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INTRODUCTION TO GRADED GEOMETRY,
BATALIN-VILKOVISKY FORMALISM

AND THEIR APPLICATIONS

Jian Qiu and Maxim Zabzine

Abstract. These notes are intended to provide a self-contained introduction
to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism
and its applications. A brief exposition of super- and graded geometries is also
given. The BV–formalism is introduced through an odd Fourier transform and
the algebraic aspects of integration theory are stressed. As a main application
we consider the perturbation theory for certain finite dimensional integrals
within BV-formalism. As an illustration we present a proof of the isomorphism
between the graph complex and the Chevalley-Eilenberg complex of formal
Hamiltonian vectors fields. We briefly discuss how these ideas can be extended
to the infinite dimensional setting. These notes should be accessible to both
physicists and mathematicians.
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These notes are based on a series of lectures given by second author
at the 31st Winter School “Geometry and Physics”,

Czech Republic, Srní, January 15 - 22, 2011.

1. Introduction and motivation

The principal aim of these lecture notes is to present the basic ideas about the
Batalin-Vilkovisky (BV) formalism in finite dimensional setting and to elaborate
on its application to the perturbative expansion of finite dimensional integrals.
We try to make these notes self-contained and therefore they include also some
background material about super and graded geometries, perturbative expansions
and graph theory. We hope that these notes would be accessible for math and
physics PhD students.

Originally the Batalin-Vilkovisky (BV) formalism (named after Igor Batalin and
Grigori Vilkovisky, see the original works [3, 4]) was introduced in physics as a way
of dealing with gauge theories. In particular it offers a prescription to perform path
integrals of gauge theories. In quantum field theory the path integral is understood
as some sort of integral over infinite dimensional functional space. Up to now
there is no suitable definition of the path integral and in practice all heuristic
understanding of the path integral is done by mimicking the manipulations of the
finite dimensional integrals. Thus a proper understanding of the formal algebraic
manipulations with finite (infinite) dimensional integrals is crucial for a better
insight to the path integrals. Actually nowadays the algebraic and combinatorial
techniques play a crucial role in dealing with path integral. In this context the
power of BV formalism is that it is able to capture the algebraic properties of the
integration and to describe the Stokes theorem as some sort of cocyle condition.
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The geometrical aspects of BV theory were clarified and formalized by Albert
Schwarz in [23] and since then it is well-established mathematical subject.

The idea of these lectures is to present the algebraic understanding of finite
dimensional (super) integrals within the framework of BV-formalism and pertur-
bative expansion. Here our intention is to explain the ideas of BV formalism in a
simplest possible terms and if possible to motivate different formal constructions.
Therefore instead of presenting many formal definitions and theorems we explain
some of the ideas on the concrete examples. At the same time we would like to show
the power of BV formalism and thus we conclude this note with a highly non-trivial
application of BV in finite dimensional setting: the proof of the Kontsevich theorem
[16] about the relation between graphs and symplectic geometry.

The outline for the lecture notes is the following. In sections 2 we briefly review
the basic notions from supergeometry, in particular Z2-graded linear algebra,
supermanifolds and the integration theory. As main examples we discuss the odd
tangent and odd cotangent bundles. In section 3 we briefly sketch the Z-graded
refinement of the supergeometry. We present a few examples of the graded manifolds.
In sections 2 and 3 our exposition of super- and graded geometries are quite sketchy.
We stress the description in terms of local coordinates and avoid many lengthy
formal consideration. For the full formal exposition of the subject we recommend
the recent books [25] and [5]. In section 4 we introduce the BV structure on
the odd cotangent bundle through the odd Fourier transformation. We discuss
the integration theory on the odd cotangent bundle and a version of the Stokes
theorem. We stress the algebraic aspects of the integration within BV formalism
and explain how the integral gives rise to a certain cocycle. Section 5 provides the
basic introduction into the perturbative analysis of the finite dimensional integrals.
We explain the perturbation theory by looking at the specific examples of the

integrals in Rn and
N⊕
i=1

R2n. Also the relevant concepts from the graph theory are

briefly reviewed and the Kontsevich theorem is stated. Section 6 presents the main
application of BV formalism to the perturbative expansion of finite dimensional
integrals. In particular we present the proof of the Kontsevich result [16] about the
isomorphism between the graph complex and the Chevalley-Eilenberg complex of
formal Hamiltonian vectors fields. This proof is a simple consequence of the BV
formalism and as far as we are aware the present form of the proof did not appear
anywhere. In section 7 we outline other application of the present formalism. We
briefly discuss the application for the infinite dimensional setting in the context
of quantum field theory. At the end of the notes there are a few Appendices with
some technical details and proofs which we decided not to include in the main text.

2. Supergeometry

The supergeometry extends classical geometry by allowing odd coordinates,
which anticommute, in contrast to usual coordinates which commute. The global
objects obtained by gluing such extended coordinate systems, are supermanifolds.
In this section we briefly review the basic ideas from the supergeometry with the
main emphasis on the local coordinates. Due to limited time we ignore the sheaf
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and categorical aspects of supergeometry, which are very important for the proper
treatment of the subject (see the books [25] and [5]).

2.1. Idea. Before going to the formulas and concrete definitions let us say a few
general words about the ideas behind the super- and graded geometries. Consider
a smooth manifold M and the smooth functions C∞(M) over M . C∞(M) is a
commutative ring with the point-wise multiplication of the functions and this ring
structure contains rich information about the original manifold M . The functions
which vanish on the fixed region of M form an ideal of this ring and moreover
the maximal ideals would correspond to the points on M . In modern algebraic
geometry one replaces C∞(M) by any commutative ring and the corresponding
“manifold"M is called scheme. In supergeometry (or graded geometry) we replace the
commutative ring of functions with supercommutative ring. Thus supermanifold
generalizes the concept of smooth manifold and algebraic schemes to include
anticommuting coordinates. In this sense the super- and graded geometries are
conceptually close to the modern algebraic geometry and the methods of studying
supermanifolds (graded manifold) are variant of those used in the study of schemes.

2.2. Z2-graded linear algebra. The Z2-graded vector space V over R (or C) is
vector space with decomposition

V = V0
⊕

V1 ,

where V0 is called even and V1 is called odd. Any element of V can be decomposed
into even and odd components. Therefore it is enough to give the definitions for
the homogeneous elements. The parity of v ∈ V , we denote |v|, is defined for the
homogeneous element to be 0 if v ∈ V0 and 1 if v ∈ V1. If dimV0 = d0 and dimV1 =
d1 then we will adopt the following notation V d0|d1 and the combination (d0, d1) is
called superdimension of V . Within the standard use of the terminology Z2-graded
vector space V is the same as superspace. All standard constructions from linear
algebra (tensor product, direct sum, duality, etc.) carry over to Z2-linear algebra.
For example, the morphism between two superspaces is Z2-grading preserving
linear map. It is useful to introduce the parity reversion functor which changes the
parity of the components of superspace as follows (ΠV )0 = V1 and (ΠV )1 = V0.
For example, by ΠRn we mean the purely odd vector space R0|n.

If V is associative algebra such that the multiplication respects the grading,
i.e. |ab| = |a| + |b| (mod 2) for homogeneous elements in V then we will call it
superalgebra. The endomorphsim of superalgebra V is a derivation D of degree
|D| if

D(ab) = (Da)b+ (−1)|D||a|a(Db) .(1)

For any superalgebra we can construct Lie bracket as follows [a, b] = ab−(−1)|a||b|ba.
By construction this Lie bracket satisfies the following properties

[a, b] = −(−1)|a||b|[b, a] ,(2)

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]] .(3)
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If in general a superspace V is equipped with the bilinear bracket [ , ] satisfying
the properties (2) and (3) then we call it Lie superalgebra. In principle one can
define also the odd version of Lie bracket. Namely we can define the bracket [ , ]
of parity ε such that |[a, b]| = |a| + |b| + ε (mod 2). This even (odd) Lie bracket
satisfies the following properties

[a, b] = −(−1)(|a|+ε)(|b|+ε)[b, a] ,(4)

[a, [b, c]] = [[a, b], c] + (−1)(|a|+ε)(|b|+ε)[b, [a, c]] .(5)

However the odd Lie superbracket can be mapped to even Lie superbracket by the
parity reversion functor. Thus odd case can be always reduced to the even.

Coming back to the general superalgebras. The supergalgebra V is called super-
commutative if

ab = (−1)|a||b|ba .

The supercommutative algebras will play the central role in our considerations. Let
us discuss a very important example of the suprecommutative algebra, the exterior
algebra.

Example 2.1. Consider purely odd superspace ΠRm = R0|m over the real num-
ber of dimension m. Let us pick up the basis θi, i = 1, 2, . . . ,m and define the
multiplication between the basis elements satisfying θiθj = −θjθi. The functions
C∞(R0|m) on R0|m are given by the following expression

f(θ1, θ2, . . . , θm) =
m∑
l=0

1
l! fi1i2...ilθ

i1θi2 . . . θil ,

and they correspond to the elements of exterior algebra ∧•(Rm)∗. The exterior
algebra

∧•(Rm)∗ = (∧even(Rm)∗)
⊕(

∧odd(Rm)∗
)

is a supervector space with the supercommutative multiplications given by wedge
product. The wedge product of the exterior algebra corresponds to the function
multiplication in C∞(R0|m).

Let us consider the supercommutative algebra V with the multiplication and
in addition there is a Lie bracket of parity ε. We require that ada = [a, ] is a
derivation of · of degree |a|+ ε, namely

[a, bc] = [a, b]c+ (−1)(|a|+ε)|b|b[a, c] .(6)

Such structure (V, ·, [ , ]) is called even Poisson algebra for ε = 0 and Gerstenhaber
algebra (odd Poisson algebra) for ε = 1. It is crucial that it is not possible to reduce
Gerstenhaber algebra to even Poisson algebra by the parity reversion, since now
we have two operations in the game, supercommutative product and Lie bracket
compatible in a specific way.
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2.3. Supermanifolds. We can construct more complicated examples of the su-
percommutative algebras. Consider the real superspace Rn|m and we define the
space of functions on it as follows

C∞(Rn|m) ≡ C∞(Rn)⊗ ∧•(Rm)∗ .

If we pick up an open subset U0 in Rn then we can associate to U0 the supercom-
mutative algebras as follows

U0 −→ C∞(U0)⊗ ∧•(Rm)∗ .(7)

This supercommutative algebra can be thought of as the algebra of functions on the
superdomain Un|m ⊂ Rn|m, C∞(Un|m) = C∞(U0)⊗ ∧•(Rm)∗. The superdomain
Un|m ⊂ Rn|m can be characterized in terms of standard even coordinates xµ
(µ = 1, 2, . . . , n) for U0 and the odd coordinates θi (i = 1, 2, . . . ,m), such that
θiθj = −θjθi. In analogy with ordinary manifolds a supermanifold can be defined
by gluing together superdomains by degree preserving maps. Thus the domain Un|m
with coordinates (xµ, θi) can be glued to the domain V n|m with coordinates (x̃µ, θ̃i)
by invertible and degree-preserving maps x̃µ = x̃µ(x, θ) and θ̃i = θ̃(x, θ) defined
for x ∈ U0 ∩ V0. Thus formally the theory of supermanifolds mimics the standard
smooth manifolds. However one should anticipate that some of the geometric
intuition fails and we cannot think in terms of points due to the presence of the
odd coordinates. This situation is very similar to the algebraic geometry when
there can be nilpotent elements in the commutative ring.

The supermanifold is defined by gluing superdomains. However, the gluing
should be done with some care and for the rigorous treatment we need to use the
sheaf theory. Let us give a precise definition of the smooth supermanifold.

Definition 2.2. A smooth supermanifold M of dimension (n,m) is a smooth
manifold M with a sheaf of supercommutative superalgebras, typically denoted
OM or C∞(M), that is locally isomorphic to C∞(U0)⊗∧•(Rm)∗, where U0 is open
subset of Rn.

Thus essentially the supermanifold is defined through the gluing supercommu-
tative algebras which locally look like in (7). This supercommutative algebra is
sometimes called ’freely generated’ since it can be generated by even and odd
coordinates xµ and θi. If we allow more general supercommutative algebras to
be glued, we will be led to the notion of superscheme which is a natural super
generalization in the algebraic geometry.

Let us illustrate this formal definition of supermanifold with couple of concrete
examples.

Example 2.3. Assume that M is smooth manifold then we can associate to it the
supermanifold ΠTM odd tangent bundle, which is defined by the gluing rule

x̃µ = x̃µ(x) , θ̃µ = ∂x̃µ

∂xν
θν ,
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where x’s are local coordinates on M and θ’s are glued as dxµ. The functions on
ΠTM have the following expansion

f(x, θ) =
dimM∑
p=0

1
p!fµ1µ2...µp(x)θµ1θµ2 . . . θµp

and thus they are naturally identified with the differential forms, C∞(ΠTM) =
Ω•(M). Indeed locally the differential forms correspond to freely generated super-
commutative algebra

Ω•(U0) = C∞(U0)⊗ ∧(Rn)∗ .

Example 2.4. Again let M be a smooth manifold and we associate to it now
another super manifold ΠT ∗M odd cotangent bundle, which has the following local
description

x̃µ = x̃µ(x) , θ̃µ = ∂xν

∂x̃µ
θν ,

where x’s are local coordinates on M and θ’s transform as ∂µ. The functions on
ΠT ∗M have the expansion

f(x, θ) =
dimM∑
p=0

1
p!f

µ1µ2...µp(x)θµ1θµ2 . . . θµp

and thus they are naturally identified with multivector fields, C∞(ΠT ∗M) =
Γ(∧•TM). Indeed the sheaf of multivector fields is a sheaf of supercommutative
algebras which is locally freely generated.

Many notions and results from the standard differential geometry can be extended
to supermanifolds in straightforward fashion. For example, the vector fields on
supermanifold M are defined as derivations of the supercommutative algebra
C∞(M). The use of local coordinates is extremely powerful and sufficient for most
purposes. The notion of morphisms of supermanifolds can be described locally
exactly as it is done in the case of smooth manifolds.

2.4. Integration theory. Now we have to discuss the integration theory for the
supermanifolds. We need to define the measure and it can be done first locally in
analogy with the standard case. The main novelty comes from the odd part of the
measure.

Let us start from the discussion of the integration of the function f(x) in one
variable. The even integral is defined as usual∫

f(x)dx(8)

and if we change the coordinate x̃ = cx then the measure is changed accordingly
to the standard rules dx̃ = cdx. Next consider the function of one odd variable θ
which is given by f = f0 + f1θ, where f0 and f1 are some real numbers. We define
the integral over this function as linear operation such that∫

dθ = 0 ,
∫
dθ θ = 1 .(9)
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Now if we change the odd coordinate θ̃ = cθ we still want the same definition to
hold, namely ∫

dθ̃ = 0 ,
∫
dθ̃ θ̃ = 1 .(10)

As a result of this we get that the odd measure transforms as follows dθ̃ = 1
cdθ and

this transformation property should be contrasted with the even integration. Next
we can define the odd measure over functions of many θ’s. Assume that there are
odd θi (i = 1, 2, . . . ,m). Using the definition for a single θ we define the measure
to be such that∫

dmθ θ1θ2 . . . θm ≡
∫
dθn . . .

∫
dθ2

∫
dθ1 θ1θ2 . . . θm = 1(11)

and all other integrals are zero. Let us change variables according to the following
rule θ̃i = Aijθ

j such that

θ̃1θ̃2 . . . θ̃m = detA θ1θ2 . . . θm .

In new variables we still require that∫
dnθ̃ θ̃1θ̃2 . . . θ̃n = 1 .(12)

Therefore we obtain the following formula for the transformation of the measure,
dnθ̃ = (detA)−1dnθ. Using these simple ideas we can define the integration of the
function over any superdomain Un|m and then we have to check how the measure
is glued as we patch different superdomains. On a supermanifold we would like
to integrate the functions and for this we will need well-defined measure of the
integration on the whole supermanifold.

Instead of writing down the general formulas let us discuss the integration of
functions on odd tangent and odd cotangent bundles.

Example 2.5. Using the notation from the Example 2.3 let us study the integration
measure on the odd tangent bundle ΠTM . The even part of the measure transforms
in the standard way

dnx̃ = det
(
∂x̃

∂x

)
dnx ,

while the odd part transforms according to the following property

dnθ̃ = 1
det
(
∂x̃
∂x

)dnθ .
As we can see the transformation of even and odd parts cancel each other and thus
we have ∫

dnx̃ dnθ̃ =
∫
dnx dnθ ,

which corresponds to the canonical integration on ΠTM . Any function of top
degree on ΠTM can be integrated canonically. This is not surprising since the
integration of the top differential forms is defined canonically for any smooth
orientable manifold.
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Example 2.6. Using the notation from the Example 2.4 let us study the integration
on odd cotangent bundle ΠT ∗M . The even part transforms as before

dnx̃ = det
(∂x̃
∂x

)
dnx ,

while the odd part transforms in the same way as even

dnθ̃ = det
(
∂x̃

∂x

)
dnθ .

Assume that M is orientiable and let us pick up a volume form (nowhere vanishing
top form)

vol = ρ(x) dx1 ∧ · · · ∧ dxn .
One can check that ρ transforms as a densitity

ρ̃ = 1
det
(
∂x̃
∂x

)ρ .
Combining all these ingredients together we can define the following invariant
measure ∫

dnx̃ dnθ̃ ρ̃2 =
∫
dnx dnθ ρ2 ,

which we can glue consistently. Thus to integrate the multivector fields we need to
pick a volume form on M .

3. Graded geometry

Graded geometry is Z-refinement of supergeometry. Many definitions from the
supergeometry have straightforward generalization to the graded case. In our review
of graded geometry we will be very brief, for more details one can consult [20, 10].

3.1. Z-graded linear algebra. A Z-graded vector space is a vector space V with
the decomposition labelled by integers

V =
⊕
i∈Z

Vi .

If v ∈ Vi then we say that v is homogeneous element of V a degree |v| = i. Any
element of V can be decomposed in terms of homogeneous elements of a given
degree. Many concepts of linear algebra and superalgebra has a straightforward
generalization to the general graded case. The morphism between graded vector
spaces is defined as a linear map which preserves the grading. Assuming that R (or
C) is vector space of degree 0 the dual vector space (Vi)∗ is defined as V ∗−i. The
graded vector space V [k] shifted by degree k is defined as direct sum of Vi+k.

If the graded vector space V is equipped with the associative product which
respects the grading then we call V a graded algebra. The endomorphism of graded
algebra V is a derivation D of degree |D| if it satisfies the relation (1), but now
with Z-grading. If for a graded algebra V and any homogeneous elements v and ṽ
therein we have the relation

vṽ = (−1)|v||ṽ|ṽv ,
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then we call V a graded commutative algebra. The graded commutative algebras
play the crucial role in the graded geometry. One of the most important examples
of graded algebra is given by the graded symmetric space S(V ).

Definition 3.1. Let V be a graded vector space over R or C. We define the graded
symmetric algebra S(V ) as the linear space spanned by polynomial functions on V∑

l

fa1a2...al v
a1va2 . . . val ,

where we use the relations

vavb = (−1)|v
a||vb|vbva

with va and vb being homogeneous elements of degree |va| and |vb| respectively. The
functions on V are naturally graded and multiplication of functions is graded com-
mutative. Therefore the graded symmetric algebra S(V ) is a graded commutative
algebra.

In analogy with Z2-case we can define the Lie bracket [ , ] of the integer degree
ε now such that |[v, w]| = |v| + |w| + ε and it satisfies the properties (4) and
(5). Analogously we can introduce the graded versions of Poisson algebra. If the
Z-graded vector space V is equipped with a graded commutative algebra structure
· and a Lie algebra bracket [ , ] of degree ε such that they are compatible with
respect to the relation (6) then we call V ε-graded Poisson algebra (or simply
ε-Poisson algebra). The standard use of terminology is the following, 0-graded
Poisson algebra is called Poisson algebra and (±1)-graded Poisson algebra is called
quite often Gerstenhaber algebra. For more explanation and examples of graded
Poisson algebras the reader may consult [7].

Let us make one important side remark about the sign conventions in the
graded case. Quite often one has to deal with bi-graded vector spaces which carry
simultaneously Z2- and Z-gradings. There exist two different sign conventions when
one moves one element past another,

vw = (−1)pq+lswv ,(13)

and

vw = (−1)(p+q)(l+s)wv ,(14)

where the degrees are defined as follows

|v|Z2 = p , |v|Z = l , |w|Z2 = q , |w|Z = s .

Both conventions are widely used and they each have their advantages. They are
equivalent, but one should never mix them while dealing the Z-graded superspaces.
For more details see the explanation in [10]. However this sign subtlety is irrelevant
for most of our consideration.
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3.2. Graded manifold. We can define the graded manifolds very much in analogy
with the supermanifolds. We have sets of the coordinates with assignment of degree
and we glue them by the degree preserving maps. Let us give the formal definition
first.

Definition 3.2. A smooth graded manifold M is a smooth manifold M with
a sheaf of graded commutative algebras, typically denoted by C∞(M), which is
locally isomorphic to C∞(U0) ⊗ S(V ), where U0 is open subset of Rn and V is
graded vector space.

This definition is a generalization of supermanifold to the graded case. To every
patch we associate a commutative graded algebra which is freely generated by the
graded coordinates. The gluing is done by the degree preserving maps. The best
way of explaining this definition is by considering the explicit examples.

Example 3.3. Let us introduce the graded version of the odd tangent bundle from
the example 2.3. We denote the graded tangent bundle as T [1]M and we have the
same coordinates xµ and θµ as in the example 2.3, with the same transformation
rules. The coordinate x is of degree 0 and θ is of degree 1 and the gluing rules
respect the degree. The space of functions C∞(T [1]M) = Ω•(M) is a graded
commutative algebra with the same Z-grading as the differential forms.

Example 3.4. Analogously we can introduce the graded version T ∗[−1]M of
the odd cotangent bundle from the Example 2.4. Now we allocate the degree
0 for x and degree −1 for θ. The gluing preserves the degrees. The functions
C∞(T ∗[−1]M) = Γ(∧•TM) is graded commutative algebra with degree given by
minus of degree of multivector field.

Example 3.5. Let us discuss a slightly more complicated example of graded
cotangent bundle over cotangent bundle T ∗[2](T ∗[1]M). In local coordinates we
can describe it as follows. Introduce the coordinates xµ, θµ, ψµ and pµ of degree 0,
1, 1 and 2 respectively. The gluing between patches is done by the following degree
preserving maps

x̃µ = x̃µ(x) , θ̃µ = ∂x̃µ

∂xν
θν , ψ̃µ = ∂xν

∂x̃µ
ψν ,

p̃µ = ∂xν

∂x̃µ
pν +

( ∂2xν

∂x̃γ x̃µ

)∂x̃γ
∂xσ

ψνθ
σ .

Now it is bit more complicated to describe the functions C∞(T ∗[2](T ∗[1]M)) in
terms of standard geometrical objects. However by construction C∞(T ∗[2](T ∗[1]M))
is a graded commutative algebra. In degree zero C∞(T ∗[2](T ∗[1]M)) corresponds
to C∞(M) and in degree one to Γ(TM ⊕ T ∗M). For more details of this example
the reader may consult [20].

Again the big chunk of differential geometry has a straightforward generalization
to the graded manifolds. The integration theory for the graded manifolds is totally
analogous to the super case, with the main difference between the even and odd
measure described in subsection 2.4. The vector fields are defined as derivations of
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C∞(M) for the graded manifold M. The vector fields on M are naturally graded,
and amongst these we are interested in the odd vector fields which square to zero.

Definition 3.6. If the graded manifold M is equipped with a derivation D of
C∞(M) of degree 1 with additional property D2 = 0 then we call such D a homo-
logical vector field. D endows the graded commutative algebra of function C∞(M)
with the structure of differential complex. One calls such graded commutative
algebra with D a graded differential algebra.

Let us state the most important example of homological vector field for the
graded tangent bundle.

Example 3.7. Consider the graded tangent bundle T [1]M described in the
Example 3.3. Let us introduce the vector field of degree 1 written in local co-
ordinates as follows

D = θµ
∂

∂xµ
,

which is glued in an obvious way. Since D2 = 0 this is an example of homological
vector field. D on C∞(T [1]M) = Ω•(M) corresponds to the de Rham differential
on Ω•(M).

4. Odd Fourier transform and BV-formalism

In this section we introduce the basics of BV formalism. We derive the construc-
tion through the odd Fourier transformation which maps C∞(T [1]M) to
C∞(T ∗[−1]M). Odd cotangent bundle T ∗[−1]M has a nice algebraic structure on
the space of functions and using the odd Fourier transform we will derive the version
of Stokes theorem for the integration on T ∗[−1]M . The power of BV formalism is
based on the algebraic interpretation of the integration theory for odd cotangent
bundle.

4.1. Standard Fourier transform. Let us start by recalling the well-known
properties of the standard Fourier transformations. Consider the suitable function
f(x) on the real line R and define the Fourier transformation of this function
according to the following formula

F [f ](p) = 1√
2π

∞∫
−∞

f(x)e−ipxdx .(15)

One can also define the inverse Fourier transformation as follows

F−1[f ] = 1√
2π

∞∫
−∞

f(p)eipxdp .(16)

There are some subtleties related to the proper understanding of the integrals
(15)-(16) and certain restrictions on f to make sense of these expressions. However,
let us put aside these complications in this note. The functions have associative
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point-wise multiplication and one can study how it is mapped under the Fourier
transformation. It is an easy exercise to show that

F [f ]F [g] = F [f ∗ g](17)

where ∗-product is defined as follows

(f ∗ g)(x) =
∞∫
−∞

f(y)g(x− y)dy .(18)

This ∗-operation is called convolution of two functions and it can be defined for any
two integrable functions on the line. This ∗-product is associative (f∗g)∗h = f∗(g∗h)
and commutative f ∗ g = g ∗ f . Thus the space of integrable functions is associative
commutative algebra with respect to convolution, but there is no identity (since 1 is
not an integrable function on the line). It is important to stress that the derivative
d
dx is not a derivation of this ∗-product.

4.2. Odd Fourier transform. Let us assume that the manifold M is orientable
and we can pick up a volume form

vol = ρ(x) dx1 ∧ · · · ∧ dxn = 1
n! Ωµ1...µn(x) dxµ1 ∧ · · · ∧ dxµn ,(19)

which is a top degree nowhere vanishing form and n = dimM . Consider the graded
manifold T [1]M and the integration theory which we have discussed in the example
2.5. If we have the volume form then we can define the integration only along the
odd direction as follows ∫

dnθ̃ ρ̃−1 =
∫
dnθ ρ−1 .

In analogy with the standard Fourier transform (15) we can define the odd Fourier
transfrom for f(x, θ) ∈ C∞(T [1]M) as

F [f ](x, ψ) =
∫
dnθ ρ−1eψµθ

µ

f(x, θ) ,(20)

where ddθ = dθd · · · dθ1. Obviously we would like to make sense globally of the
transformation (20). Therefore we assume that the degree of ψµ is −1 and it
transforms as ∂µ (so in the way dual to θµ). Thus F [f ](x, ψ) ∈ C∞(T ∗[−1]M)
and the odd Fourier transform maps functions on T [1]M to the functions on
T ∗[−1]M . The explicit formula (113) of the Fourier transform of p-form is given in
the Appendix. We can also define the inverse Fourier transform F−1 which maps
the functions on T ∗[−1]M to the functions on T [1]M as follows

F−1[f̃ ](x, θ) = (−1)n(n+1)/2
∫
dnψ ρ e−ψµθ

µ

f̃(x, ψ) ,(21)

where f̃(x, ψ) ∈ C∞(T ∗[−1]M). One may easily check that

(F−1F [f ])(x, η) = (−1)n(n+1)/2
∫
dnψ ρe−ψµη

µ

∫
dnθ ρ−1 eψµθ

µ

f(x, θ) = f(x, η) .
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Since we have to discuss both odd tangent and odd cotangent bundles simul-
taneously, in this section we adopt the following notation for the functions: we
denote with symbols without tilde functions on T [1]M and with tilde functions on
T ∗[−1]M .
C∞(T [1]M) is a differential graded algebra with the graded commutative multi-

plication and the differential D defined in Example 3.7. Let us discuss how these
operations behave under the odd Fourier transform F . Under F the differential D
transforms to bilinear operation ∆ on C∞(T ∗[−1]M) as follows

F [Df ] = (−1)n∆F [f ](22)

and from this we can calculate the explicit form of ∆

∆ = ρ−1 ∂2

∂xµ∂ψµ
ρ = ∂2

∂xµ∂ψµ
+ ∂µ(log ρ) ∂

∂ψµ
.(23)

By construction ∆2 = 0 and degree of ∆ is 1. Next let us discuss how the graded
commutative product on C∞(T [1]M) transforms under F . The situation is very
much analogous to the standard Fourier transform where the multiplication of
functions goes to their convolution. To be specific we have

F [fg] = F [f ] ∗ F [g](24)

and from this we derive the explicit formula for the odd convolution

(f̃ ∗ g̃)(x, ψ) = (−1)n(n+|f |)
∫
dnλ ρ f̃(x, λ)g̃(x, ψ − λ) ,(25)

where f̃ , g̃ ∈ C∞(T ∗[−1]M) and ψ, λ are odd coordinates on T ∗[−1]M . This star
product is associative and by construction ∆ is a derivation of this product (since
D is a derivation of usual product on C∞(T [1]M)). Moreover we have the following
relation

f̃ ∗ g̃ = (−1)(n−|f̃ |)(n−|g̃|)g̃ ∗ f̃(26)

and thus this star product does not preserve Z-grading, i.e. |f̃ ∗ g̃| 6= |f̃ |+ |g̃|. Thus
the odd convolution of functions is not a graded commutative product, which should
not be surprising since F is not a morphism of the graded manifolds (generically
it is not a morphisms of supermanifolds either). At the same time C∞(T ∗[−1]M)
is a graded commutative algebra with respect to the ordinary multiplication of
functions, but ∆ is not a derivation of this multiplication

∆(f̃ g̃) 6= ∆(f̃)g̃ + (−1)|f̃ |f̃∆(g̃) .(27)

We can define the bilinear operation which measures the failure of ∆ to be a
derivation

(−1)|f̃ |{f̃ , g̃} = ∆(f̃ g̃)−∆(f̃)g̃ − (−1)|f̃ |f̃∆(g̃) .(28)

A direct calculation gives the following expression

{f̃ , g̃} = ∂f̃

∂xµ
∂g̃

∂ψµ
+ (−1)|f | ∂f̃

∂ψµ

∂g̃

∂xµ
,(29)
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which is very reminiscent of the standard Poisson bracket for the cotangent bundle,
but now with the odd momenta. For the derivative ∂

∂ψµ
we use the following

convention
∂ψν
∂ψµ

= δµν

and it is derivation of degree 1 (see the definition (1)). By a direct calculation
one can check that this bracket (29) gives rise to 1-Poisson algebra (Gerstenhaber
algebra) on C∞(T ∗[−1]M). Indeed the bracket (29) on C∞(T ∗[−1]M) corresponds
to the Schouten bracket on the multivector fields (see Appendix for the explicit
formulas). To summarize, upon the choice of volume form on M , C∞(T ∗[−1]M) is
an odd Poisson algebra (Gerstenhaber algebra) with the Poisson bracket generated
by ∆-operator as in (28). Such a structure is called BV-algebra. We will now
summarize and formalize this notion.

Let us recall the definition of odd Poisson algebra (Gerstenhaber algebra).

Definition 4.1. The graded commutative algebra V with the odd bracket { , }
satisfying the following axioms

{v, w} = −(−1)(|v|+1)(|w|+1){w, v}

{v, {w, z}} = {{v, w}, z}+ (−1)(|v|+1)(|w|+1){w, {v, z}}

{v, wz} = {v, w}z + (−1)(|v|+1)|w|w{v, z}

is called a Gerstenhaber algebra.

Typically it is assumed that the degree of bracket { , } is 1 (or −1 depending on
conventions). Thus the space of functions C∞(T ∗[−1]M) is a Gerstenhaber algebra
with a graded commutative multiplication of functions and a bracket of degree
1 defined by (29). The BV-algebra is Gerstenhaber algebra with an additional
structure.

Definition 4.2. A Gerstenhaber algebra (V, ·, { , }) together with an odd R-linear
map

∆: V −→ V ,

which squares to zero ∆2 = 0 and generates the bracket { , } according to

{v, w} = (−1)|v|∆(vw) + (−1)|v|+1(∆v)w − v(∆w) ,(30)

is called a BV-algebra. ∆ is called the odd Laplace operator (odd Laplacian).

Again it is assumed that degree ∆ is 1 (or −1 depending on conventions). The
space of functions C∞(T ∗[−1]M) is a BV algebra with ∆ defined by (23) and
its definition requires the choice of a volume form on M . The graded manifold
T ∗[−1]M is called a BV manifold. In general a BV manifolds is defined as a graded
manifoldM such that the space of functions C∞(M) is equipped with the structure
of a BV algebra.

There also exists an alternative definition of BV algebra [11].
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Definition 4.3. A graded commutative algebra V with an odd R–linear map
∆: V −→ V ,

which squares to zero ∆2 = 0 and satisfies

∆(vwz) = ∆(vw)z + (−1)|v|v∆(wz) + (−1)(|v|−1)|w|w∆(vz)

−∆(v)wz − (−1)|v|v∆(w)z − (−1)|v|+|w|vw∆(z) ,(31)
is called a BV algebra.

One can show that ∆ with these properties gives rise to the bracket (30) which
satisfies all axioms of the definition 4.1. The condition (31) is related to the fact
that ∆ should be a second order operator, square of the derivation in other words.
Consider the functions f(x), g(x) and h(x) of one variable and the second derivative
d2

dx2 satisfies the following property

d2(fgh)
dx2 + d2f

dx2 gh+ f
d2g

dx2h+ fg
d2h

dx2 = d2(fg)
dx2 h+ d2(fh)

dx2 g + f
d2(gh)
dx2 ,

which can be regarded as a definition of second derivative. Although one should keep
in mind that any linear combination α d2

dx2 + β d
dx satisfies the above identity. Thus

the property (31) is just the graded generalization of the second order differential
operator. In the example of C∞(T ∗[−1]M), the ∆ as in (23) is indeed of second
order.

We collect some more details and curious observations on odd Fourier transform
and some of its algebraic structures in Appendices A and B.

4.3. Integration theory. So far we have discussed different algebraic aspects of
graded manifolds T [1]M and T ∗[−1]M which can be related by the odd Fourier
transformation upon the choice of a volume form on M . As we saw T ∗[−1]M is
quite interesting algebraically since C∞(T ∗[−1]M) is equipped with the structure of
a BV algebra. At the same time T [1]M has a very natural integration theory which
we will review below. Now our goal is to mix the algebraic aspects of T ∗[−1]M
with the integration theory on T [1]M . We will do it again by means of the odd
Fourier transform.

We start by reformulating the Stokes theorem in the language of the graded
(super) manifolds. Before doing this let us review a few facts about standard
submanifolds. A submanifold C of M can be described in algebraic language as
follows. Consider the ideal IC ⊂ C∞(M) of functions vanishing on C. The functions
on submanifold C can be described as quotient C∞(C) = C∞(M)/IC . Locally we
can choose coordinates xµ adapted to C such that the submanifold C is defined by
the conditions xp+1 = 0, xp+2 = 0, . . ., xn = 0 (dimC = p and dimM = n) while
the rest x1, x2, . . . , xp may serve as coordinates for C. In this local description
IC is generated by xp+1, xp+2, . . . , xn. Indeed the submanifolds can be defined
purely algebraically as ideals of C∞(M) with certain regularity condition which
states that locally the ideals generated by xp+1, . . . , xn. This construction has a
straightforward generalization for the graded and super settings. Let us illustrate
this with a particular example which is relevant for our later discussion. T [1]C is a
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graded submanifold of T [1]M if C is submanifold of M . In local coordinates T [1]C
is described by the conditions

xp+1 = 0, xp+2 = 0, . . . , xn = 0 , θp+1 = 0, θp+2 = 0, . . . , θn = 0 ,(32)

thus xp+1, . . . , xn, θp+1, . . . , θn generate the corresponding ideal IT [1]C . The func-
tions on the submanifold C∞(T [1]C) are given by the quotient C∞(T [1]M)/IT [1]C .
Moreover the above conditions define the morphism i : T [1]C → T [1]M of the
graded manifolds and thus we can talk about the pull back of functions from
T [1]M to T [1]C as going to the quotient. Also we want to discuss another class
of submanifolds, namely odd conormal bundle N∗[−1]C as graded submanifold of
T ∗[−1]M . In local coordinate N∗[−1]C is described by the conditions

xp+1 = 0, xp+2 = 0 , . . . , xn = 0, ψ1 = 0, ψ2 = 0, . . . , ψp = 0 ,(33)

thus xp+1, . . . , xn, ψ1, . . . , ψp generate the ideal IN∗[−1]C . Again the functions
C∞(N∗[−1]C) can be described as quotient C∞(T ∗[−1]M)/IN∗[−1]C . Moreover
the above conditions define the morphism j : N∗[−1]C → T ∗[−1]M of the graded
manifolds and thus we can talk about the pull back of functions from T ∗[−1]M to
N∗[−1]C.

In previous subsections we have defined the odd Fourier transformation as map

C∞(T [1]M) F−→ C∞(T ∗[−1]M) ,

which does not map the graded commutative product on one side to the graded
commutative product on the other side. Using the odd Fourier transform we can
relate the following integrals over different supermanifolds

(34)
∫

T [1]C

dpxdpθ i∗
(
f(x, θ)

)
= (−1)(n−p)(n−p+1)/2

∫
N∗[−1]C

dpxdn−pψ ρ j∗
(
F [f ](x, ψ)

)
.

Let us spend some time explaining this formula. On the left hand side we integrate
the pull back of f ∈ C∞(T [1]M) over T [1]C with the canonical measure dpxdpθ,
where dpθ = dθpdθp−1 . . . dθ1. On the right hand side of (34) we integrate the
pull back of F [f ] ∈ C∞(T ∗[−1]M) over N∗[−1]C. The supermanifold N∗[−1]C
has measure dpx dn−pψ ρ, where dn−pψ = dψndψn−1 . . . dψp+1 and we have to
make sure that this measure is invariant under the change of coordinates which
preserve C. Indeed this is easy to check. Let us take the adapted coordinates
xµ = (xi, xα) such that xi (i, j = 1, 2, . . . , p) are the coordinates along C and
xα (α, β, γ = p + 1, . . . , n) are coordinates transverse to C. A generic change of
coordinates has the form

x̃i = x̃i(xj , xβ) , x̃α = x̃α(xj , xβ) ,(35)
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if furthermore we want to consider the transformations preserving C then the
following conditions should be satisfied

∂x̃α

∂xi
(xj , 0) = 0 .(36)

These conditions follow from the general transformation of differentials

dx̃α = ∂x̃α

∂xi
(xj , xγ)dxi + ∂x̃α

∂xβ
(xj , xγ) dxβ(37)

and the Frobenius theorem which states that dx̃α should only go to dxβ once res-
tricted on C. In this case the adapted coordinates transform to adapted coordinates.
On N∗[−1]C we have the following transformations of odd conormal coordinate ψα

ψ̃α = ∂xβ

∂x̃α
(xi, 0)ψβ .(38)

Let us stress that ψα is a coordinate on N∗[−1]C not a section, and the invariant
object will be ψαdxα. Under the above transformations restricted to C we have
the following property

dpx dn−pψ ρ(xi, 0) = dpx̃ dn−pψ̃ ρ̃(x̃i, 0) ,(39)
where, for the transformation of ρ see the example 2.6. The formula (34) is very
easy to prove in the local coordinates. The pull back of the functions on the left
and right hand sides would correspond to imposing the conditions (32) and (33)
respectively. The rest is just simple manipulations with the odd integrations and
with the explicit form of the odd Fourier transform. Since all operations in (34)
are covariant, i.e. respects the appropriate gluing then the formula obviously is
globally defined and is independent from the choice of the adapted coordinates.

Let us recall two important corollaries of the Stokes theorem for the differential
forms. First corollary is that the integral of exact form over closed submanifold C
is zero and the second corollary is that the integral over closed form depends only
on homology class of C,∫

C

dω = 0 ,
∫
C

α =
∫
C̃

α , dα = 0 ,(40)

where α and ω are differential forms, C and C̃ are closed submanifolds which are
in the same homology class. These two statements can be easily rewritten in the
graded language as follows ∫

T [1]C

dpxdpθ Dg = 0 ,(41)

∫
T [1]C

dpxdpθ f =
∫

T [1]C̃

dpxdpθ f , Df = 0 ,(42)

where we assume that we deal with the pull backs of f, g ∈ C∞(T [1]M) to the
submanifolds.
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Next we can combine the formula (34) with the Stokes theorem (41) and (42). We
will end up with the following properties to which we will refer as Ward-identities∫

N∗[−1]C

dpxdn−pψ ρ ∆g̃ = 0 ,(43)

∫
N∗[−1]C

dpxdn−pψ ρ f̃ =
∫

N∗[−1]C̃

dpxdn−pψ ρ f̃ , ∆f̃ = 0 ,(44)

where f̃ , g̃ ∈ C∞(T ∗[−1]M) and the pull back of these function to N∗[−1]C is
assumed. One can think of these statements as a version of Stokes theorem for the
cotangent bundle. This can be reformulated and generalized further as a general
theory of integration over Lagrangian submanifold of odd symplectic supermanifold
(graded manifold), for example see [23].

4.4. Algebraic view on the integration. Now we would like to combine the
two facts about the graded cotangent bundle T ∗[−1]M . From one side we have the
BV-algebra structure on C∞(T ∗[−1]M), in particular we have the odd Lie bracket
on the functions. From the other side we showed in the last subsection that there
exists an integration theory for T ∗[−1]M with an analog of the Stokes theorem.
Our goal is to combine the algebraic structure on T ∗[−1]M with the integration
and argue that the integral can be understood as certain cocycle.

Before discussing our main topic, let us remind the reader of some facts about
the Chevalley-Eilenberg complex for the Lie algebras. Consider a Lie algebra g and
define the space of k-chains ck as an element of ∧kg. The space ∧kg is spanned by

ck = T1 ∧ T2 ∧ · · · ∧ Tk(45)
and the boundary operator can be defined as follows

(46) ∂(T1 ∧ T2 ∧ · · · ∧ Tk)

=
∑

1≤i<j≤k
(−1)i+j+1[Ti, Tj ] ∧ T1 ∧ · · · ∧ T̂i ∧ · · · ∧ T̂j ∧ · · · ∧ Tn ,

where T̂i indicates the omission of the argument Ti . Using the Jacobi identity one
can easily prove that ∂2 = 0. The dual object k-cochain ck is defined as multilinear
map ck : ∧kg→ R such that coboundary operator δ is defined as follows

δck(T1 ∧ T2 ∧ · · · ∧ Tk) = ck (∂(T1 ∧ T2 ∧ · · · ∧ Tk))(47)
and δ2 = 0. This gives rise to the famous Chevalley-Eilenberg complex. If δck = 0
then we call ck a cocycle. If there exists c̃k−1 such that ck = δc̃k−1 then we call ck
a coboundary. The Lie algebra cohomology Hk(g,R) consists the cocycles modulo
coboundaries. In general we can also generalize it such that cochains take value in
a g-module. However this generalization is not relevant for the present discussion.

Now let us consider the generalization of Chevalley-Eilenberg complex for the
graded Lie algebras. Notice in the preceding paragraph we have defined the cochain
as a mapping from ∧kg to numbers which is identified with ∧kg∗. However ∧kg∗
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can also be thought of as S(g[1])-the symmetric algebra of g[1] (see the definition
3.1). It is this formulation that allows for the most economical generalization to the
graded case. Let a graded vector space V equipped with Lie bracket [ , ] of degree
0. The cochains are defined as maps from graded symmetric algebra S(V [1]) to real
numbers. More precisely, k-cochain is defined as multilinear map ck(v1, v2, . . . , vk)
with the following symmetry properties

(48) ck(v1, . . . , vi, vi+1, . . . , vk)

= (−1)(|vi|+1)(|vi+1|+1)ck(v1, . . . , vi+1, vi, . . . , vk) .

The coboundary operator δ is acting as follows

δck(v1, . . . , vk+1) =
∑

(−1)sijck
(
(−1)|vi|[vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . , vk+1

)
,

sij = (|vi|+ 1)(|v1|+ · · ·+ |vi−1|+ i− 1)
+ (|vj |+ 1)(|v1|+ · · ·+ |vj−1|+ j − 1) + (|vi|+ 1)(|vj |+ 1) .(49)

The sign factor sij is called the Kozul sign; it is incurred by moving vi, vj to the
very front. While the sign (−1)|vi|[vi, vj ] ensures that this quantity conforms to
the symmetry property of (48) when exchanging vi, vj . As before we use the same
terminology, coboundaries and cocycles. The cohomology Hk(V,R) is k-cocycles
modulo k-coboundaries.

Now let us consider the case where the bracket is of degree 1. The correspon-
ding cochains and coboundary operator can be defined using the parity reversion
functor applied for the even Lie algebra. Let us define W = V [1] be graded vector
space with Lie bracket of degree 1. Then k-cochain is defined as multilinear map
ck(w1, w2, . . . , wk) with the following symmetry properties

(50) ck(w1, . . . , wi, wi+1, . . . , wk) = (−1)|wi||wi+1|ck(w1, . . . , wi+1, wi, . . . , wk) .

The coboundary operator δ is acting as follows

δck(w1, . . . , wk+1)=
∑

(−1)sijck
(
(−1)|wi|−1[wi, wj ], w1, . . . , ŵi, . . . , ŵj , . . . , wk+1

)
,

sij= |wi|(|w1|+ · · ·+ |wi−1|)+|wj |(|w1|+ · · ·+ |wj−1|)+|wi||wj |.(51)

The formulas (50) and (51) are obtained by the parity shift from the the case with
the even bracket, i.e. from the formulas (48) and (49). The cocycles, coboundaries
and cohomology are defined as usual.

Now using the definition of cocycle for the odd Lie bracket let us state the
important theorem about the integration which is a simple consequence of Stokes
theorem for the multivector fields (43) and (44).

Theorem 4.4. Consider a collection of functions f1, f2, . . . , fk ∈ C∞(T ∗[−1]M)
such that ∆fi = 0 (i = 1, 2, . . . , k). Define the integral

ck(f1, f2, . . . , fk;C) =
∫

N∗[−1]C

dpxdn−pψ ρ f1(x, ψ) . . . fk(x, ψ) ,(52)
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where C is closed submanifold of M . Then ck(f1, f2, . . . , fk;C) is a cocycle with
respect to the odd Lie algebra structure (C∞(T ∗[−1]M), { , })

δck(f1, f2, . . . , fk;C) = 0 .

Moreover ck(f1, f2, . . . , fk;C) differs from ck(f1, f2, . . . , fk; C̃) by a coboundary if
C is homologous to C̃, i.e.

ck(f1, f2, . . . , fk;C)− ck(f1, f2, . . . , fk; C̃) = δc̃k−1 ,

where c̃k−1 is some (k − 1)-cochain.

This theorem is based on the observation by A. Schwarz in [24]. Let us now
present the proof of this theorem. C∞(T ∗[−1]M) is a graded vector space with
odd Lie bracket { , } defined in (29), and the functions with ∆f = 0 correspond to
a Lie subalgebra of C∞(T ∗[−1]M). The integral (52) defines a k-cochain for odd
Lie algebra with the correct symmetry properties

ck(f1, . . . , fi, fi+1, . . . , fk;C) = (−1)|fi||fi+1|ck(f1, . . . , fi+1, fi, . . . , fk;C) ,

which follows from the graded commutativity of C∞(T ∗[−1]M). Then the property
(41) implies the following

0 =
∫

N∗[−1]C

dpxdn−pψ ρ ∆
(
f1(x, ψ) . . . fk(x, ψ)

)
.(53)

Using the property of ∆ given in (28) many times, we obtain the following formula

∆(f1f2 . . . fk) =
∑
i<j

(− 1)sij (−1)|fi| {fi, fj} f1 . . . f̂i . . . f̂j . . . fk ,

sij = (−1)(|f1|+···+|fi−1|)|fi|+(|f1|+···+|fj−1|)|fj |−|fi||fj | ,(54)

where we have used ∆fi = 0. Combining (53) and (54) we obtain that ck defined
in (52) is a cocycle, i.e.

(55) δck(f1, . . . , fk+1;C) = −
∫

N∗[−1]C

dpxdn−pψ ρ ∆(f1(x, ψ) . . . fk(x, ψ)) = 0 ,

where we use the definition for coboundary operator given in (51).
Next we have to show that the cocycle (52) changes by a coboundary when we

deform C continuously. We start by looking at the infinitesimal change of C. Recall
that the indices i, j are along C, while α, β are transverse to C, and N∗[−1]C is
locally given by xα = 0 and ψi = 0. We parameterize the infinitesimal deformation
by

δCx
α = εα(xi) , δCψi = −∂iεα(xi)ψα ,

where ε’s parametrize the deformation. Thus a function f ∈ C∞(T ∗[−1]M) it
changes as follows

δCf(x, ψ)
∣∣
N∗[−1]C = εα∂αf − ∂iεα(xi)ψα∂ψjf

∣∣∣
N∗[−1]C

= −{εα(xi)ψα, f}
∣∣
N∗[−1]C .
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Using ∆ the bracket can be rewritten as
δCf(x, ψ)

∣∣
N∗[−1]C = ∆(εα(xi)ψαf) + εα(xi)ψα∆(f)

∣∣
N∗[−1]C .

The first term vanishes under the integral. Specializing to infinitesimal deformation
of f1 · · · fk, we have

δCc
k(f1, . . . , fk;C) = δc̃k−1(f1, . . . , fk) ,

where : c̃k−1(f1, · · · fk−1;C) = −
∫

N∗[−1]C

dpxdn−pψ ρ εα(xi)ψα f1 · · · fk−1 .

This shows that under an infinitesimal change of C, ck changes by a coboundary. For
finite deformations of C, we can parameterize the deformation as a one-parameter
family C(t). Thus we have the identity

d

dt
ck
(
f1, . . . , fk;C(t)

)
= δc̃k−1(f1, . . . , fk;C(t)

)
for every t, integrating both sides we finally arrive at the the formula for the finite
change of C

ck(f1, . . . , fk;C(1))− ck(f1, . . . , fk;C(0)) = δ

1∫
0

dt c̃k−1
C(t) .

This concludes the proof of Theorem 6.1. �
Now let us perform the integral (52) explicitly. Assume that the functions fi are

of fixed degree and we will use the same notation for the corresponding multivector
fi ∈ Γ(∧•TM). After pulling back the f ’s and performing the odd integration the
expression (52) becomes

ck(f1, . . . , fk;C) =
∫
C

if1if2 . . . ifkvol ,(56)

where if stands for the contraction of multivector with a differential form. Here all
vector fields are assumed to be divergenceless. If n− p 6= |f1|+ · · ·+ |fk| then this
integral is identically zero, otherwise it may be non-zero and it gives rise to the
cocycle on Γ(∧•TM) equipped with the Schouten bracket.

It is easy to construct the examples of cocycles when we restrict our attention
to the vector fields only.

Example 4.5. Let us illustrate the formula (56) with a concrete set of examples.
Let us pick up the volume form vol on M and the collection of vector fields
vi ∈ Γ(TM) which preserve this volume form, i.e. Lvivol = 0, where Lvi is a Lie
derivative with respect to vi. Such vector fields form the closed Lie algebra and
they are automatically divergenceless. If n− p = k then the integral

ck(v1, . . . , vk;C) =
∫
C

iv1iv2 . . . ivkvol ,

gives rise to the cocycle of the Lie algebra of the vector field preserving a given
volume form. Such situation is realized in many examples. For instance, consider
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Lie group G with the left invariant vector fields and left invariant volume form,
Hamiltonian vector fields on Poisson manifold with unimodular Poisson structure,
the Hamiltonian vector fields on symplectic manifold etc. However one should keep
in mind that the corresponding cocycles are relatively trivial in some sense.

The main moral of Theorem 4.4 is that the BV integral gives rise to cocycle
with specific dependence from C and indeed it can be taken as a defining property
of those integrals. In infinite dimensional setting when the integral is not defined
at all then the statement of this theorem can be regarded as definition. We will
briefly comment on it in section 7.

5. Perturbation theory

The goal of this section is to give an introduction to the perturbative expansion
of finite dimensional integrals and discuss the element of graph theory which are
relevant for further discussion. We will also state the Kontsevich theorem. This
section should be regarded as a technical preparation for the next section.

Gaussian integrals, though quite elementary, are really at the very core of
perturbation theory. We quickly go over the Gaussian integrals on Rn, focusing on
how to organize the calculation in terms of Feynman diagrams. We will be quite
brief in our discussion of the perturbative expansion. For mathematically minded
reader we recommend two nice short introductions to perturbation theory, [17] and
[22].

5.1. Integrals in Rn-Gaussian Integrals and Feynman Diagrams. Let us
discuss how to calculate the specific integrals on Rn. We are interested in the
combinatorial and algebraic way of the calculation of the integrals. We recall that
the standard one-dimensional Gaussian integral is given by the following formula

∞∫
−∞

dx e−
1
2αx

2
=
√

2π
α
.(57)

The corresponding generalization for Rn is given by∫
Rn

dnx e−
α
2 Qµνx

µxν =
(

2π
α

)n/2 1√
detQ

≡ Z[0] ,(58)

where Qµν is a symmetric and positive matrix. Next we introduce the generating
function of n-variables J1, J2, dots, Jn as follows

Z[J ] =
∫

Rn

dnx e−
α
2 Qµνx

µxν+Jµxµ = Z[0] e 1
2αQ

µνJµJν ,(59)

where QµνQνλ = δµλ . Let us introduce the integral

(60) 〈xσxλ〉 = 1
Z[0]

∫
Rn

dnx xσxλ e−
α
2 Qµνx

µxν = 1
Z[0]

∂2

∂Jσ∂Jλ
Z[J ]|J=0 = 1

α
Qσλ ,
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which is straightforward to calculate. Next we would like to discuss the following
integrals

〈xµ1xµ2 . . . xµ2n〉 = 1
Z[0]

∫
Rn

dnx xµ1xµ2 . . . xµ2n e−
α
2 Qµνx

µxν ,(61)

first if we have an odd number of x’s under the integral then it is identically zero
due to symmetry properties. The integral (61) can be calculated by taking the
derivatives

〈xµ1xµ2 . . . xµ2n〉 = ∂2n

∂Jµ1∂Jµ2 . . . ∂Jµ2n

e
1

2αQ
µνJµJν |J=0 .(62)

Performing the derivatives explicitly we arrive at the statement which is known in
physics literature as the Wick theorem,

〈xµ1xµ2 . . . xµ2n〉 = 1
2nn!αn

∑
P

QµP1µP2 . . . QµP2n−1µP2n ,(63)

where we sum over all permutations P of the indices µ1, µ2, . . . , µ2n. In general we
are interested in the following integrals

〈Vn1(x) . . . Vnk(x)〉 = 1
Z[0]

∫
Rn

dnx Vn1(x) . . . Vnk(x) e−α2 Qµνx
µxν ,(64)

where V ’s are monomials in x of the fixed degree

Vn(x) = 1
n!Vµ1...µnx

µ1 . . . xµn(65)

and let us assume for the moment that they are all different. Using the Wick
theorem (63) we can calculate

〈Vn1(x) . . . Vnk(x)〉 = 1
n1! . . . nk!Vµ1...µn1

. . . Vν1...νnk
〈xµ1 . . . xνnk 〉 ,(66)

where we have to contract V ’s with Q’s in all possible ways. The ways to contract
V ’s with Q can be depicted using the graph Γ (Feynman diagram), where Vµ1...µn

is n-valent vertex and Qµν corresponds to the edges. Following physics terminology
we will call V a vertex and Qµν a propagator. Thus in perturbation theory, the
integrals (64) are effectively organized as Feynman diagrams, and physicists have
developed effective mnemonic rules to keep track of the combinatorics. Amongst
these rules the symmetry factors |Aut Γ| of a Feynman diagram Γ is the most
important. Due to the close relationship between Feynman diagrams and the
Kontsevich theorem about the graph complex, we spend some time to go through
the examples of the Feynman diagrams. The general formula for the integral (64)
looks as follows

〈Vn1(x) . . . Vnk(x)〉 = 1
α(n1+···+nk)/2

∑
Γ

1
|Aut Γ|W (Γ) ,(67)

where |Aut Γ| is the symmetry factor for a diagram Γ and W (Γ) is the contraction
of V ’s with Q’s according to the Γ.
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It turns out the weight of a diagram is determined by the inverse of its sym-
metry factor |Aut Γ|. The symmetry factor consists of three parts |Aut Γ| =
(#P )(#V )(#L),
• #P the symmetry factor of edges, if there are p edges running between a pair

of vertices we include a factor of p!.
• #V the symmetry factor of vertices, defined as the cardinality of the subgroup

of sk that preserves the graph (disregarding the orientation of edges)
• #L in case loops (edges starting and ending on the same vertex) are allowed,

a factor of 2 for each such loop
Now we present the examples which clarify and explain the formula (67)

Example 5.1. The above logic is equally applicable for one-dimensional integrals.
The following integral is very easy to calculate

∞∫
−∞

dx x2pe−
1
2αx

2
=
√

2π
α

(2p− 1)!!
αp

= Z[0] (2p− 1)!!
αp

.(68)

Thus we have the explicit integrals
1
2

1
(3!)2 〈x

3x3〉 = 1
Z[0]

∫
R
dx

1
2! (

1
3!x

3)( 1
3!x

3)e− 1
2αx

2
= 5!!

2!3!3!α3 ,(69)

1
3!5! 〈x

3x5〉 = 1
Z[0]

∫
R
dx ( 1

3!x
3)( 1

5!x
5)e− 1

2αx
2

= 7!!
5!3!α4 .(70)

In the integral (69) we have included a conventional factor of 1
2 because we have

two identical vertices. Now let us recalculate these integrals using the Wick theorem
(63) and related combinatorics. Taking x3 x5 as 3 and 5-point vertices respectively,
the Gaussian integral is, according to Wick’s contraction rule, summing over all
possible ways of connecting all legs of the two vertices together.

The first line in Figure 1 representes the Feynman diagrams to connect x3 to x3

1
2

1
(3!)2 〈x

3x3〉 = 1
2

1
(3!)2α3 (6 + 9) ,(71)

where 6 is the number of ways of contractions according to the first diagram and 9
is the number of ways of contraction according to the second diagram. Altogether
there is 15 ways of contracting x3 with x3, and the number 15 may also be calculated
as follows

1
3!

(
6

2 2 2

)
= 15 .

Furthermore we have
1
2

1
(3!)2α3 (6 + 9) = 1

α3

(
1

3!2 + 1
8

)
= 5

24α3 ,(72)

which is exactly the same as the integral (69). Indeed 3!2 and 8 are the symmetry
factors for the diagrams in the first line of Figure 1. Thus we are in agreement with
the general prescription given by the formula (67).
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Fig. 1: Symmetry factor for the graphs are 12, 8, 12, 16 respectively

Now let us calculate the integral with x3 and x5. Altogether there are 105 ways
of contracting x3 and x5

1
4!

(
8

2 2 2 2

)
= 105 .

Thus we have
1

3!5! 〈x
3x5〉 = 1

3!5!α4 (60 + 45) ,(73)

where 60 corresponds to the first diagram in the second line and 45 to the second
diagram in the second line of Figure 1. Next we get

1
3!5!α4 (60 + 45) = 1

α4

( 1
3!2 + 1

16

)
= 7

48α4 ,

which is exactly the same as the integral (70). Indeed 3!2 and 16 are symmetry
factors for the diagrams in the second line of Figure 1. Again we have agreement
with the prescription of (67).

Example 5.2. Next consider the Rn-analogs of the previous example. Let us first
calculate the following integral

(74) 1
2 〈V3(x)V3(x)〉

≡ 1
Z[0]

∫
Rn

dnx
1
2

1
3!Vµ1µ2µ3x

µ1xµ2xµ3
1
3!Vµ4µ5µ6x

µ4xµ5xµ6 e−
α
2 Qµνx

µxν .

Using the Wick theorem and the counting from the previous example we get
1
2 〈V3(x)V3(x)〉 = 1

2(3!)2
1
α3 (6W (Γ1) + 9W (Γ2)) ,(75)

where now we have non-trivial factors
W (Γ1) = Vµ1µ2µ3Vµ4µ5µ6Q

µ1µ4Qµ2µ5Qµ3µ6 ,

and
W (Γ2) = Vµ1µ2µ3Vµ4µ5µ6Q

µ1µ2Qµ4µ5Qµ3µ6 .

Moreover we can rewrite it as
1
2 〈V3(x)V3(x)〉 = 1

α3

(
1
12W (Γ1) + 1

8W (Γ2)
)
,(76)
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where 12 and 8 are the symmetry factors for the diagrams in first line of Figure 1.
Analogously we can calculate

(77) 〈V3(x)V5(x)〉

≡ 1
Z[0]

∫
Rn

dnx
1
3!Vµ1µ2µ3x

µ1xµ2xµ3
1
5!Vµ4µ5µ6µ7µ8x

µ4xµ5xµ6xµ7xµ8 e−
α
2 Qµνx

µxν ,

which after applying the Wick theorem gives us

〈V3(x)V5(x)〉 = 1
3!5!

1
α4 (60W (Γ3) + 45W (Γ4)) ,(78)

where

W (Γ3) = Vµ1µ2µ3Vµ4µ5µ6µ7µ8Q
µ1µ4Qµ2µ5Qµ3µ6Qµ7µ8

and

W (Γ4) = Vµ1µ2µ3Vµ4µ5µ6µ7µ8Q
µ1µ2Qµ4µ5Qµ6µ7Qµ3µ8 .

This can be rewritten as

〈V3(x)V5(x)〉 = 1
α4

(
1
12W (Γ3) + 1

16W (Γ4)
)
,(79)

where 12 and 16 are the symmetry factors for the diagrams in the second line of
Figure 1.

In these two examples we illustrated the prescription given by the formula (67).
If there are p identical monomials V then we have to put the additional 1/p! on
the left hand side for this formula to work.

So far we have assumed that the matrix Qµν is positive definite and that
all integrals, considered so far, do converge. However we can treat the integrals
formally and drop the condition of matrix Qµν being positive definite. Thus all
our manipulations with the integrals can be merely taken as a book keeping device
for Wick contractions. In all following discussion we treat the integrals formally
and will not ask if the integral converges at all. Of course, we have to keep in mind
that many formal integrals can be understood less formally through an analytic
continuation as convergent integrals. This can be an important point if we try to
go beyond the perturbative expansions.

5.2. Integrals in
N⊕
i=1

R2n. As a preparation for section 6.1 we give some details

of the perturbative expansion of the generalization of integrals from the previous
subsection. Let Ωµν be the constant symplectic form on R2n and let tij = −tji
i, j = 1 . . . N be an antisymmetric non-degenerate matrix and tij its inverse. Let
us define the formal Gaussian integral over N copies of R2n, where each copy is
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labeled by a subscript. The integral is defined as follows

Z[0] =
∫

N⊕
i=1

R2n

d2nx1 . . . d
2nxN e

− 1
2

∑
i,j

tijΩµνxµi x
ν
j

= (2π)nN (det t)−n(det Ω)−N/2 ,(80)
where we used (58) which is now understood as formal expression. From now on,
we use the summation convention that any repeated Greek indices are summed
while repeated Latin indices are not summed unless explicitly indicated. In general
we are interested in the following integrals∫

N⊕
i=1

R2n

d2nx1 . . . d
2nxN f1(x1)f2(x2) . . . fN (xN ) e

− 1
2

∑
i,j

tijΩµνxµi x
ν
j

,(81)

where fi(xi) are polynomials which depend on the coordinate of a copy of R2n.
Obviously it is enough to consider only monomials and we assume the following
normalization

f(x) = 1
n! fµ1µ2...µn x

µ1xµ2 . . . xµn .(82)

For physics minded readers we can comment that the above integral can be thought
of as discrete field theory whose source manifold is N points labeled by i = 1 · · ·N
and target is R2n, and whose ’fields’ are xi.

One can work out these integrals by usual methods,

(83) 〈f1(x1)f2(x2) . . . fN (xN )〉

≡ 1
Z[0]

∫
d2nx1 . . . d

2nxN f1(x1)f2(x2) . . . fN (xN )e
− 1

2

∑
i,j

tijΩµνxµi x
ν
j

= 1
Z[0]

∫
d2nx1 . . . d

2nxN f1(∂J1)f2(∂J2) . . . fN (∂JN )e
− 1

2

∑
i,j

tijΩµνxµi x
ν
j+
∑
i

Jiµx
µ
i ∣∣∣
J=0

= 1
Z[0] f1(∂J1)f2(∂J2) . . . fN (∂JN ) e

∑
i,j

1
2 tij(Ω

−1)µνJiµJ
j
ν ∣∣∣
J=0

,

where we apply the Wick theorem. Thus we see clearly that the answer can be
represented as Feynman diagrams (graphs), for which the Taylor coefficient of
fi serves as vertices and tΩ−1 serves as propagators. In this expansion the edges
starting and ending at the same vertex are forbidden due to symmetry properties.
This is pretty straightforward to work out, but the reader may use formula (83)
to understand where does the symmetry factor #P come from. There is no #V
factor for this case since all vertices are distinct. In next section we will consider
this perturbation theory further in the context of BV formalism and Kontsevich
theorem.
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5.3. Bits of graph theory. In previous subsections we encountered the graphs
which depict the rules of contracting the indices of vertexes with propagators. In
physics such graphs are called Feynman diagrams. In this subsection we would like
to state very briefly some relevant notions of the graph theory.

By a graph we understand a finite 1-dimensional CW complex.1 In simpler words,
graph is collection of points (vertices) and lines (edges) with lines connecting the
points. The reader may see the examples of the graphs on Figure 1. We consider
only closed graphs, i.e. without external legs. The graphs depicted on Figure 1 are so
called free graphs. If we number the vertices by 1, 2, . . . then we will call such graph
labelled graph. For every labelled graph we can construct the adjacency matrix π
where matrix element πij is equal to the number of edges between vertices i and j.
The adjacency matrix π can be used to describe the symmetries of the graph. If we
relabel the vertices for a given graph then the adjacent matrix transforms by the
similarity transformations π̃ = PπPt, where P is permutation matrix defined such
Pij = 1 if i goes to j under the permutation and otherwise zero. The permutation
P is called a symmetry if the following satisfied π = PπPt (or in other words P
and π commute). Such P’s give rise to the symmetry group of the graph and the
order of this group gives us #V which we defined previously as the symmetry
factor of vertices.

An important structure of graph is its orientation. The orientation is given by
• ordering of all the vertices,
• orienting of all the edges.

If one graph with n vertices of a given orientation can be turned into another
after a permutation σ ∈ sn of vertices (sn is the symmetry group of n-elements)
and flipping of k edges, then we say they are equal orientation if (−1)ksgn(σ) = 1
and otherwise opposite orientation. We can talk about the oriented labelled graph,
which is the labelled graph with fixed order of vertices and oriented edges. We can
introduce the equivalence classes of graphs under the following relation

(Γ, orientation) ∼ (−Γ, opposite orientation) .

Thus every free graph comes with two orientations and we can now multiply the
graphs (equivalence classes of graphs) by numbers and sum them formally. Thus
the underlying module of the graph complex is generated by all the equivalence
class of graphs, and the grading of the complex is of course the number of vertices
in a graph. Quite often to represent the equivalence class of graph we will use the
concrete oriented labelled graph.

We remark here that there are other orientation schemes that are equivalent to
the current one. For example, the orienting of all the edges can be replaced by the
ordering of all the legs from all vertices. Another convenient scheme is to order the

1We recall that the CW complex is a topological space whose building blocks are cells (space
homeomorphic to Rn for some n), with the stipulation that each point in the CW complex is in
the interior of one unique cell and the boundary of a cell is the union of cells of lower dimension.
For example, the minimal cell decomposition of a sphere consists of one 0-cell, the north pole,
and one 2-cell, containing the rest of the sphere.
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incident legs for each vertex and order all the even valent vertices. We refer the
reader to section 2.3.1 of the work [9] for the full discussion of orientation.

The graph complex comes with a differential, which acts on the graph by
shrinking one edge and combining the two vertices connected by the edge. The
main subtlety is to define the sign of such an operation wisely so as to make the
differential nilpotent. More precisely, when combining the vertices i, j (i < j) with

of vertices and oriented edges. We can introduce the equivalence classes of graphs under the
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when combining the vertices i, j (i < j) with an edge from i to j, we form a new vertex

named i inheriting all edges landing on i, j (except the shrunk one of course), all the vertices

labeled after j move up one notch, and the sign factor associated to this procedure is (−1)j .

Note that in [19], the vertices are labeled starting from 0 instead of 1, so the sign factor

there is (−1)j+1. In case the edge runs from j to i one gets an extra − sign.

The graph differential makes the graphs into a chain complex Γ•, at degree n the space

Γn consists of linear combinations of graphs with n vertices. The graph homology is defined

as the quotient of graph cycles by graph boundaries in the usual manner

Hn =
Zn
Bn

.

And dually, we can define the graph cochain complex Γ∗
n whose n-cochains are linear map-

pings cn : Γn → R. We usually write this linear map as a pairing

cn ◦ cn = 〈cn, cn〉 ; cn ∈ Γ∗
n , cn ∈ Γn .
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an edge from i to j, we form a new vertex named i inheriting all edges landing
on i, j (except the shrunk one of course), all the vertices labeled after j move up
one notch, and the sign factor associated to this procedure is (−1)j . Note that in
[18], the vertices are labeled starting from 0 instead of 1, so the sign factor there is
(−1)j+1. In case the edge runs from j to i one gets an extra − sign.

The graph differential makes the graphs into a chain complex Γ•, at degree n
the space Γn consists of linear combinations of graphs with n vertices. The graph
homology is defined as the quotient of graph cycles by graph boundaries in the
usual manner

Hn = Zn
Bn

.

And dually, we can define the graph cochain complex Γ∗n whose n-cochains are
linear mappings cn : Γn → R. We usually write this linear map as a pairing

cn ◦ cn = 〈cn, cn〉 ; cn ∈ Γ∗n , cn ∈ Γn .
We present the Figure 3 as an illustration of the graph differential. Here we use
the oriented labelled graphs as representative of equivalence class. Since under the
equivalence relation the edges starting and ending at the same vertex are forbidden
then it is clear that we get the factor 6 for the first line and the factor 2 for the
second line. Later on we will come back to the algebraic description of the graph
differential coming from the perturbative treatment of integrals.

5.4. Kontsevich Theorem. In this subsection we review briefly the Kontsevich
theorem [15, 16]. Here our presentation is quite formal and we present the theorem
as certain ad hoc recipe. Later in section 6 we will rederive this theorem in much
more natural fashion.

The Kontsevich theorem is about the isomorphism between the graph complex
and certain Chevalley-Eilenberg complex. The Chevalley-Eilenberg complex has
been reviewed in section 4.4. Here we consider the Lie algebra of formal Hamiltonian
vector fields on R2n equipped with the constant symplectic structure Ωµν . The
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labelled graphs as representative of equivalence class. Since under the equivalence relation

the edges starting and ending at the same vertex are forbidden then it is clear that we get

the factor 6 for the first line and the factor 2 for the second line. Later on we will come back

to the algebraic description of the graph differential coming from the perturbative treatment

of integrals.

5.4 Kontsevich Theorem

In this subsection we review briefly the Kontsevich theorem [15, 16]. Here our presentation

is quite formal and we present the theorem as certain ad hoc recipe. Later in section 6 we

will rederive this theorem in much more natural fashion.

The Kontsevich theorem is about the isomorphism between the graph complex and certain

Chevalley-Eilenberg complex. The Chevalley-Eilenberg complex has been reviewed in section

4.4. Here we consider the Lie algebra of formal Hamiltonian vector fields on R2n equipped

with the constant symplectic structure Ωµν . The generalization to R2n|m is straightforward

and we leave it aside for the moment. These vector fields are generated by formal polynomial

functions on R2n

Xf = (∂µf(x))(Ω
−1)µν∂ν .

The formal Hamiltonian vector field form a closed algebra due to the relation [Xf ,Xg] =
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generalization to R2n|m is straightforward and we leave it aside for the moment.
These vector fields are generated by formal polynomial functions on R2n

Xf = (∂µf(x))(Ω−1)µν∂ν .
The formal Hamiltonian vector field form a closed algebra due to the relation
[Xf ,Xg] = X{f,g}. We are interested in the Lie algebra Ham0(R2n) which contains
polynomials that have only quadratic and higher terms. In particular we are
interested in the Chevalley-Eilenberg complex for Ham0(R2n). Let us make the
following abbreviation for the chains in this CE complex

Xf1 ∧ · · · ∧ Xfk ⇒ (f1, . . . , fk)
with the boundary operator defined as usual

∂(f1, . . . , fk) =
∑
i<j

(−1)i+j+1({fi, fj}, f1, . . . , f̂i, . . . , f̂j , . . . , fk) .(84)

This defines the Chevalley-Eilenberg complex for Ham0(R2n) which we denote
CE•(Ham0(R2n)). Obviously we define the dual objects, the cochains evaluating
on a chain as

ck(f1, · · · fk) ∈ R .

The Kontsevich’s theorem2 states that there is an isomorphism between two
complexes

Γ• ∼ lim
n→∞

CE•(Ham0(R2n)) ,(85)

where Γ• is graph complex defined in subsection 5.3. For any fixed n, the mapping is
a homomorphism, meaning it maps the graph differential into the Chevalley-Eilenberg
differential. Taking the limit n→∞ is for the sake of accommodating graphs with
arbitrary number of vertices.

2In fact, Kontsevich studied a relative complex CE•(Ham0(R2n); sp(2n)) which would corres-
pond to graphs with cubic and higher vertices and it has a larger cohomology group. But as far
as the mapping (85) is concerned there is no difference.
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We will now give the formal recipe of the mapping (85) in detail. Given a
chain (f1, . . . , fk) from CE•(Ham0(R2n)) we can construct the graph chain from
Γ• following steps:
• Fix vertices numbered from 1 to k, the vertex i can be maximally pi-valent if

the polynomial fi has highest degree pi, all vertices are considered distinct
but legs from one vertex are considered identical.

• Exhaust all possible unoriented graphs by drawing edges between vertices, one
gets a collection of graphs. There are only finite number of graphs since each
vertex has a maximum valency and at this stage we allow graphs containing
1- or 2-valent vertices.

– For each graph one assigns an arbitrary orientation to its edges, then for
an edge from vertex i to j, one differentiates fi with ∂µ, fj with ∂ν and
contracts µ, ν with (Ω−1)µν .

– Do this for all edges, then set all x’s to zero, the result is a c-number.
– Divide the c-number by #P (defined in subsection 5.1), this is the

coefficient of the graph.
• Doing this for all graphs one gets a linear combination of graphs.
• Combine coefficients of the graphs that belong to the same equivalence class

(see subsection 5.3) and this give us the graph chain
We remark that step 2 can be greatly simplified, but the current low pace approach
has a closer link to perturbation theory. We will give the simplified version after
the next example.

The hard part is to show that the recipe gives a homomorphism, i.e. the
differential in CE•(Ham0(R2n)) is mapped to the graph differential in Γ• under
this recipe. This can be proved using methods from [9]. However there is striking
similarity between the recipe given above and the Feynman diagrams in perturbative
treatment of integrals. This may suggest that a simpler proof can arise from a
carefully designed Gaussian integral, whose perturbative expansion naturally gives
the above recipe. But there is a technical difficulty: we need to connect legs of the
vertices using the inverse symplectic structure Ω−1, but we cannot possibly write a
Gaussian integral with exp{−xµΩµνxν} since it is trivial. But let us put aside this
problem for now and give instead the concrete example of the recipe where we will
hopefully clarify some of the steps.

5.4.1. Example. Let e, f, g, h be four cubic functions on R2n with the normalization
given by (82). Let us first fix e, f, g, h to be on the vertices numbered 1,2,3,4. There
are seven different ways of connecting the legs together as in Figure 4. In fact, the
last six oriented labelled graphs are related by relabeling of vertices. Following the
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– Divide the c-number by #P (defined in subsection 5.1), this is the coefficient of

the graph.

• Doing this for all graphs one gets a linear combination of graphs.

• Combine coefficients of the graphs that belong to the same equivalence class (see sub-

section 5.3) and this give us the graph chain

We remark that step 2 can be greatly simplified, but the current low pace approach has a

closer link to perturbation theory. We will give the simplified version after the next example.

The hard part is to show that the recipe gives a homomorphism, i.e. the differential

in CE•(Ham
0(R2n)) is mapped to the graph differential in Γ• under this recipe. This can

be proved using methods from [9]. However there is striking similarity between the recipe

given above and the Feynman diagrams in perturbative treatment of integrals. This may

suggest that a simpler proof can arise from a carefully designed Gaussian integral, whose

perturbative expansion naturally gives the above recipe. But there is a technical difficulty:

we need to connect legs of the vertices using the inverse symplectic structure Ω−1, but we

cannot possibly write a Gaussian integral with exp{−xµΩµνxν} since it is trivial. But let us

put aside this problem for now and give instead the concrete example of the recipe where

we will hopefully clarify some of the steps.

5.4.1 Example

Let e, f, g, h be four cubic functions on R2n with the normalization given by (82). Let us

first fix e, f, g, h to be on the vertices numbered 1,2,3,4. There are seven different ways of

connecting the legs together as in Figure 4. In fact, the last six oriented labelled graphs are

1

2 3

4 1

2 3

4 1

2 3

4

1

2 3

4 1

2 3

4 1

2 3

4

1

2 3

4

Γ1 Γ2 Γ3 Γ4

Γ5 Γ6 Γ7

Figure 4: Wick’s contraction

38

Fig. 4: Wick’s contraction

recipe we can construct for each graph the following coefficient cΓi

cΓ1 = X(e, f, g, h) = eαλδf βκ
α gβγλh

γ
δκ ,

cΓ2 = 1
4Y (e, f, g, h) = 1

4e
αλδf β

α λgβγκh
γ κ
δ ,

cΓ3 = 1
4Y (e, f, h, g) , cΓ4 = 1

4Y (h, e, f, g) , cΓ5 = 1
4Y (f, g, e, h) ,

cΓ6 = −1
4Y (f, h, g, e) , cΓ7 = −1

4Y (e, g, f, h) .

In these expressions, instead of writing Ω−1 explicitly, we have raised indices using
the inverse of symplectic structure, i.e. (. . . )µ = (. . . )ρ(Ω−1)ρµ. And we also denote
fµνρ = ∂µ∂ν∂ρf . Thus finally, the graph chain is

(86) Γ = Γ1 ·X(e, f, g, h) + Γ2 ·
1
4
(
Y (e, f, g, h)− Y (e, f, h, g)− Y (h, e, f, g)

+ Y (f, g, e, h) + Y (f, h, g, e)− Y (e, g, f, h)
)

= 1
24Γ1

(
X(e, f, g, h) + asym perm’s

)
+ 1

4Γ2 ·
(1

4Y (e, f, g, h) + asym perm’s
)
.

The two factors 1/24 and 1/4 · 1/4 are recognized as the total symmetry factor
#P#V of Γ1,2 (in this case loops are clearly forbidden). This is the graph chain
associated with the CE•(Ham0(R2n)) chain (e, f, g, h).

We also see that there is a slight shortcut to the recipe above, we need only do
the first two sub-steps in step 2 for one representative of an equivalence class of
graphs and manually sum over anti-symmetric permutations of fi, then divide the
result by the total symmetry factor of the graph.

Next we apply the graph differential to the chain Γ defined in (86). We denote
the bottom right graph in Figure 3 by Γ8. Then graph differential applied to (86)
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gives us

∂Γ = Γ8

(
− 1

4X(e, f, g, h) + 1
2

1
4Y (e, f, g, h) + asym-perms

)
.(87)

Here comes the key moment, we need to compare this result to the result
obtained by applying the Chevalley-Eilenberg differential ∂CE to (e, f, g, h) first
and the recipe above second. To do this, we write out X and Y in (87)

∂Γ = Γ8

(
fαβκg γλ

β

(1
4e

δ
αλhδγκ + 1

8e
δ
ακhδγλ

)
+ asym-perms

)
= Γ8

(
fαβκ

1
2g

γλ
β

(1
2e

δ
αλhδγκ + 1

8e
δ
ακhδγλ + 1

8h
δ
ακeδγλ

)
+ asym-perms

)
= Γ8

( 1
16f

αβκg γλ
β {e, h}ακγλ + asym-perms

)
.(88)

The Chevalley-Eilenberg differential ∂CE acting on (e, f, g, h) gives

∂CE(e, f, g, h) = ({e, f}, g, h)− ({e, g}, f, h) + · · ·+ ({g, h}, e, f)

= 1
4
(
({e, f}, g, h) + asym-perms

)
.

Going back to recipe the first term gives rise to the following graph chain

({e, f}, g, h)→ Γ8
1
4{e, f}

αβγδg κ
γδ hκαβ

and so on. Finally we get the following correspondence

∂CE(e, f, g, h)→ Γ8
1
16
(
{e, f}αβγδg κ

γδ hκαβ + asym-perms
)
,

which is in full agreement with (88) where we applied the graph differential explicitly.

5.5. Algebraic Description of Graph Chains. Due to the combinatorial nature
of the graph complex, the proof of any proposition involving graph complex is
extremely cumbersome. Therefore here we suggest a more algebraic description of
the graph complex, which is motivated by the perturbative expansion of integrals.
The construction involves introducing some formal parameters to represent edges
and vertices in such a way that a graph corresponds to a polynomial in these
parameters. These parameters have to conform to the symmetry properties of a
graph, which prompts us to use odd variables ti, i = 1 . . . n (n is the number of
vertices) to represent the vertices, and even variables tij to represent edges. We
assume that tij = −tji in order to take the orientation of the edge into account.

Every oriented labelled graph with N vertices can be represent by a monomial
according to the following prescription
• for every vertex we include ti, so from all vertices we have t1t2 . . . tn;
• for each oriented edge starting from vertex i and ending at vertex j, include a

factor tij .
Let us illustrate these rules by some examples. If we look at Γ1 from Figure 4

as concrete oriented labelled graph then there is the following monomial

t1t2t3t4 t14t13t12t24t23t43 .
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If we multiply this monomial by −1 then we will change the orientation of the
graph. Another example is the graph Γ2 from Figure 4. If Γ2 is understood as
oriented labelled graph then there is the following monomial

t1t2t3t4 t
2
12t

2
43t14t23 .

However we are interested in the equivalence classes of graphs as described in
subsection 5.3. The equivalence classes can be represented by polynomials where
we sum over all equivalent oriented labelled graphs (monomials). To write down a
polynomial representing a graph, we follow the steps
• assign indices l1, . . . , ln to all n vertices of a graph;
• for each edge from vertex i to j, include a factor tlilj ;
• multiply the polynomial by tl1 . . . tln and sum l1 . . . ln from 1 to n.

For example, the graph Γ1 in Figure 4 understood as representative of the equiva-
lence class of graphs gives the following polynomial

4∑
l1=1

4∑
l2=1

4∑
l3=1

4∑
l4=1

tl1tl2tl3tl4 tl1l2tl1l4tl1l3tl2l4tl4l3tl2l3 .

While the graph Γ2 in Figure 4 understood as representative of the equivalence
class of graphs gives

4∑
l1=1

4∑
l2=1

4∑
l3=1

4∑
l4=1

tl1tl2tl3tl4 t
2
l1l2t

2
l4l3tl1l4tl2l3 .

Notice that these polynomials do not contain any symmetry factors. The point of
summing over the dummy indices l1 . . . ln is so that the symmetry group sn acts
trivially on the polynomial. Hence one such polynomial represents an equivalence
class of graphs. In this formalism the orientation is taken into account automatically.
Thus we can think about the graph chains as the formal polynomials in odd
parameters ti and even parameters tij . Later on we will present the graph differential
as formal differential operator acting on these polynomials. Many calculations
drastically simplify with this algebraic description of graphs.

Sometime we will need to solve the following problem. Given polynomial in
ti’s and tij ’s we would like to know if a concrete equivalence class of graphs is
present in this polynomial and if yes then which numerical factor is in front of this
graph. While given a polynomial, to recover concrete equivalence class of graphs it
represents we just need to do the following
• Pick an arbitrary graph out of an equivalence class of graphs, say, a represen-

tative whose vertices are labeled 1, . . . , n;
• differentiating with respect to the odd parameters ∂tn . . . ∂t1 ;
• for each edge from vertex i to j, include a derivative ∂tij ;
• set to zero all formal parameters;
• divide by the symmetry factor #V #P .

Observe that no summation over the dummy indices is needed. After this procedure
we end up with numerical coefficient which will tell us if the equivalence class is
present or not and with what factor. For example, to see if the equivalence class
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of Γ1 from Figure 4 is present we have to apply the following operator to the
polynomial

1
24∂t4 . . . ∂t1∂t12∂t14∂t13∂t24∂t43∂t23

and then set all parameters to zero. For the equivalence class represented by the
graph Γ2 from Figure 4 the corresponding differential operator is

1
4

1
4∂t4 . . . ∂t1∂

2
t32
∂2
t41
∂t12∂t43 .

Note the symmetry factors for Γ1 is #V = 24, #P = 1, and for Γ2 are #V = 4,
#P = 4.

We will derive later the operator corresponding to the graph differential and
discuss more the algebraic description of graphs in the context of perturbative
expansion.

6. BV formalism and graph complex

This section presents the non-trivial application of finite dimensional BV for-
malism. We will reprove the Kontsevich theorem about the relation between
graph complex Γ• and Chevalley-Eilenberg complex CE•(Ham0(R2n)). The exis-
ting proofs can be found in [9, 12] and in the appendix of [18] where we gave
the proof generalizing Kontsevich’s theorem to the case of chord diagrams and
extended Chevalley-Eilenberg complexes suited for the study of knots. The proof
presented here is streamlined and simplified version of the proof from [18].

6.1. A Universal BV Theory on a Lattice. We mentioned in subsection 5.4
that the mapping from the Chevalley-Eilenberg complex to graph complex is
nothing but the application of Feynman rules and that there is a technical difficulty
in realizing the naive Feynman rules. We would like to construct a BV theory that
circumvents this difficulty and furthermore, whose path integral gives, instead of
numbers, graphs as outcome. In this way, it turns out that the Ward identity directly
imply Kontsevich’s theorem. We will embed into BV formalism the perturbation
theory presented in subsection 5.2.

Let us assume that the vector space R2n is equipped with constant symplectic
structure Ωµν and as in subsection 5.2 we consider N copies of this vector space,
N⊕
i=1

R2n. We use xµi to denote the coordinates in this big vector space, where

µ = 1, 2, . . . , 2n and i = 1, 2, . . . N . Now let us construct new graded manifold
N⊕
i=1

R2n ⊕
N⊕
i=1

R2n[−1] ,

where in addition to xµi we introduced the odd coordinates ξµi of degree −1. On

the space of functions C∞(
N⊕
i=1

R2n ⊕
N⊕
i=1

R2n[−1]) we can introduce the structure
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of BV-algebra (see the definitions 4.2 and 4.3). As in section 4.2 the odd Laplacian
operator is defined as follows

∆ =
N∑
i=1

(Ω−1)µν ∂

∂ξµi

∂

∂xνi
.

The odd Poisson bracket is defined accordingly as

{g, h} =
N∑
i=1

(Ω−1)µν
(
∂g

∂xµi

∂h

∂ξνi
+ (−1)|g| ∂g

∂ξνi

∂h

∂xµi

)
,(89)

where g, h ∈ C∞(
N⊕
i=1

R2n ⊕
N⊕
i=1

R2n[−1]). If we introduce ξiµ = Ωµνξνi then we deal

with the odd cotangent bundle T ∗[−1]M , where M =
N⊕
i=1

R2n. Therefore all our

previous discussion from section 4 is applicable here.

Now let us construct some specific functions on C∞(
N⊕
i=1

R2n ⊕
N⊕
i=1

R2n[−1]). Let

us pick a function f(x) on R2n and auxiliary odd parameters ti of degree −1
(i = 1, 2, . . . , N). We can construct the following function on our BV manifold

O[f ] =
N∑
i=1

(
tif(xi) + ξµi ∂µf(xi)

)
.

It is quite easy to see that ∆O[f ] = 0, therefore the bracket between O[f ] and O[g]
is induced as

{O[f ],O[g]} = −∆(O[f ]O[g]) .
We can directly calculate the bracket {O[f ],O[g]}

{O[f ],O[g]} =
∑
i

−
(
∂ρf(xi)

)
Ωσρ∂σ

(
tig(xi) + ξγi ∂γg(xi)

)
+
∑
i

∂σ
(
tif(xi) + ξγi ∂γf(xi)

)
Ωσρ

(
∂ρg(xi)

)
=
∑
i

(
2ti{f, g}(xi) + ξσi ∂σ{f, g}(xi)

)
,(90)

where the bracket {f, g} is the standard Poisson bracket on R2n with respect to
Ω. Let us point out that {O[f ],O[g]} 6= 2O[{f, g}]. Next we introduce the special
function which is the one we used in (81),

S = 1
2

N∑
i,j=1

xµi t
ijxνj Ωµν ,(91)

which physicists call BV action. Here tij , i, j = 1, . . . N are now formal degree
0 parameters with tij = −tji and tiktkj = δij . The purpose of introducing these
parameters is to make our perturbation theory universal in the sense that the
Feynman diagrams are computed as a function of tij .
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Now we are ready to state and reprove the Kontsevich theorem discussed in
subsection 5.4. Below we show that the theorem is simple consequence of BV
formalims.
Theorem 6.1 (Kontsevich). Let us take a collection of polynomial functions
f1, . . . , fl on R2n and define the following integral

(92) 〈(f1, . . . , fl)〉

= 1
Z[0]

∫
d2nx1 . . . d

2nxN

N∑
i1=1

ti1f1(xi1) . . .
N∑
il=1

tilfl(xil) e−S ∈ R[ti, tij ] ,

where as answer we obtain a polynomial in ti and tij which can be understood as a
graph chain described in subsection 5.5. This integral can be understood as map
from chain (f1, . . . , fl) in CE•(Ham0(R2n)) to graph chain in Γ•. The reader can
compare the perturbative expansion of the formula (92) to the recipe in section 5.4
and indeed they are the same. Moreover the map (92) satisfies the property

〈∂(f1, . . . fl)〉 = ∂Gph〈(f1, · · · fl)〉 ,(93)
where ∂ is the Chevalley-Eilenberg differential define in (84) and ∂Gph is the graph
differential, which has the following explicit form3

∂Gph = − 1
2(N − l + 1)

N∑
k,p=1;k 6=p

Rpk
∂

∂tkp

∂

∂tp
,(94)

when we deal with graph chains as polynomials (the precise definition of the operator
Rpk see below in the proof).

Now we provide the proof and further explanation for this theorem. We leave to
the reader to check that the perturbative expansion of (92) with the propagator

〈xµi x
ν
j 〉 = (Ω−1)µνtij

coincides with the prescription given in subsection 5.4 when we understand the
answer as graph chain (i.e., formal polynomial in ti’s and tij ’s).

We concentrate on the proof of the relation (93). For this we have to embed the
integral (92) into the BV framework. Let us introduce short hand notation for the
integration measure Dx = d2nx1 . . . d

2nxN . The integral (92) can be thought as
integral over odd conormal bundle

〈(f1, . . . , fl)〉 =
∫
ξ=0

Dx O[f1]O[f2] . . .O[fl] e−S ,

where the functions O[f ] and S are defined above on the BV manifold
N⊕
i=1

R2n ⊕
N⊕
i=1

R2n[−1]. Using the terminology from subsection 4.3 here the submanifold C

3Here the cumbersome factor (N − l+ 1) arises because we chose the number of lattice cites N
to be a large number and therefore we can accommodate graphs of varying number of vertices at
the same time. In fact, for the current problem, one may well take N = l and thereby eliminate
this ugly factor.
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coincides with M and thus there is no odd conormal directions left. As explained
earlier in subsection 4.3, there is one single Ward identity in BV formalism (43):∫

∆(. . . ) = 0, we analyze its implication in the present setting∫
ξ=0

Dx ∆
(
O[f1]O[f2] . . .O[fl] e−S

)
= 0 .

The standard manipulation with the odd Laplacian operator (28) leads to

(95) ∆
(
O[f1]O[f2] . . .O[fl] e−S

)
= ∆

(
O[f1]O[f2] . . .O[fl]

)
e−S

+ (−1)lO[f1]O[f2] . . .O[fl]∆e−S − (−1)l
{
O[f1]O[f2] . . .O[fl], S

}
e−S .

We observe that ∆S = 0 trivially. And furthermore all the above expressions will
be restricted onto the submanifold given by ξ = 0 and thus we can make the
replacement

∆
(
O[f1]O[f2] . . .O[fl]

)∣∣∣
ξ=0

=

− 2
∑
i<j

(−1)i+j+1O[{fi, fj}]O[f1] . . . Ô[fi] . . . Ô[fj ] . . .O[fl]
∣∣∣
ξ=0

,

where we have used the relation (90). Thus we conclude that the first term of (95)
gives the correlator∑

i<j

(−1)i+j+1〈({fi, fj}, f1, . . . , f̂i, . . . , f̂j , . . . , fl)〉 = 〈∂(f1, . . . , fl)〉 ,

i.e. the correlator of the Chevalley-Eilenberg differential of (f1, . . . fn). Next we
analyze the last term of (95)

(96) − (−1)l
∫
ξ=0

Dx
{
O[f1]O[f2] . . .O[fl], S

}
e−S =

−
l∑

p=1
(−1)p

∫
ξ=0

Dx O[f1] . . . {O[fp], S} . . .O[fl] e−S =

l∑
p=1

(−1)p
∫
ξ=0

Dx O[f1] . . .
(
−
∑
ip,j

tipj∂µfp(xip)xµj︸ ︷︷ ︸
pth

)
. . .O[fl] e−S .

Now it is best that we should explain where we are heading before we make the
plunge. Focusing on the round brace, assume that xj is connected to fk in the
ensuing Gaussian integral, we will get a factor∑

j

∑
ik

(Ωµνtjik)(tik∂νfk(xik))
(
−
∑
ip

tipj∂µfp(xip)
)
,
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where the quantity in the first brace comes from the propagator. Summing over j,
we get δipik , which renames all the ip into ik. This leads of course to∑

ik

(Ωµν) tik∂νfk(xik)(∂µfp(xik)) =
∑
ik

tik{fp, fk}(xik) .

The above describes exactly the process of combining two vertices by shrinking
an edge between them and letting the new vertex inherit all the other edges
belonging to the two old ones. However it will be more convenient if we could write
the effect of ∂Gph as an operator acting on the polynomial R[tij , ti]. Thus instead
we proceed from (96) and perform the Gaussian integral by replacing xµi with ∂Jiµ
as in (83)

(96) =
N∑

i1...il=1

l∑
p=1

(−1)p
(
ti1f1

( ∂

∂J i1

))
. . .

(
−

N∑
j=1

tipj∂µfp

( ∂

∂J ip

) ∂

∂Jjµ︸ ︷︷ ︸
pth

)
. . .
(
tilfl

( ∂

∂J il

))
e

1
2JΩ−1tJ

∣∣∣
J=0

,

where JΩ−1tJ is the short hand notation for
N∑

i,j=1
J iµ(Ω−1)µνtijJjν . Letting ∂Jjµ

hitting the last exponential

(97)

N∑
i1...il=1

l∑
p=1

(−1)p
(
ti1f1

( ∂

∂J i1

))
. . .
(
−

N∑
j=1

tipj∂µfp

( ∂

∂J ip

)
︸ ︷︷ ︸

pth

)
. . .

. . .
(
tilfl

( ∂

∂J il

)) N∑
k=1

(Ω−1)µνtjkJkν e
1
2JΩ−1tJ

∣∣∣
J=0

=
N∑

i1...il=1

l∑
p=1

(−1)p
(
ti1f1

( ∂

∂J i1

))
. . .
(
−∂µfp

( ∂

∂J ip

)
︸ ︷︷ ︸

pth

)
. . .

(
tilfl

( ∂

∂J il

))
(Ω−1)µνJ ipν e

1
2JΩ−1tJ

∣∣∣
J=0

.

We claim that this expression can be written as

− 1
N − l + 1

N∑
k,q=1

Rqk
∂

∂tkq

∂

∂tq

∫
ξ=0
Dx O1 . . .Ol e−S ,(98)
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where Rpq is a renaming operator acting on the polynomials of tij that renames p
to q

Rpqtij =
{
tij i, j 6= p

tqj i = p
.(99)

To see this, again we replace x with ∂J

(98) = −
N∑

k,q=1
Rqk

∂

∂tkq

∂

∂tq

( N∑
i1...il=1

(
ti1f1

( ∂

∂J i1

))
. . .
(
tilfl

( ∂

∂J il

))
e

1
2JΩ−1tJ

∣∣∣
J=0

)

= −
N∑

k,q=1
Rqk

∂

∂tq

( N∑
i1...il=1

(
ti1f1

( ∂

∂J i1

))
. . .
(
tilfl

( ∂

∂J il

))
(Jkρ (Ω−1)ρσJqσ)e 1

2JΩ−1tJ
∣∣∣
J=0

)
.

We now commute Jqσ to the left most position, picking up only a commutator

−
N∑
k=1

l∑
p=1

( N∑
i1...il=1

R
ip
k

∂

∂tip

(
ti1f1

( ∂

∂J i1

))
. . .
(
tip∂σfp

( ∂

∂J ip

))
. . .
(
tilfl

( ∂

∂J il

))
(Jkρ (Ω−1)ρσ)e 1

2JΩ−1tJ
∣∣∣
J=0

)
.(100)

To proceed further, we observe that Rqk is an operator that renames the formal
variables tij and does not touch any other index on J . Its effect on the last
exponential is

R
ip
k exp

(1
2
∑
r,s

Jrµ(Ω−1)µνtrsJsν
)

= exp
(1

2
∑
r,s 6=ip

Jrµ(Ω−1)µνtrsJsν +
∑
r 6=ip

Jrµ(Ω−1)µνtrkJ ipν
)

= exp
(1

2
∑

r,s 6=ip,k
Jrµ(Ω−1)µνtrsJsν +

∑
r 6=ip,k

Jrµ(Ω−1)µνtrk(J ipν + Jkν )
)
.

The last relation implies the derivation of the exponential with respect to J ip is
the same as derivation with respect to Jk, with this we get

(98) = −
N∑
k=1

l∑
p=1

( N∑
i1...il=1

R
ip
k

∂

∂tip

(
ti1f1

( ∂

∂J i1

))
. . .
(
tip∂σfp

( ∂

∂Jk

))
. . .
(
tilfl

( ∂

∂J il

))
(Jkρ (Ω−1)ρσ)e 1

2JΩ−1tJ
∣∣∣
J=0

)
.
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The summation over ip is now almost trivial, it can only take N − l + 1 values
because the ti’s are odd. So the summation over ip gives (N − l + 1) times the
following

N∑
k=1

l∑
p=1

(−1)p
( N∑
i1...îp...il=1

(
ti1f1

( ∂

∂J i1

))
. . .
(
∂σfp

( ∂

∂Jk

))
. . .
(
tilfl

( ∂

∂J il

))
(Jkρ (Ω−1)ρσ)e 1

2JΩ−1tJ
∣∣∣
J=0

)
.

This is exactly the same as (97) (upon switching ρ, σ). To conclude, we have shown

〈∂CE(f1, · · · fl)〉 = − 1
2(N − l + 1)

N∑
k,q=1

Rqk
∂

∂tkq

∂

∂tq
〈(f1, · · · fl)〉 .

Note that in the above sum, one must take the derivative ∂tkq first then set q = k.
This is exactly what we are after, the integral gives the graph corresponding to
O[f1] . . .O[fl], and ∂tkq removes one edge from vertex k to q and renames the new
vertex as k inheriting all the other edges4. The sign factor −(−1)p−1 is as given in
subsection 5.3. We have now arrived at a neat formula

〈∂CE(f1, · · · fl)〉 = ∂Gph〈(f1, · · · fl)〉 .(101)

Thus we have completed the proof of the theorem by Kontsevich: there is a
homomorphism between the Chevalley-Eilenberg complex CE•(Ham0(R2n)) and
the graph complex given by the path integral. The proof of the homomorphism is
the hard part of the theorem, while to prove that the mapping is in fact bijective
is rather trivial. Suppose the dimension of the target space R2n is big enough, one
can then always find a set of polynomials, which upon applying the Feynman rules
gives any given graph, this is left as an exercise for the reader.

6.1.1. Example. One can easily recast the example from subsection 5.4.1 into the
calculation of the correlator 〈(e, f, g, h)〉 according the formula (92). Now we deal
with graph chains as formal polynomials.

It is instructive to show how the graph differential acts on the polynomials.
Let us see the example of applying the differential operator (94) to some specific
polynomials

Γ1(t) =
∑

i1,...,i4

ti1ti2ti3ti4ti1i2ti1i4ti1i3ti2i4ti4i3ti2i3 ,

Γ2(t) =
∑

i1,...,i4

ti1ti2ti3ti4(ti1i2)2(ti4i3)2ti1i4ti2i3 ,

that correspond to Γ1, Γ2 on Figure 4 (here these graphs are understood as
equivalence classes of the graphs). A direct calculation gives (we use i, j, k, l to

4If there are originally more than one edge between j and k then we get zero since tkk = 0.
While on the graph side, contracting two vertices with more than one edge in between will give
loops which also leads to zero.
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denote i1, i2, i3, i4)

−2∂Γ1(t) =
∑
jkl

tjtktl
(
tjltjktjltlktjk + tkjtiltjltlktjk + tljtlktjltlktjk

)
−
∑
ikl

titktl
(
− tiltiktiltlktjk + tiktiltiktkltlk + tiltiltiktlktlk

)
+
∑
ijl

titjtl
(
− tijtiltjltlitji − tijtiltijtjltlj − tijtiltiltjltjl

)
−
∑
ijk

titjtk
(
− tijtiktjitiktjk − tijtijtiktjktjk + tijtiktiktjktjk

)
= −12

∑
ijk

titjtkt
2
ijt

2
iktjk ,

−2∂Γ2(t) =
∑
jkl

tjtktl
(
t2ljt

2
lktjk

)
−
∑
ikl

titktl
(
− t2ikt2lktil

)
+
∑
ijl

titjtl
(
− t2ijt2ljtil

)
−
∑
ijk

titjtk
(
− t2ijt2iktjk

)
= 4

∑
ijk

titjtkt
2
ijt

2
iktjk .

To extract the coefficient of Γ8 from these polynomials, one applies the operator

Γ∗8 = 1
8
∂

∂t3

∂

∂t2

∂

∂t1

∂2

∂t212

∂2

∂t213

∂

∂t23
,

which can be understood as graph cochain (see Appendix C). For example

〈Γ∗8, ∂Γ1〉 = 6
8
∂

∂t3

∂

∂t2

∂

∂t1

∂2

∂t212

∂2

∂t213

∂

∂t23

N∑
ijk=1

titjtkt
2
ijt

2
iktjk = 3

4
∂2

∂t212

∂2

∂t213

∂

∂t23

×
(
t212t

2
13t23 − t213t

2
12t32 − t221t

2
23t13 + t223t

2
21t31 + t231t

2
32t12 − t232t

2
31t21

)
= 6 .

We end up with the same results as before. This is just a simple illustration how
to work with the graphs as formal polynomials. We do want to point out that for
concrete graphs it is much more efficient to work with pictures than to use the
polynomial representation. However, the latter approach allows us to prove theorems
about graph complex by manipulating operators acting on the polynomials; thus
instead of drawing lots of pictures one ’lets algebra do the talking’.

6.2. Generalizations. Let us briefly sketch the possible generalizations of the
above construction about the relation between certain Chevalley-Eilenberg complex
and certain graph complex. As the reader may imagine there are many ways to
generalize and extend the presented construction. Here we just indicate some
directions and leave to the reader to figure out the details.

The most straightforward generalization is related to case of R2n|m equipped
with even symplectic structure

Ωµν dxµ ∧ dxν + ηab dψ
a ∧ dψb ,

where Ω is non-degenerate 2n×2n antisymmetric matrix and η is symmetric m×m
matrix. Here xµ (µ = 1, 2, . . . , 2n) stands for even coordinate of R2n|m and ψa
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(a = 1, 2, . . . ,m) for the odd coordinate of R2n|m. In analogy with our previous
discussion we can define the Chevalley-Eilenberg complex CE•(Ham0(R2n|m)) for
the formal Hamiltonian vector fields on R2n|m. In analogy with Theorem 6.1 we can
formulate the following theorem on the relation between the Chevalley-Eilenberg
complex CE•(Ham0(R2n|m)) and the graph complex Γ•.

Theorem 6.2 (super-Kontsevich). Let us take a collection of polynomial functions
f1(x, ψ), . . ., fl(x, ψ) on R2n|m and define the following integral

(102) 〈(f1, . . . , fl)〉

= 1
Z[0]

∫
N⊕
i=1

R2n|m

DxDψ
N∑
i1=1

ti1f1(xi1 , ψi1) . . .
N∑
il=1

tilfl(xil , ψil) e−S ∈ R[ti, tij ]

where Dx = d2nx1 . . . d
2nxN and Dψ = dmψ1 . . . d

mψm and

S = 1
2

N∑
i,j=1

tij
(
xµi x

ν
j Ωµν + ψai ψ

b
jηab

)
.(103)

The integral (102) can be understood as map from chain (f1, . . . , fl) in CE•(Ham0

(R2n|m)) to graph chain in Γ•. Moreover the map (92) satisfies the property

〈∂(f1, . . . fl)〉 = ∂Gph〈(f1, . . . fl)〉 ,(104)

where ∂ is the appropriate Chevalley-Eilenberg differential and ∂Gph is the graph
differential defined in (94).

To understand (102) as concrete prescription we have to develop and study
the perturbative expansion in the odd-coordinates. The proof of this theorem is
straightforward generalization of the proof for Theorem 6.1. We have to embed the

integral (102) on
N⊕
i=1

R2n|m to BV theory on
N⊕
i=1

R2n|m ⊕
N⊕
i=1

R2n|m[−1] and use the

Ward identities. Here the only complication compared with the previous discussion
is related to some additional signs due to presence of odd coordinates ψ’s. We leave
all these details to the reader to figure out.

By looking at Theorems 6.1 and 6.2 it is very easy to construct the graph cycles
by choosing simple Chevalley-Eilenberg cycles. Let us give three different examples.

Example 6.3. Consider the case R0|m and let us choose the cubic function

f(ψ) = 1
3!fabcψ

aψbψc

such that {f, f} = 0. This is equivalent to the statement that fabc = ηadfdbc are
structure constants for some Lie algebra g and ηab is ad-invariant metric on this
Lie algebra (here ηadηdb = δab ). Using the prescription (102) we can construct the
graph cycle since (f, f, . . . , f) is trivially Chevalley-Eilenberg cycle due to property
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{f, f} = 0. The corresponding cycle is constructed as∑
Γ
cΓ(g) Γ ,(105)

where Γ’s are collection of trivalent graphs and cΓ is the number constructed by
contraction of fabc as vertices and ηab as propagator according to the graph Γ. The
numbers cΓ satisfies so-called IHX-relations (see [2],[21]) which is equivalent to the
statement that above expression is a graph cycle.

Example 6.4. Consider the standard symplectic vector space R2n|0 and let us
choose the collection of function fi (i = 1, 2, . . . , l) such that {fi, fj} = 0. For
example, the case l = n would correspond to the completely integrable system
on R2n. Plug these collection of functions into the prescription of Theorem (6.1)
and we will get the graph cycle since (f1, f2, . . . , fl) is trivially Chevalley-Eilenberg
cycle due to property {fi, fj} = 0. The corresponding cycle has the form∑

Γ
cΓ(f1, . . . , fl) Γ ,(106)

where cΓ(f1, . . . , fl) are numbers constructed from the contraction of vertices
(Taylor coefficients of f ’s) using the inverse of symplectic structure Ω−1 according
to the graph Γ. The concrete prescription with all numerical coefficients can be
read off the perturbative expansion of (92).

Example 6.5. Now let us consider the general case R2n|m and combine these
two examples above. First of all we can find an odd function Θ(x, ψ) such that
{Θ,Θ} = 0. Indeed such Θ is related to L∞-algebra with invariant metric (here the
symplectic structure on R2n|m is such a metric). The corresponding graph cycle is
constructed by contracting the Taylor coefficients of Θ as vertices and the inverse
of symplectic structure as propagators. The precise prescription can be read off
from the perturbative expansion of (102) which would allow as to construct graph
cycle starting from a cyclic L∞-algebra.

Also in analogy with example 6.4 we can choose the collection of Θi(x, ψ),
i = 1, 2, . . . , l such that {Θi,Θj} = 0. Plugging these Θ’s into (102) we will get the
graph cycle.

We can continue to play this game and construct more exotic BV theories and
get more exotic graph complexes. For example, for the graph complex related to
chord diagrams and the related Chevalley-Eilenberg complex see [18].

7. Outline for quantum field theory

So far our discussion involved the finite dimensional integrals and the related
algebraic structures. In quantum field theory we have to study the infinite dimen-
sional integrals and construct the corresponding BV formalism with the Ward
identities. Referring to the terminology of section 4 now the manifold M is infinite
dimensional functional space of fields, the derivatives should be replaced by func-
tional derivatives and formally the odd cotangent bundle T ∗[−1]M should be BV
manifold. However we suffer from the standard problems with infinite dimensional
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setting, namely some of the formulas are not well-defined and may require the
additional regularization. For example, there is no simple canonical way to define
the odd Lapalacian (23) in functional space since the double functional derivative
is not well-defined as it stands. At the same time the odd Poisson bracket (29) can
be defined in suitable way in infinite dimensional setting. Nevertheless one tries to
proceed formally and apply the Ward identities (43) and (44) formally. Despite
all these problems the BV formalism provides good heuristic understanding of
infinite dimensional path integral. The impressive example of using BV formalism
in infinite dimensional setting is given by the heuristic derivation of deformation
quantization and the proof of formality in the context of Poisson sigma model, [6].

However we will not discuss the infinite dimensional BV formalism here. We
restrict ourselves to a few general remark regarding the perturbative aspects of QFT.
In particular we would like to concentrate on the Chern-Simons type of theories and
their different relatives. We will introduce the theory in purely combinatorial fashion
without any reference to infinite dimensional formulation. Since any perturbative
expansion of QFT is done through the graphs (Feynman diagrams), then we would
like to define certain nice objects on graphs such as element of graph homology
and element of graph cohomology. The infinite dimensional path integral (partition
function) will be defined as pairing of these two elements. We believe that this
picture is rather generic for the perturbative expansions of QFT. However the details
has been worked out only for some particular examples. Let us illustrate briefly
the idea on the example of Chern-Simons theory and its different modification.

7.1. Formal Chern-Simons theory and graph cocycles. In previous section
we have described how one can construct the graph cycles, see examples 6.3, 6.4
and 6.5. At the same time the QFT theory gives us a very natural and elegant
way to construct the cocycles. Let us illustrate this by the example inspired by the
Chern-Simons theory on S3 (or any rational homology sphere where H1(M,R) = 0).
Let us consider the supermanifold T [1]S3 with coordinates z = (θa, σa), a = 1, 2, 3
and define homological vector field Dz = θa ∂

∂σa . We can introduce the propagator
G(z1, z2) which is smooth function defined on (z1, z2) ∈ T [1]S3 × T [1]S3 minus the
diagonal (z1 6= z2). The propagator satisfies the following equation

(Dz1 +Dz2)G(z1, z2) = −δ6(z1 − z2) ,(107)

where δ6(z) is delta-function on T [1]S3 with canonical integration. In certain sense
the propagator is inverse of de Rham operator Dz and obviously it is not uniquely
defined. Dz can be inverted on co-exact forms and thus would require the Hodge
decomposition with a concrete metric. The ambiguity in (107) is given by the
following formula

G(z1, z2) → G(z1, z2) + (Dz1 +Dz2)L(z1, z2) ,(108)

where L(z1, z2) is some function on T [1]S3 × T [1]S3. Assume that we choose some
G(z1, z2) satisfying the above properties, then we can construct the following
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differential operator acting on the graph chain Γ(t)

bΓ = exp
( N∑
i=1

∫
d6zi

∂

∂ti

)
exp

( N∑
k,l=1

G(zk, zl)
∂

∂tkl

)
Γ(t)

∣∣∣
t··=0

,(109)

where Γ(t) is understood as polynomials in ti and tij (see subsection 5.5). Thus
bΓ gives a number for a given graph chain Γ(t). In bΓ we replace every edge tij
with an actual propagator running from zi to zj and every vertex ti with the
integration

∫
d6zi =

∫
d3θid

3σi over T [1]S3. The reader may check that in bΓ both
symmetry factors #V,#P of a graph are taken care of automatically. Thus the
prescription (109) can be understood as way of producing the graph cochain and
can be symbolically written as

bΓ = Γ∗
(
∂

∂t

)
Γ(t)

∣∣∣
t··=0

.(110)

One can prove the following statements about this cochain
– bΓ is well-defined;
– b∂GphΓ = δGrpbΓ = 0 and bΓ is graph cocycle;
– under change (108) of the propogator G, bΓ changes by coboundary bΓ →
bΓ + δGrp(. . . );

Thus bΓ as an element of graph cohomology is well-defined and is independent
of the choice of the correlator. The proof of the first statement about bΓ being
well-defined can be found in [1]. Two other statements are known, however we
cannot find a complete proof of them in the literature. Thus we provide a proof of
these two statement in Appendix C for any differential graded Frobenius algebra
with trivial cohomology (maybe except the top degrees). The space C∞(T [1]S3)
is an example of such infinite dimensional algebra. As long as all expressions are
well-defined the proofs for finite and infinite dimensional cases are identical.

Next we can take the statement of Theorems 6.1 and 6.2 about isomorphism of
the Chevalley-Eilenberg complex and graph complex and by applying the differential
operator (109) to (92) (or (102)) we construct the Chevalley-Eilenberg cochain

cl(f1, f2, . . . , fl) ≡ Γ∗
(
∂

∂t

)
〈(f1, f2, . . . , fl)〉

∣∣∣
t··=0

.(111)

As a simple consequence of these theorems and the fact that bΓ is cocycle, we
conclude that cl is the Chevalley-Eilenberg cocycle. Moreover under the change of
the propagator (108) this cocycle will change by a coboundary. Thus cl as an element
of the Chevalley-Eilenberg cohomology depends only on the concrete Frobenius
algebra (here related to T [1]S3). This is an example of the understanding of the
infinite dimensional integral as a coycle with certain specific properties. Indeed
the expression (111) can be represented as an infinite dimensional integral and the
properties stated in Theorem 6.1 can be derived by some formal manipulations
with this integral.

Moreover we can define the partition function as follows. Once there is a graph
cocycle we can construct the Chern-Simons partition function for the Lie algebra g
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by pairing the cocycle (109) with graph cycle constructed in the example 6.3

Z[g] =
∑

Γ
bΓcΓ(g) =

∑
Γ

Γ∗
(
∂

∂t

)
cΓ(g)Γ(t)

∣∣∣
t··=0

.(112)

Since
∑
Γ
cΓ(g)Γ is graph cycle, any changes of bΓ by a coboundary vanish upon

the pairing. Thus the expression Z[g] is independent of the concrete choice of
the propagator and it depends only on Lie algebra g and the Frobenius algebra
(T [1]S3 in the case of standard Chern-Simons theory). Thus in this sense Z[g] can
be though as an invariant of S3 for fixed g.

Analogously we can pair the cocycle (109) with any other graph cycles, see
example 6.4 and 6.5. These will give rise to some different partition functions.
For instance, the example 6.5 produces the partition function depending on cyclic
L∞-algebra and Frobenius algebra (for example, T [1]S3 as done in [19]). This sort of
models were discussed in [19] and they are natural generalizations of Chern-Simons
theory.

Moreover instead of T [1]S3 one may use any acyclic Frobenius algebra for the
construction of cocycles and thus deal with the formal and discrete versions of
Chern-Simons theory. For the examples of discrete version of Chern-Simons the
reader may consult [8].

Depending of concrete QFT and the set of observables we may be forced to
study more complicated graph complexes which can be colored, decorated, have
external legs or other additional structures. However we would expect that the
qualitative picture of perturbation theory as a pairing of appropriate graph cycle
with graph cocycle will still hold good. These issues would require the additional
study.
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A. Explicit formulas for odd Fourier transform

This appendix should be regarded as companion for subsection 4.2 and we follow
the same notations as in subsection 4.2. We give here some explicit formulas and
derive some curious relations.
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The odd Fourier transform (20) maps the differential forms to multivectors
according the following explicit formula

(113) 1
p!fµ1...µp(x)dxµ1 ∧ · · · ∧ dxµp F−→

(−1)(n−p)(n−p+1)/2

p!(n− p)! fµ1...µpΩµ1...µpµp+1...µn∂µp+1 ∧ · · · ∧ ∂µn ,

where Ωµ1...µn is defined as components of a nowhere vanishing top multivector
field dual to the volume form (19)

vol−1 = ρ−1(x) ∂1 ∧ · · · ∧ ∂n = 1
n! Ωµ1...µn(x) ∂µ1 ∧ · · · ∧ ∂µn .

The operator ∆ corresponds to the divergence operator acting on the multivector
fields as follows

(div f̃)µ1...µp∂µ1 ∧ · · · ∧ ∂µp−1 = 1
(p− 1)! ρ

−1 ∂

∂xν
(
ρf̃νµ1...µp−1

)
∂µ1 ∧ · · · ∧ ∂µp−1 ,

where we use the convention for the identification of the multivector with function
on the odd cotangent bundle from the example 2.4. The odd Poisson bracket (29)
corresponds to the Schouten bracket(
{f̃ , g̃}

)µ1...µp+q−1
∂µ1 ∧ · · · ∧ ∂µp+q−1

= 1
p!q!

(
q ∂µf

ν1...νpgµνp...νp+q−1 + (−1)pp fµν1...νp−1∂µg
νp...νp+q−1

)
× ∂µ1 ∧ · · · ∧ ∂µp+q−1 ,

which is the generalization of the usual Lie bracket to the multivector fields.
Let us mention a few curious facts about the transportation of the BV algebra

structure (C∞(T ∗[−1]M), ·, { , },∆) to C∞(T [1]M) = Ω•(M) using the inverse
Fourier transform (21). The graded commutative product on C∞(T ∗[−1]M) get
mapped to the following product on C∞(T [1]M)

(114) f ∗ g = F−1 (F [f ]F [g]) = (−1)(|f |+n)n
∫
dnξ ρ−1 f(x, ξ)g(x, θ − ξ) ,

where ξ and θ are odd coordinates on T [1]M . This star product is associative
product of degree −n and thus |f ∗ g| = |f |+ |g| − n. The commutativity rule is
f ∗ g = (−1)(n−|f |)(n−|g|)g ∗ f and thus in general it is not a graded commutative
product. If we work with Z2-grading and n = dimM is even, the product (114)
is supercommutative. The odd Poisson bracket (29) gives rise to the bracket on
C∞(T [1]M)

(115) [f, g] = F−1 ({F [f ], F [g]})

= (−1)|f |D(f ∗ g)− (−1)|f |(Df) ∗ g − (−1)nf ∗ (Dg) ,
where to derive the last relation we used (22), (28) and (114). The bracket [ , ]
is of degree (1 − n). One can easily derive the properties of the bracket [ , ] on
C∞(T [1]M) by the Fourier transform of the properties of the Gerstenhaber algebra
(see the definition 4.1). Let us just point out that in the case of Z2-grading and
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n = dimM being even the bracket [ , ] is Gerstenhaber bracket with respect to
the supercommutative multiplication ∗.

B. BV-algebra on differential forms

If the manifold M is equipped with a Riemannian metric gµν then we can define
the odd Fourier transform which maps C∞(T [1]M) to C∞(T [−1]M). Using the
metric we can define the odd Fourier transform for f(x, θ) ∈ C∞(T [1]M) as follows

F [f ](x, ξ) =
∫
dnθ g−1/2eξ

µgµνθ
µ

f(x, θ) ,(116)

where g = det(gµν) and ξµ is odd coordinate of degree −1 on T [−1]M . If we work
in superlanguage then the odd Fourier transform (116) maps C∞(ΠTM) to itself.
In the language of differential forms the odd Fourier transform corresponds to
Hodge star operation ?

F [f(p)] = (−1)(n−p)(n−p+1)/2 ∗ f(p) ,

where f(p) is p-form. Under the Fourier transform the homological vector field D is
mapped as follows

D†F [f ] = (−1)nF [Df ] ,
where D† is defined as

D† = 1
√
g

∂

∂xµ
gµν(x) ∂

∂ξν
√
g − Γγσµgσνξµ

∂

∂ξγ
∂

∂ξν
,(117)

where Γγσµ is the Levi-Civita connection for the metric gµν .D† is operation of degree
1 on C∞(T [−1]M) and by construction (D†)2 = 0. On the space of differential
forms Ω•(M) = C∞(T [−1]M) the operator D† is proportional to the adjoint of the
de Rham differential, d†. The operator D† is a second order differential operator
and it satisfies the relation (31) with the usual graded commutative multiplication
on C∞(T [−1]M). Therefore the space of differential forms Ω•(M) is equipped with
the BV-structure where D† corresponds to ∆ and the odd bracket is

{f, g} = (−1)|f |D†(fg) + (−1)|f |+1(D†f)g − f(D†g)

where f, g ∈ Ω•(M). The integration theory is canonically defined for the differential
form and thus it is not hard to extend the discussion from subsections 4.3 and 4.4
to the present case of differential forms.

The story presented here can be reiterated in many other cases, maybe with
some minor modifications. For example, instead of metric we can use the symplectic
structure in the definition of the odd Fourier transform (116). We can also treat in
similar fashion the Lie algebroid which corresponds to a vector bundle with odd
fiber coordinate A[1] and with the homological field Q of degree 1. The integration
on A[1] will require some additional structure. The odd Fourier transform will map
C∞(A[1]) to C∞(A∗[−1]) etc. Thus we can get numerous examples of BV algebras
and related structures.
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C. Graph Cochain Complex

The graph cochain complex is defined as a formal linear combination of dual
graphs

Γ∗ =
∑

Γ
bΓΓ∗ ,

and the evaluation of the graph cochain on a graph chain is often written as a
pairing

〈
∑

Γ
bΓΓ∗,

∑
Γ
cΓΓ〉 ∈ R or C .

The differential on co-graphs are defined as

〈δGph
∑

Γ
bΓΓ∗,

∑
Γ
cΓΓ〉 = 〈

∑
Γ
bΓΓ∗, ∂Gph

∑
Γ
cΓΓ〉 .

Like the graph chain complex, the graph chain complex can be presented as
polynomials of differential operators in tij , ti

Γ∗( ∂

∂tij
,
∂

∂ti
) ,

which acts on the graph polynomials in the obvious way. Instead of writing ∂t, we
will just name some new formal ’dual momentum’ sij , si of tij , ti, and write the
polynomials of differentials as polynomials in the s’s.

In the graph chain complex case, we have a very neat homomorphism between
certain Chevalley-Eilenberg complex and graph complex and this homomorphism
leads us to construct graph cycles from Chevalley-Eilenberg cycles. Inspired by
Chern-Simons theory Kontsevich gave a prescription of constructing graph cocycles
from Frobenius algebra with some (rather strong) extra conditions. The idea is to
construct out of the Frobenius algebra ’propagators’ and ’vertex functions’; then
one replaces tij , ti with propagators and vertex functions.

The data needed is an acyclic differential graded Frobenius algebra (a, ·, d, 〈·, ·〉):
– a is graded commutative algebra;
– d is differential on a (d2 = 0 and d is a derivation of degree 1);
– there is non-degenerate pairing 〈·, ·〉 → R which is compatible with the graded

commutative multiplication

〈ab, c〉 = 〈a, bc〉 = 〈1, abc〉 ;(118)

– the differential d is compatible with pairing 〈·, ·〉

〈da, b〉+ (−1)|a|〈a, db〉 = 0 .(119)

Acyclic means that the cohomology of d is empty, maybe except the lowest and
highest degrees.

Let us give both finite and infinite dimensional examples of acyclic differential
graded Frobenius algebra.
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Example C.1. The finite dimensional example is given by a = C∞(su(2)[1]) with
d = f cabe

aeb∂ec , where f cab are the structure constants of the Lie algebra su(2). The
only non-zero scalar product is

〈eaeb, ec〉 = fabc ,

note that the product eaeb is regarded as one element. This pairing is clearly graded
symmetric fabc = f cab and is non-degenerate for su(2) case. The cohomology of d
is trivial except H0(d) = H3(d) = R.

Example C.2. Consider a rational homology n-sphere Σ (i.e., n-manifold with
the property Hk(Σ,R) = 0 for 0 < k < n). The space of differential forms
Ω•(Σ) = C∞(T [1]Σ) is an infinite dimensional acyclic differential Frobenius algebra
with the multiplication given by wedge and differential by the exterior derivative.
The pairing is given by the integral

〈α, β〉 =
∫

Σ
α ∧ β ,

where α and β are differential forms.

Let us choose the basis eI for the underlying module of a, let f I be the formal
parameters corresponding to eI , but with no algebraic relations besides the graded
commutativity.

Because of the property (118), we write the pairing suggestively as an integral
∫eIeJ . . . eK = 〈eI , eJ . . . eK〉 ∈ R .

We assume that
∫

has degree −p, which is required to be odd (the reason will
become clear later)5. Define also the matrix

mIJ = ∫eIeJ , deg eI + deg eJ = p ,

and its inverse

mIKmKJ = δIJ , eI = eJmJI ,

∫
eIeJ = δIJ .

We denote the differential in the matrix notation as
deI = DI

Je
J .

The Stokes theorem
∫d(· · · ) = 0

plus the fact that d is a derivation imply
DI

Km
KJ + (−1)ImIKDJ

K = 0 ,
mILD

L
J + (−1)p−IDL

ImLJ = 0 ,(120)

note we use the short hand notation (−1)I where I should be understood as the
degree of eI .

5In principle, it is enough to consider
∫

to be odd with non-homogeneous terms of different
odd degrees. Although we do not know any concrete examples of this situation.
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With the assumption of acyclicity, d may be inverted in certain sense. In fact we
shall assume that the inverse of d is obtained by means of Hodge decomposition.
In complete analogy with the standard Hodge theory we can pick up the metric
on a and construct the Hodge theory for d. Thus we can Hodge decompose any
element into

ψ = ψh + dα+ d†β ,

acyclicity implies the harmonic element is zero, ψh = 0. The basis eI can be chosen
as the eigen-modes of the Laplacian � = {d, d†}. The inverse can be explicitly
written as

d−1ψ =
∫
ψK , K = eI ⊗

1
�
d†eI .

In the general case the propagator K is written as
KIJ = mIK(D−1)KJ = (−1)p−I(D−1)KImKJ ,

KQP = (−1)QP+1KPQ .(121)
Here both properties of (121) follow from the symmetry properties of (120). It
shall be proved later that the details of how d−1 is obtained does not affect the
cohomology class of co-graphs.

Now we proceed to the construction of graph cocycles. First we define a formal
integration operator that acts on polynomials of f I∫

φ(f) = ∫ exp
{
eI

∂

∂f I

}
φ(f)

∣∣∣∣
f=0

.(122)

We can derive the following concatenation property of the integration operator. We
take N copies of eIi , f Ii , and let

∫
i

be as in (122), but for the ith copy. Calculate
the commutator

(123)
[
si
∫
i

sj
∫
j

,
(
mIJf

I
i f

J
j (−1)pJ

)]
=

sj
∫
j

si
∫
i

exp
{
eIi

∂

∂f Ii

}
eiJe

J
j exp

{
eIj

∂

∂f Ij

}
(−1)pJ .

Now notice the relation(∫
i

eJi PJeiI

)
eIj (−1)pI =

(∫
i

eJi eiIPJ(−1)PJ (p−I)
)
eIj (−1)pI

= PI(−1)PI(p−I)eIj (−1)pI = eIjPI(−1)p(PI+I) ,

from this we see (123) equals

(124) (123) = sj∫ j si exp
{
eIj

∂

∂f Ii

}
exp

{
eIj

∂

∂f Ij

}
= sisj∫ j exp

{
eIj

( ∂

∂f Ii
+ ∂

∂f Ij

)}
.
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This is of course the discrete version of the familiar statement∫
dx

∫
dy
(
f(x)δ(x− y)g(y)

)
=
∫
dxf(x)g(x) ,

and this analogy prompts us to define

m̃ij = fiIf
I
j (−1)pI ,

and write (124) as [
si
∫
i

,
[
sj
∫
j

, m̃
]]

= sisj
∫
i∪j

.(125)

Thus m̃ij will serve as the ’δ function’.
We also have the Stokes theorem[

si
∫
i

,
∑
k

DI
Jf

J
k

∂

∂f Ik

]
=
∫
i

D exp
{
eIi

∂

∂f Ii

}
,

which we write concisely as[
si
∫
i

, D
]

= si
∫
i

d = 0 ,(126)

where on the left hand side D is an operator acting on the polynomials of f while
on the right hand side it is the differential of the Frobenius algebra.

Consider the polynomial in si, sij which is the generating function of the graph
cochains associated with the Frobenius algebra a.

Γ(a) = exp
{∑

i

si
∫
i

}
exp

{1
2
∑
i,j

f Ii KIJf
J
j s

ij
}∣∣∣∣
f=0

.(127)

We can deduce the properties of Γ(a) by using the Stokes theorem. Insert D in
between two exponentials,

(128) 0 = P = exp
{∑

i

si
∫
i

}(∑
i

DI
Jf

J
i ∂fIi

)
exp

{1
2
∑
i,j

f Ii KIJf
J
j s

ij
}∣∣∣∣
f=0

.

Now instead of invoking Stokes theorem, we calculate P by commuting D to
the rightmost position, doing so leaves us with only a commutator term[

D, exp
{1

2
∑
i,j

f Ii KIJf
J
j s

ij
}]

= exp
(
· · ·
)1

2

{
fLi D

I
LKIJf

J
j + (−1)If Ii KILD

L
Jf

J
j

}
sij .

Naively we would conclude that the two terms in the braces cancel using the
symmetry (120) and (121). But one must remember in (D−1)IJ , the I index must
be exact while J index is co-exact (or transverse to the exact part in general). Thus
the first term in the curly brace is −(−1)JmIJf

I
i f

J
j s

ij but the I index is exact
while J is co-exact; whereas the second term is (−1)ImIJf

I
i f

J
j s

ij , with I co-exact
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and J exact. To combine the two terms requires p to be odd since deg eI+deg eJ = p
and we get

− 1
2 exp

(
· · ·
)∑
i,j

(−1)Jf Ii mIJf
J
j s

ij = −1
2 exp

(
· · ·
)∑
i,j

m̃ijs
ij ,

where the sum over I, J indices are now over both exact and co-exact ones. Now we
commute this term to the left most of (128), again only picking up a commutator
(using (125))

P = −1
2 exp

{∑
k

sk
∫
k

}{∑
i,j

sisjsij
∫
i∪j

}
exp

{1
2
∑
i,j

f Ii KIJf
J
j s

ij
}∣∣∣∣
f=0

.

This term describes the splitting of a vertex into i and j. In fact, we may write P
as

P = −1
2

(∑
pq

sqspqSpq

)
exp

{∑
k

sk
∫
k

}
exp

{1
2
∑
i,j

f Ii KIJf
J
j s

ij
}∣∣∣∣
f=0

,

Spq s
ij =

{
sij , i, j 6= p, q

sip + siq , i 6= p, q
,

where we have defined a splitting operator S acting on the polynomial of sij . And
we have now found the differential operator for the graph cochains

δGph = −1
2
∑
pq

sqspqSpq .(129)

It is easy to see that this operator is nothing but the Fourier transform of the
operator (94).

To summarize, we have shown (127) is a generating function for graph cocycles
δGphΓ(a) = 0 .

Next we show that the cohomology class of Γ(a) is independent of the choice of K.
The propagator is the combination of the inverse of D and m: KIJ = mIL(D−1)LJ .
The inverse of D is written with the help of Hodge decomposition. Under a change
of the Hodge decomposition, K changes by a D-exact term

δKIJ = JILD
L
J + (−1)p−IDL

IJLJ , JPQ = (−1)PQJQP .
In particular

1
2
∑
ij

f Ii δKIJf
J
j = 1

2D
(
(−1)p−1−IJIJf

I
i f

J
j

)
.

Thus the corresponding change incurred in (127) is

δKΓ(a) = exp
{∑

i

si
∫
i

}1
2D
(
(−1)p−1−IJIJf

I
i f

J
j

)
× exp

{1
2
∑
i,j

f Ii KIJf
J
j s

ij
}∣∣∣∣
f=0

,
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Integrating by part, and we get

δKΓ(a) = − exp
{∑

i

si
∫
i

}1
2
(
(−1)p−1−IJIJf

I
i f

J
j

)(1
2
∑
ij

sijm̃ij

)
× exp

{1
2
∑
i,j

f Ii KIJf
J
j s

ij
}∣∣∣∣
f=0

,

and we manipulate m̃ in similar manner
δKΓ(a) = −δGph

(
· · ·
)

(
· · ·
)

= exp
{∑

i

si
∫
i

}1
4
(
(−1)p−1−IJIJf

I
i f

J
j

)
exp

{1
2
∑
i,j

f Ii KIJf
J
j s

ij
}∣∣∣∣
f=0

.

To summarize, we have shown that given an acyclic differential graded Frobenius
algebra one can construct a class of graph cocycles. The explicit formula depends on
the details of the propagator (Hodge decomposition), but the change of propagator
only causes the graph cycle to change by coboundaries and thus the class of cocycles
is completely fixed by the data of the Frobenius algebra6. However, it is not clear
to us how to remove the acyclicity condition.
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