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Abstract. On a bounded q-pseudoconvex domain Ω in C
n with a Lipschitz boundary, we

prove that the ∂-Neumann operator N satisfies a subelliptic (1/2)-estimate on Ω and N can
be extended as a bounded operator from Sobolev (−1/2)-spaces to Sobolev (1/2)-spaces.
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0. Introduction and results

Let Ω ⊂ C
n be a bounded domain with the standard Hermitian metric. The first

major step towards subelliptic estimates for the ∂-Neumann problem was achieved

by Kohn [19], [20]. In these papers he considered smoothly bounded, strictly pseu-

doconvex domains and showed that on such domains a subelliptic (1/2)-estimate

holds. A complete characterization of subelliptic (1/2)-estimate for (r, q)-forms at

a boundary point z0 was obtained by Hörmander [17]. That is, a subelliptic (1/2)-

estimate holds for (r, q)-forms in a neighborhood of z0 if and only if the domain

satisfies the Z(q) condition. If Ω is a smooth bounded domain admitting a defining

function that is plurisubharmonic on the boundary of Ω, Boas-Straube [5] showed

that the ∂-Neumann operator N is bounded on Sobolev spaces W l(Ω) for all l > 0.

On a smoothly bounded, pseudoconvex domain Ω, Bonami-Charpentier [6] proved

that the operator ∂⋆N is bounded on W
1/2
r,s (Ω). When the pseudoconvex domain Ω

is only Lipschitz with a plurisubharmonic defining function, they also proved that

the operator ∂⋆N is bounded from W
1/2+ε
r,s (Ω) to W

1/2
r,s (Ω) for any ε > 0. Henkin-

Iordan-Kohn [15] and Michel-Shaw [21] obtained subelliptic (1/2)-estimates for N

on piecewise smooth intersections of strictly pseudoconvex domains. Straube [24]
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obtained subelliptic ε-estimates (ε < 1
2 ) for piecewise smooth intersections of fi-

nite 1-D’Angelo type domains. When the domain is bounded pseudoconvex with

a plurisubharmonic Lipschitz defining function, Michel-Shaw [22] proved that N is

bounded on W
1/2
r,s (Ω). Engliš [11] pointed out that Hörmander’s [17] (in Folland-

Kohn [13]) and Catlin’s [7] arguments are local in obtaining the subelliptic estimate.

Abdelkader-Saber [2], [1], showed that N can be extended as a bounded operator

from W
−1/2
r,s (Ω) to W

1/2
r,s (Ω) on piecewise smooth (or Lipschitz) strictly pseudocon-

vex domains. Other results in this direction belong to Ehsani [9], [10]. The key

ingredient in the proof of all of the results above is an exhaustion of the piecewise

smooth domain by smooth (or uniformly Lipschitz) strictly pseudoconvex domains

Ω on which the ∂-Neumann operator exists and satisfies uniform L2 or subelliptic

ε-estimates. Ho [16] introduced the notion of weak q-convexity for domains with

smooth boundaries. Ahn-Dieu [3] investigated a natural extension of these notions

to the class of q-pseudoconvex domains with non-smooth boundaries. The aim of

this paper is to extend the estimates for the ∂-Neumann operator for some classes of

bounded pseudoconvex domains to the situation in which the boundaries are assumed

Lipschitz and q-pseudoconvex. More precisely, we prove the following result:

Theorem 1. Let Ω ⊂⊂ C
n be a bounded q-pseudoconvex domain, 1 6 q 6

n, with Lipschitz boundary. For each q 6 s 6 n − 1, the ∂-Neumann operator

N : L2
r,s(Ω) → L2

r,s(Ω) satisfies the following estimate: for any α ∈ L2
r,s(Ω), there

exists a constant C > 0 such that

(0.1) ‖Nα‖1/2(Ω) 6 C‖α‖Ω,

where C = C(Ω) is independent of α.

Corollary 1. For any α ∈ L2
r,s(Ω) ∩ dom ∂ ∩ dom ∂⋆, there exists a constant

C > 0 such that

‖∂Nα‖1/2(Ω) 6 C‖α‖Ω, q 6 s 6 n− 1,(0.2)

‖∂⋆Nα‖1/2(Ω) 6 C‖α‖Ω, q 6 s 6 n, s > 2.(0.3)

Theorem 2. Let Ω ⊂⊂ C
n be a q-pseudoconvex domain, 1 6 q 6 n, with

Lipschitz boundary. For each q 6 s 6 n−1, the ∂-Neumann operator N : L2
r,s(Ω) →

L2
r,s(Ω) satisfies the following estimate: for any α ∈ L2

r,s(Ω), there exists a constant

C > 0 such that

(0.4) ‖Nα‖1/2(Ω) 6 C‖α‖−1/2(Ω),

i.e., N can be extended as a bounded operator from W
−1/2
r,s (Ω) to W

1/2
r,s (Ω).
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The plan of this paper is as follows. In Section 1 we first recall some definitions

and facts on Lipschitz q-pseudoconvex domains. In Section 2 we discuss the L2

existence theorems for ∂ and the ∂-Neumann operator on q-pseudoconvex domains.

Theorems 1, 2 are proved in Section 3. These results extend to domains which are

not necessarily pseudoconvex. The techniques of this paper come back to Michel and

Shaw and others. Our results also hold on q-pseudoconvex domains with piecewise

smooth boundary.

1. Lipschitz q-pseudoconvex domains

Let ψ : R
2n−1 → R be a function that satisfies the Lipschitz condition

(1.1) |ψ(x) − ψ(x′)| 6 M |x− x′|, for all x, x′ ∈ R
2n−1.

The smallest M for which (1.1) holds will be called the bound of the Lipschitz

constant. A domain Ω ⊂⊂ R
2n is called Lipschitz domain or a domain with Lipschitz

boundary, if near every boundary point p ∈ bΩ there exists a neighborhood V of p

such that, after a rotation,

Ω ∩ V = {(x, x2n) ∈ V | x2n > ψ(x)},

for some Lipschitz function ψ. By choosing finitely many balls {Vi} covering bΩ, the
Lipschitz constant for a Lipschitz domain is the smallest M such that the Lipschitz

constant is bounded byM in every ball Vi. A Lipschitz function is almost everywhere

differentiable (see Evans-Gariepy [12] for a proof of this fact).

Definition 1.1. Let ϕ be an upper semi-continuous function on U ⊂ C
n. Then

we say that ϕ is q-subharmonic on U if for every q-complex dimension space H and

for every compact set K ⊂ H ∩U , the following holds: if h is a continuous harmonic
function on K and h 6 ϕ on bK, then h 6 ϕ on K.

Proposition 1.2 [3]. Let ϕ be a real valued C2-function defined on U ⊂ C
n and

1 6 q 6 n. Then the q-subharmonicity of ϕ is equivalent to

(1.2)
∑

|K|=q−1

∑

j,k

∂2ϕ

∂zj∂zk
αjK αkK > 0 for all q-forms α =

∑

|J|=q

αJ dzJ .

One of the most typical examples of q-subharmonic function which is not plurisub-

harmonic is

ϕ(z) = −
q−1
∑

j=1

|zj |2 + (q − 1)

n
∑

j=q

|zj |2.
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Definition 1.3. A bounded (Lipschitz) domain Ω in Cn is called q-pseudoconvex

if there is a q-subharmonic exhaustion (Lipschitz) function for Ω.

A C2 smooth function u on U ⊂ C
n is called q-plurisubharmonic if its complex

Hessian has at least n− q non-negative eigenvalues at each point of U .

A domain Ω ⊂ C
n is pseudoconvex if and only if it is 1-pseudoconvex, since

1-subharmonic function is just plurisubharmonic.

An n-subharmonic function is just subharmonic function in usual sense. An upper

semicontinuous function on U is plurisubharmonic exactly when it is 1-subharmonic.

Remark 1.4 [3]. If Ω ⊂ C
n is a q-pseudoconvex domain, 1 6 q 6 n, then the

following hold

(1) If bΩ is of class C2, then by (1.2), Ω is weakly q-convex in the sense of Ho [16].

(2) If q 6 q′, then q-pseudoconvexity implies q′-pseudoconvexity.

We say that ϕ ∈ C2(U) is strictly q-subharmonic if ϕ satisfies (1.2) with strict

inequality. Also we say that Ω is strictly q-pseudoconvex if the boundary of Ω, is of

class C2 and its defining function is strictly q-subharmonic.

Example 1.5. Let Ω ⊂ C
n be a bounded domain satisfying the Z(q) condition,

that is, the Levi form of a smooth defining function of Ω has, at every boundary

point of Ω, at least n− q positive or at least q + 1 negative eigenvalues. Then Ω is

strictly q-pseudoconvex.

Denote by C∞
r,s(C

n) the space of complex-valued differential forms of class C∞

and of type (r, s) on C
n. Each such form can be written uniquely as a sum

α =
∑′

I,J

αI,J dzI ∧ dzJ ,

where I and J are strictly increasing multi-indices with lengths r and s, respectively.

Denote by C∞
r,s(Ω̄) =

{

α|Ω ; α ∈ C∞
r,s(C

n)
}

the subspace of C∞
r,s(Ω) whose elements

can be extended smoothly up to the boundary bΩ. For α, u ∈ C∞
r,s(C

n), we define a

pointwise Hermitian structure (α, u) by

(α, u) =
∑

I,J

αI,J ūI,J .

Let L2
r,s(Ω) be the space of (r, s)-forms on Ω with square-integrable coefficients. The

L2-inner product and norms on Ω are defined by

〈α, u〉Ω =

∫

Ω

(α, u) dV and ‖α‖2
Ω = 〈α, α〉Ω ,
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where dV is the volume element. Let ∂ be the maximal closure of the Cauchy-

Riemann operator and ∂⋆ be its Hilbert space adjoint. For 1 6 s 6 n, we denote by

� = ∂ ∂⋆ + ∂⋆∂ : dom� → L2
r,s(Ω) the complex Laplacian operator, where dom� =

{α ∈ L2
r,s(Ω): α ∈ dom ∂ ∩ dom ∂⋆; ∂α ∈ dom ∂⋆ and ∂⋆α ∈ dom∂}. Denote by

ker� = {α ∈ dom�; ∂α = ∂⋆α = 0} the kernel of �. One defines the ∂-Neumann
operator N : L2

r,s(Ω) → L2
r,s(Ω) as the inverse of the restriction of � to (ker�)⊥,

i.e.,

Nα =

{

0 if α ∈ ker�,

u if α = � u and u ⊥ ker�.

2. L2 theory for ∂ on a q-pseudoconvex domain

In this section we establish that the ∂-Neumann operator N exists for square-

integrable forms on q-pseudoconvex domains Ω in C
n. We define a mollifier ̺ε(z) =

̺(z/ε)/|ε|2n, where ̺ is a non-negative smooth radial function in C
n vanishing out-

side the unit ball and satisfying
∫

Cn ̺ dv = 1. Here dv stands for the standard

Lebesgue measure. By W l(Ω) for l > 0 we denote the L2-Sobolev space of order l

on Ω, i.e., the restrictions of functions in W l(Cn) to Ω with the quotient norm.

Lemma 2.1 ([8]; Lemma 5.1.6). Let Ω ⊂ C
n be a bounded domain with C2

boundary. Then, for α ∈ C∞
r,s(Ω) ∩ dom ∂⋆ with 1 6 s 6 n− 1, we have

‖α‖2
1/2(Ω) 6 C

(
∫

bΩ

|α|2 dS + ‖∂α‖2
Ω + ‖∂⋆α‖2

Ω + ‖α‖2
Ω

)

,

where C > 0 is a constant independent of α.

Lemma 2.2 [4]. Let Ω ⊂ C
n be a bounded domain with C2 boundary and

ϕ be its C2 defining function. Let a be a real function that is twice continuously

differentiable on Ω, with a > 0. Then, for α ∈ C∞
r,s(Ω) ∩ dom ∂⋆ with 1 6 s 6 n− 1,

we have

(2.1) ‖
√
a ∂α‖2

Ω + ‖
√
a ∂⋆α‖2

Ω =
∑′

I,K

n
∑

j,k=1

∫

bΩ

a
∂2ϕ

∂zj∂zk
αI,jK αI,kK dS

+
∑′

I,J

n
∑

k=1

∫

Ω

a
∣

∣

∣

∂αI,J

∂zk

∣

∣

∣

2

dV + 2 Re

(

∑′

I,K

n
∑

j=1

∂a

∂zj
αI,jK dzK , ∂

⋆α

)

−
∑′

I,K

n
∑

j,k=1

∫

Ω

∂2a

∂zj∂zk
αI,jK αI,kK dV.

The case of a ≡ 1 is the classical Kohn-Morrey formula, see [19], [17].
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Lemma 2.3 [3]. Let Ω ⊂ C
n be a q-pseudoconvex domain, 1 6 q 6 n. Then Ω

has a C∞-smooth strictly q-subharmonic exhaustion function. More precisely, there

are strictly q-pseudoconvex domains Ων , ν = 1, 2, . . . , satisfying

Ω =

∞
⋃

ν=1

Ων , Ων ⊂⊂ Ων+1 ⊂⊂ Ω.

P r o o f. Let ϕ be a q-subharmonic exhaustion function for Ω and Uj =

{ϕ(z) < j}. Note that Uj ր Ω as j → ∞. By Sard’s theorem, we can find a
decreasing sequence {εj} with lim

j→∞
εj = 0 and two increasing sequences {aj}, {bj}

with lim
j→∞

aj = ∞, lim
j→∞

bj = ∞ such that for every j,
(a) Uj ⊂ Dj := {z ∈ D : u ∗ ̺ε(z) + |z|2/aj < bj};
(b) Uj ∪Dj ⊂⊂ Dj+1;

(c) each Dj has smooth boundary.

Thus the proof follows. �

From now, we assume that Ω and {Ων} are the same as in Lemma 2.3. Let Nµ

and ∂⋆
µ be the ∂-Neumann operator and the adjoint of ∂ on L

2
r,s(Ωµ), respectively.

We prove the following theorem as in Boas-Straube [4].

Theorem 2.4. Let Ω ⊂ C
n be a q-pseudoconvex domain, 1 6 q 6 n. Then, for

any q 6 s 6 n, there exists a bounded linear operator N : L2
r,s(Ω) → L2

r,s(Ω) with

the following properties:

(i) R(N) ⊂ dom�, N� = I on dom�,

(ii) for α ∈ L2
r,s(Ω), we have α = ∂ ∂⋆Nα ⊕ ∂⋆∂Nα,

(iii) ∂N = N∂ on dom ∂, q 6 s 6 n− 1,

(iv) ∂⋆N = N∂⋆ on dom∂⋆, q 6 s 6 n, s > 2,

(v) if ∂α = 0, then u = ∂⋆Nα solves the equation ∂u = α,

(vi) N , ∂N and ∂⋆N are bounded operators with respect to the L2-norms.

P r o o f. Since Ω ⊂ C
n is a q-pseudoconvex domain, we can choose strictly

q-pseudoconvex domains Ων with smooth boundary such that

Ω =

∞
⋃

ν=1

Ων , Ων ⊂⊂ Ων+1 ⊂⊂ Ω for all ν.

Since Ων is a strictly q-pseudoconvex domain with smooth boundary, then for every

α ∈ C∞
r,s(Ων) ∩ dom∂⋆

ν with s > q, we have

∑′

I,K

n
∑

j, k=1

∫

bΩν

∂2ϕ

∂zj∂zk
αI,jK αI,kK dS > C

∫

bΩν

|α|2 dS,
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where C is independent of ν. If we replace a by 1− eb, where b is an arbitrary twice

continuously differentiable non-positive function, and apply the Cauchy-Schwarz in-

equality to the term in (2.1) involving first derivatives of a, we find

‖
√
a ∂α‖2

Ων
+ ‖

√
a ∂⋆α‖2

Ων
>

∑′

I,K

n
∑

j,k=1

∫

Ων

eb ∂2b

∂zj∂zk
αI,jK αI,kK dV − ‖eb/2 ∂⋆α‖Ων

.

Since a+ eb = 1 and a 6 1, it follows that

‖∂ α‖2
Ων

+ ‖∂⋆α‖2
Ων

>
∑′

I,K

n
∑

j,k=1

∫

Ων

eb ∂2b

∂zj∂zk
αI,jK αI,kK dV

for every twice continuously differentiable non-positive function b. If p is a point of

Ων , and b(z) = −1 + |z − p|2/d2, where d = sup
z,z′∈Ων

|z − z′| is the diameter of the
bounded domain Ων , then the preceding inequality then implies the fundamental

estimate

(2.2) ‖α‖2
Ων

6

(d2e

s

)

(

‖∂α‖2
Ων

+ ‖∂⋆α‖2
Ων

)

.

Although this estimate was derived under the assumption that α is continuously

differentiable on the closure Ων , it holds by density for all square-integrable forms α

that are in the intersection of the domains of ∂ and ∂⋆. Estimate (2.2) is equivalent

to every form in L2
r,s(Ων) admitting a representation as ∂ v + ∂⋆w with

‖v‖2
Ων

+ ‖w‖2
Ων

6

(d2e

s

)

‖α‖2
Ων
.

The latter property carries over to arbitrary bounded q-pseudoconvex domains by

exhausting a nonsmooth domain by smooth ones, and therefore so does the inequality

(2.2). Thus, for s > q, we obtain

‖α‖2
Ω 6

(d2e

s

)

(

‖∂α‖2
Ω + ‖∂⋆α‖2

Ω

)

6

(

d2e

s

)

‖�α‖Ω‖α‖Ω,

i.e.,

(2.3) ‖α‖Ω 6

(d2e

s

)

‖�α‖Ω.

Since � is a linear closed densely defined operator, then, from [17], Theorem 1.1.1,

R(�) is closed. Thus, from (1.1.1) in [17] and the fact that � is self adjoint, we have

the Hodge decomposition

L2
r,s(Ω) = ∂ ∂⋆ dom� ⊕ ∂⋆∂ dom�.
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Since � : dom� → R(�) = L2
r,s(Ω) is one to one on dom� from (2.3), there exists

a unique bounded inverse operator N : R(�) → dom� such that N�α = α on

dom�. Also, from the definition of N , we obtain �N = I on L2
r,s(Ω). Thus (i)

and (ii) are satisfied. To show that ∂⋆N = N∂⋆ on dom∂⋆, by using (ii), we have

∂⋆α = ∂⋆∂ ∂⋆N α, for α ∈ dom ∂⋆. Thus

N∂⋆α = N∂⋆ ∂ ∂⋆Nα = N(∂⋆ ∂ + ∂ ∂⋆) ∂⋆Nα = ∂⋆Nα.

A similar argument shows that ∂N = N∂ on dom∂. By using (iii) and the condition

on α, ∂α = 0, we have ∂Nα = N∂α = 0. Then, by using (ii), we obtain α = ∂ ∂⋆Nα.

Thus the form u = ∂⋆Nα satisfies the equation ∂u = α. Since R(N) ⊂ dom�, then

by applying (2.3) to Nα instead of α, we obtain

‖Nα‖Ω 6

(e δ2

s

)

‖α‖Ω,

‖∂Nα‖Ω + ‖∂⋆Nα‖Ω 6 2

√

e δ2

s
‖α‖Ω.

Thus the proof follows. �

3. Proof of theorems 1, 2

If Ω is a Lipschitz domain, then C∞(Ω) is dense in W l(Ω) with respect to the

W l(Ω)-norm. Thus to prove Theorem 1, it suffices to prove (0.1) for any α ∈ C∞
r,s(Ω).

Since Ων is a smooth domain, hence C
∞(Ων) is dense in W s(Ων) in the W s(Ων)-

norm. By using the boundary regularity for Nν which was established by Zampieri

[25] and Kohn [18], we have Nνα ∈ C∞(Ων) ∩ dom�ν . By setting a = 1 in (2.1),

there exists a constant C > 0 such that for any α ∈ L2
r,s(Ων)∩ dom�ν , q 6 s 6 n−1,

∫

bΩν

|α|2 dSν 6 C
(

‖∂α‖2
Ων

+ ‖∂⋆α‖2
Ων

)

.

Thus, by using (2.2) and by applying Lemma 2.1 on Ων , we obtain

(3.1) ‖α‖2
1/2(Ων) 6 C

(

‖∂α‖2
Ων

+ ‖∂⋆α‖2
Ων

)

6 C‖α‖Ων
‖�να‖Ων

,

where C is independent of α and ν. By using (vi) and (ii) in Theorem 2.4, the

operatorsNνα, ∂Nνα, ∂
⋆
νNνα, ∂

⋆
ν∂Nνα, and ∂ ∂

⋆
νNνα satisfy the following estimates:

‖Nµα‖Ωµ
6

(e δ2

s

)

‖α‖Ωµ
6

(e δ2

s

)

‖α‖Ω,(3.2)

‖∂Nµα‖Ωµ
+ ‖∂⋆

µNµα‖Ωµ
6 2

√

e δ2

s
‖α‖Ωµ

6 2

√

e δ2

s
‖α‖Ω ,(3.3)

‖∂ ∂⋆
µNµα‖2

Ωµ
+ ‖∂⋆

µ∂Nµα‖2
Ωµ

= ‖α‖2
Ωµ

6 ‖α‖2
Ω.(3.4)
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In view of (3.2), let us extend Nνα to all of Ω by setting Nνα = 0 in Ω \ Ων , thus

by the Rellich and Sobolev lemmas we can choose a subsequence (still denoted by

Nνα) converging weakly to some element g ∈ L2
r,s(Ω) and ∂g ∈ L2

r,s+1(Ω).

Again in view of (3.3) and (3.4), we can assume that ∂Nνα, ∂
⋆
νNνα, ∂

⋆
ν∂Nνα, and

∂ ∂⋆
νNνα converge weakly to some elements g1, g2, g3 and g4 of L

2
r,s(Ω), respectively

(here we again extending ∂Nνα etc. by zero on Ω \ Ων).

We claim that g ∈ dom∂ ∩ dom ∂⋆ and ∂g = g1, ∂
⋆g = g2. Indeed, for any u ∈

dom ∂ ∩ L2
r,s−1(Ω),

|〈g, ∂u〉Ω| = lim
ν→∞

|〈∂⋆
νNνα, u〉Ων

| 6 2

√

eδ2

s
‖α‖Ω ‖u‖Ω.

Thus g ∈ dom ∂⋆. The proof for ∂ is the same. A similar argument shows that

g1 ∈ dom ∂⋆, g ∈ dom ∂ and ∂⋆g1 = g3, ∂g3 = g4. Thus g ∈ dom� and �g is the

weak limit of �νNνα = α, that is, g = Nα and Nνα→ Nα weakly in L2.

Following [23], Chapter VI, there exists a continuous linear extension operator

Eν : W 1/2(Ων) →W 1/2(Cn) such that for each α ∈W 1/2(Ων), Eνα = α on Ων and

(3.5) ‖Eνα‖1/2(Cn) 6 C‖α‖1/2(Ων),

for some positive constant C. The constant C in (3.5) can be chosen independent of

ν since extension exists for any Lipschitz domain (cf. Theorem 1.4.3.1 in [14]). By

applying (3.1) on Nνα, we obtain

‖Nνα‖1/2(Ων ) 6 C‖α‖Ων
.

Thus, by using (3.5) and by applying Eν to Nνα componentwise, we obtain

‖EνNνα‖1/2(Ω) 6 ‖EνNνα‖1/2(Cn) 6 C‖Nνα‖1/2(Ων) 6 C‖α‖Ων
,

where C > 0 is independent of ν. Since W
1/2
r,s (Ω) is a Hilbert space, then from the

weak compactness for Hilbert space, there exists a subsequence of EνNνα which

converges weakly in W
1/2
r,s (Ω). Since EνNνα converges weakly to Nα in L

2
r,s(Ω), we

conclude that Nα ∈ W
1/2
r,s (Ω) and

‖Nα‖1/2(Ω) 6 lim
ν→∞

‖EνNνα‖1/2(Ων) 6 C‖α‖Ω.

Thus (0.1) follows.

To prove the estimate (0.2), we note that from the above arguments, for any

α ∈ L2
r,s(Ω), ∂Nνα converges weakly to ∂Nα in L

2
r,s(Ω). If q 6 s 6 n− 1, ∂Nνα is

in dom ∂ ∩ dom ∂⋆
ν , and substituting ∂Nνα into (3.1), we have

‖∂Nνα‖2
1/2(Ων ) 6 C

(

‖∂ ∂Nνα‖2
Ων

+ ‖∂⋆
ν∂Nνα‖2

Ων

)

6 C‖α‖Ων
.
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Passing to the limit as before, we prove (0.2) when q 6 s 6 n−1. Similar arguments

also give the estimate (0.3) when q 6 s 6 n, s > 2 since in this case, we also have

∂⋆
νNα is in dom ∂ ∩ dom∂⋆

ν .

To prove Theorem 2, since C∞(Ω) is dense in W l(Ω) for all l < 0 (cf. [14]), it

suffices to prove (0.4) for any α ∈ C∞
r,s(Ω). By using the Generalized Schwartz

inequality (cf. Proposition (A.1.1) in [13]) and by using (2.4), there exists a constant

C > 0 such that for any α ∈ L2
r,s(Ων) ∩ dom�ν , 0 6 p 6 n and q 6 s 6 n− 1,

‖α‖2
1/2(Ων) 6 C 〈α,�ν α〉Ων

6 C‖α‖1/2(Ων)‖�να‖−1/2(Ων),

where C is independent of α and ν. Passing to the limit as before, we prove that

‖Nα‖1/2(Ω) 6 C‖α‖−1/2(Ω),

when q 6 s 6 n − 1. Thus (0.4) follows, i.e., N can be extended as a bounded

operator from W
−1/2
r,s (Ω) to W

1/2
r,s (Ω). �
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