X ]/(X3), where F = GF (2), Z[X ]/(4, 2X, X2 − 2), or the

ring of all upper triangular 2 × 2 matrices over GF (2). Since R is infinite, there

exists an open ideal V0 such that R/V is isomorphic to Z/(pm), p an odd prime, and

fixed for every open ideal V ⊂ V0. This implies that R = 〈1〉 + V for every open

ideal V ⊂ V0. We obtain that R = cl〈1〉. This implies that R ∼= Zp. �

Theorem 13. The group U(R) of units of a compact commutative ring R is

monothetic if and only if R is isomorphic to
∏

i∈ω

Ri where no more than one ring Ri

is isomorphic to Zp for an odd prime number p and |U(Ri)| are relatively prime to

p and to each |U(Rj)| for a finite Rj , j 6= i.
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P r o o f. If the group of units U(R) is monothetic, then the assertion follows

directly from Theorem 8. Conversely, if R =
∏

i∈ω

Ri satisfies the theorem condition,

then (θi) generates U(R) for every generator θi, i ∈ ω. �

The following fact from the theory of numbers was communicated kindly by

M. Juras, M.Bachraoui and M.Ursul. Recall that a Mersenne number Mn, n ∈ N,
is 2n − 1.

Proposition 1. For all relatively prime numbers m, n the Mersenne numbers

Mm and Mn are relatively prime.

P r o o f. On the contrary, assume that there exist a pair (p, q) of relatively prime

numbers such that (Mp, Mq) = d > 1. Without loss of generality, we may assume

that p is the minimal natural number for which there exists a natural number q < p

such that (Mp, Mq) = d > 1. But Mn = 2n − 1 = 2 · 2n−1 − 1 = 2(2n−1 − 1) + 1 =

2Mn−1 + 1. By recursion, Mn = 2iMn−i + Mi for every i ∈ [1, n − 1]. Then

Mp = 2p−qMq + Mp−q. This implies (Mp, Mq) = (Mp−q, Mq), a contradiction. �

Remark 4. Let {An}n∈N be a family of groups each of which is a finite cyclic

group or a group of p-adic numbers such that (an, am) = 1 for n, m ∈ N, n 6= m,

where

ai =

{

|Ai| if Ai is finite,

p if Ai = Zp,

i ∈ N. Then the compact group
∏

n∈N
An is monothetic.

Let P be the set of all prime numbers. The next result follows directly from
Proposition 1 and Remark 4.

Corollary 7. Let P0 ⊂ P. Then
∏

p∈P0

F2p is a compact semiprimitive ring with a

monothetic group of units.

Corollary 8. There exists a family of cardinality 2ω of non-isomorphic commu-

tative compact semiprimitive rings with monothetic group of units.

Example 1. The group U(R) of units of the ring R = Z3 ×
∏

p∈P0

F2p is mono-

thetic. Indeed, it is well-known (see, for example [12], Proposition 7, Proposition 8)

that U(Z3) ∼= (Z/2Z) × Z
3
. By Remark 4, it suffices to show that gcd(2p − 1, 3) = 1

for every prime p > 5. But, as p = 2t + 1, t ∈ N, hence 2p − 1 = (22)t · 2 − 1 = 1

(mod 3).
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