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H-closed extensions with countable remainder

Daniel K. McNeill

Abstract. This paper investigates necessary and sufficient conditions for a space
to have an H-closed extension with countable remainder. For countable spaces
we are able to give two characterizations of those spaces admitting an H-closed
extension with countable remainder.

The general case is more difficult, however, we arrive at a necessary condition
— a generalization of Čech completeness, and several sufficient conditions for a
space to have an H-closed extension with countable remainder. In particular,
using the notation of Császár, we show that a space X is a Čech g-space if and
only if X is Gδ in σX or equivalently if EX is Čech complete. An example of
a space which is a Čech f -space but not a Čech g-space is given answering a
couple of questions of Császár. We show that if X is a Čech g-space and R(EX),
the residue of EX, is Lindelöf, then X has an H-closed extension with countable
remainder. Finally, we investigate some natural generalizations of the residue to
the class of all Hausdorff spaces.

Keywords: Čech complete, H-closed, extension

Classification: 54A25, 54D35, 54D40

In this paper we will concern ourselves with finding H-closed extensions with
countable remainder, i.e. the smallest H-closed extensions. Our topic is a ge-
neralization of a question of Morita [11]: characterize those spaces which have
compactifications with countable remainder — an area studied in depth by Hen-
riksen [7], Hoshina [8], [9], [10], Terada [16] and Charalambous [1] but still not
entirely resolved.

The question of which spaces allow H-closed extensions with countable remain-
der is an obvious generalization of the question of compactifications with countable
remainder, and has been considered by Porter and Vermeer [13] and Tikoo [17].
Much of the background for this paper can be found in [13], [17] and [15].

Recall that the Iliadis absolute of a Hausdorff space X is the pair (EX, k) —
where EX is a zero-dimensional, extremally disconnected Hausdorff space and
k : EX → X is a perfect, irreducible and θ-continuous surjection. Also recall
that the space σX is the largest strict H-closed extension of X .

The bulk of the results in this paper are informed by the following facts.

Theorem 1 ([12], [14], [15]). Let X be a Hausdorff space.

(1) Then σX \X is homeomorphic to βEX \ EX .
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(2) For each H-closed extension hX of X , there is a θ-continuous function
fh : σX → hX such that fh = idX and {f←h (y) : y ∈ hX \ X} is a
partition of compact subsets of σX \X .

(3) For each partition P of nonempty compact sets of σX \ X , there is an
H-closed extension hX of X such that P = {f←h (y) : y ∈ hX \X}.

(4) Let η be a cardinal. There is an H-closed extension hX of X with |hX \
X | = η iff σX \X can be partitioned into η many compact sets.

Corollary 2. The space X has an H-closed extension with countable remainder
iff σX \X ∼= βEX \ EX has a countable partition of compact sets.

A few more facts about the Iliadis absolute will be useful in this paper. First
recall the definition of the small image of a set.

Definition 3. Given a function f : X → Y where X and Y are sets, we define

f#[A] = {y ∈ Y : f←(y) ⊆ A}.

Fact 4. Let X be a Hausdorff space and k : EX → X be the absolute map.

(1) [15] If U ∈ τ(X), OU = O(intX clX U), k[OU ] = clX U and clEX k←[U ] =
OU .

(2) [15] For x ∈ X and U ∈ τ(X), k←(x) ⊆ OU iff x ∈ intX clX U , in
particular, k#[OU ] = intX clX U .

(3) If T is clopen in EX then T = O(k#[T ]).

Proof: Since T is clopen in EX , T = OU for some U ∈ τ(X). By the above
k#[T ] = intX clX U and so T = OU = O(intX clX U) = O(k#[T ]). �

1. Countable spaces

Our goal is to determine which spaces have H-closed extensions with a count-
able remainder. As a sub-goal we first consider which countable spaces have
countable H-closed extensions.

Fact 5. A countable space X with a countable H-closed extension is Katětov.

Proof: By 1.4 of [13], it suffices to show X has an infinite closed discrete sub-
space. If X has no infinite closed discrete subspaces, then every infinite subset of
X has a derived point. This means X is countably compact. As X is countable,
it follows that X is compact — hence Katětov. �

The other direction is to determine which countable spaces have a countable H-
closed extension. We start with a countable, first countable, semiregular, Katětov
space X . We may also assume X is not countably compact; that is, X contains
an infinite, closed discrete subspace A.

Theorem 6. A countable Hausdorff space X has a countable H-closed extension
iff X is Katětov and Xs is first countable.
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Proof: Suppose a countable space X is Katětov and Xs is first countable. We
want to show X has an H-closed extension with countable remainder. By Theo-
rem 1, it suffices to show βEX \ EX has a countable partition of compact sets.

Let X ′ denote X with the coarser H-closed topology. So we have that the
identity function idX : X → X ′ is continuous.

(1) By [3], there is a continuous function f : EX → EX ′ such that kX′ ◦ f =
idX ◦kX . That is, the following diagram commutes:

EX

kX

��

f
// EX ′

kX′

��

X
idX

// X ′

As X ′ is H-closed, EX ′ is compact Hausdorff by 1. Also, there is
a continuous extension βf : βEX → EX ′ and the following diagram
commutes.

βEX
βf

##
G

G

G

G

G

G

G

G

G

EX

kX

��

f
//

?�

OO

EX ′

kX′

��

X
idX

// X ′

Let X = {pn : n ∈ ω} and X ′ = {p′n : n ∈ ω} where idX(pn) = p′n for
n ∈ ω. Since kX is perfect, we have that {k←X (pn) : n ∈ ω} is a partition
of EX into compact subsets, {k←X′(p′n) : n ∈ ω} is a partition of EX ′ into
compact subsets, and {(kX′ ◦ βf)←(p′n) : n ∈ ω} is a partition of βEX
into compact subsets. By commutativity of the diagram, it follows that
k←X (pn) = (kX′ ◦f)←(p′n) ⊆ (kX′ ◦βf)←(p′n) and (kX′ ◦βf)←(p′n)∩EX =
k←X (pn) for n ∈ ω.

(2) As Xs is first countable, for each x ∈ X there is a countable neighborhood
base {Un}ω of regular open sets for x ∈ Xs. We now show {clβEX OUn}ω
is a countable family of clopen sets for which if k←X (x) ⊆ T ∈ τ(βEX)
then there is some m ∈ ω such that clβEX OUm ⊆ T . Let T be an
open set in βEX such that k←X (x) ⊆ T . As the clopen family {clβEX S :
S is clopen in EX} is a base for βEX which is closed under finite unions
and k←X (x) is compact, we can suppose T = clβEX S for some clopen set
S of EX . By 4, S = OU for some U ∈ τ(X). As k←X (x) ⊆ OU , it
follows that x ∈ intX clX U and so for some n ∈ ω, x ∈ Un ⊆ intX clX U .
Hence we have k←X (x) ⊆ OUn ⊆ O(intX clX U) = OU = S and k←X (x) ⊆
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clβEX OUn ⊆ T . Thus, k←X (x) =
⋂

ω clβEX OUn, and we can suppose

clβEX OUn+1 ⊆ clβEX OUn

for n ∈ ω.

(3) Using the notation of 1, for each n ∈ ω we have k←X (pn) ⊆ (kX′ ◦βf)←(p′n)
and (kX′ ◦ βf)←(p′n) \ k←X (pn) ⊆ βEX \ EX and finally

⋃

ω

((kX′ ◦ βf)←(p′n) \ k←X (pn)) = βEX \ EX.

Note

[(kX′ ◦ βf)←(p′n) \ k←X (pn)] ∩ [clβEX OUk \ clβEX OUk+1] = Knk

is a compact subset of βEX \EX . Now,
⋃

k∈ω Knk = (kX′ ◦ βf)←(p′n) \
k←X (pn), βEX \ EX =

⋃
n,k∈ω Knk and {Knk : n, k ∈ ω} is a partition

of βEX \ EX . By 1, as βEX \ EX has a countable partition of com-
pact subsets, both EX and X have H-closed extensions with countable
remainder.

Conversely, suppose the countable Hausdorff space X has a countable
H-closed extension hX . By 1, σX\X has a countable partition of compact
sets. If X is not countably compact, X has a countably infinite closed
discrete subspace. By 5, X is Katětov. If the countable space X is
countably compact, then X is also compact and hence Katětov. As hX is
countable and H-closed, hXs is a countable minimal Hausdorff extension
of Xs. But countable minimal Hausdorff spaces are first countable. Thus,
Xs is first countable as well. �

2. Generalizations of Čech completeness

We recall some basic definitions before considering the question of how generali-
zations of Čech completeness relate to finding H-closed extensions with countable
remainder.

Definition 7. A Tychonoff spaceX is Čech complete if it is Gδ in every Hausdorff
extension.

The following theorem is well-known and provides two important character-
izations of Čech completeness. The first allows us a reduction in the number
of compact Hausdorff extensions we must consider, and the second provides an
internal characterization of the property.

Theorem 8 ([5], [4]). The following are equivalent for a Tychonoff space X .

(1) The space X is Čech complete.
(2) The space X is Gδ in βX .
(3) There exists a sequence (Cn)ω of open covers of X such that every filter

base of closed sets subordinate to (Cn)ω has non-empty intersection.
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The following corollary is immediate.

Corollary 9. If a space X has an H-closed extension with countable remainder
then EX is Čech complete.

Proof: Recall from 1 that a space X has an H-closed extension with countable
remainder iff βEX \ EX has a countable partition of compact sets. Of course, a
prerequisite for βEX \EX to be the countable partition of compact sets is that it
actually be the union of countably many compact sets. So if βEX \EX =

⋃
ω Kn

where Kn is compact, then Gn = βEX \Kn is a family of open sets of βEX and
EX ⊆ Gn for all n ∈ ω. Since

⋃
ω Kn = βEX \ EX , we have

⋂
ω Gn = EX .

Hence EX is Čech complete. �
Though Čech completeness of the absolute is a necessary condition for the

existence of an H-closed extension with countable remainder, we will see that it
is not sufficient — some additional property is required.

For metric space, restrictions related to the following definitions (along with
Čech completeness) are sufficient to allow a compactification with countable re-
mainder.

Notation 10 ([13]). For a Tychonoff space X , let R(X) = [clβX(βX \X)] ∩X .
We call R(X) the residue of X .

Definition 11. A space X called rim-compact (or semicompact) if X has a basis
of open sets each of which has a compact boundary.

Definition 12. A space X is called Lindelöf if every open cover of X has a
countable subfamily which covers.

The characterization of metric spaces allowing compactification with countable
remainder is due to Hoshina.

Theorem 13 ([8]). A metrizable space X has a compactification with countable
remainder iff X is Čech complete, rim-compact and R(X) is Lindelöf.

For compactifications of Tychonoff spaces with countable remainder Hoshina
also provides a sufficient condition.

Theorem 14 ([8]). Let X be a Čech complete, rim-compact space. If R(X) is
separable metrizable then X has a compactification with countable remainder.

We quote the following lemma of Hoshina [9], which is necessary for the next
example.

Lemma 15. If X has a compactification with countable remainder and U is a
collection of pairwise disjoint open sets of X with U ∩R(X) 6= ∅ for each U ∈ U ,
then U is countable.
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First we consider an example of Charalambous [1] showing that Čech com-
pleteness is not enough to guarantee that a space has a compact extension with
countable remainder; moreover there exist two spaces X and X1 with homeomor-
phic residues, R(X) ∼= R(X1), one of which has a compactification with countable
remainder — while the other does not.

Example 16 ([1]). The construction starts with the following setup due to Terada
[16]. Note X = βR \N has a compactification with countable remainder, namely
βR, and R(X) = βN \ N.

Now let Z = N∪{∞}, the one point compactification of N, Y = Z×Z×(βN\N)
and X1 = Y \ [{∞} × N × (βN \ N)]. Since Y is compact and Y \ X1 is σ-
compact and zero-dimensional, then X1 is Čech complete and rim-compact. In
addition, R(X1) = {∞} × {∞}× (βN \N) is homeomorphic with R(X). But X1

has no compactification with countable remainder. For let U be an uncountable
collection of pairwise disjoint nonempty open subsets of βN \ N. For each U ∈ U
let U ′ = Z × Z × U , then {U ′ ∩ X1 : U ∈ U} is an uncountable collection of
pairwise disjoint open sets of X1 with U ′ ∩X1 ∩ R(X1) 6= ∅ for each U ∈ U . So
by the lemma above, X1 has no compactification with countable remainder.

We note here, however, thatX1 does have an H-closed extension with countable
remainder, since Y \X1 = {∞}×N×(βN\N) is zero-dimensional and the countable
union of compact Gδ sets.

We now consider how it may be possible to partition the space βEX \EX into
countably many compact sets — which would allow us to construct an H-closed
extension of X with countable remainder. Since βEX \ EX is zero-dimensional,
the following proposition, communicated to Porter and Vermeer by F. Galvin,
will be very useful.

Proposition 17 ([13]). A zero-dimensional space Y can be partitioned into a
countable number of compact sets iff Y is the countable union of compact Gδ-
sets.

Seeking to generalize Hoshina’s characterization of metrizable spaces allowing
compactifications with countable remainder, Porter and Vermeer found the fol-
lowing sufficient conditions for an H-closed extension with countable remainder.

Theorem 18 ([13]). If cX is a zero-dimensional compactification of a Čech
complete space X and R(X) is Lindelöf, then cX \X has a countable partition
of compact sets.

Corollary 19 ([13]). Let X be a space.

(1) If X is not countably compact, EX is Čech complete, and R(EX) is
Lindelöf, then X has an H-closed extension with countable remainder
and is Katětov.

(2) If X is Tychonoff and Čech complete and R(X) is Lindelöf, then X has
an H-closed extension with a countable remainder.
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Noting that Čech completeness of the absolute is necessary for a space to
have an H-closed extension with countable remainder — we seek a generalization
of Čech completeness to Hausdorff spaces which we may be able use directly.
K. Császár in [2] modifies the internal characterization of a Čech complete space
to obtain three different generalizations, two of which we will consider in depth.

Before we begin we will need the following definition also due to Császár:

Definition 20. A subset A of a topological spaceX is said to regularly embedded
in X if whenever x ∈ A ⊆ G and G is open, then there exists an open set V such
that x ∈ V ⊆ clX V ⊆ G.

Proposition 21 ([2]). Suppose A ⊆ X ⊆ Y are spaces. If A is regularly embed-
ded in Y , then A is regularly embedded in X .

Theorem 22 ([2]). If X is a Hausdorff space, then X is regularly embedded in
σX .

The following definitions generalize the internal characterization of Čech com-
pleteness for Tychonoff spaces to all Hausdorff spaces.

Definition 23. Let (Cn)ω be a sequence of families of sets of a set X and A a
family of sets. The family A is subordinate to the sequence (Cn)ω if, for every
m ∈ ω, there is some set A ∈ A and also a set C ∈ Cm such that A ⊆ C.

Definition 24. Let X be a topological space. A Čech sequence (Čech f -sequence,
Čech g-sequence) in X is a sequence (Cn)ω of open covers of X such that every
filter base A (of closed sets, of open sets) subordinate to (Cn)ω has an adherent
point.

Definition 25. A Hausdorff space X is a Čech space (Čech g-space, Čech f -
space) if there is a Čech sequence (Čech g-sequence, Čech f -sequence) in X .

Notice that for a Tychonoff space the concepts of Čech space, Čech g-space,
Čech f -space, and Čech complete space coincide.

Theorem 26 ([2]). A regularly embedded open subspace of a Čech g-space is a
Čech g-space.

Theorem 27 ([2]). A regularly embedded, dense Gδ subspace of a Čech g-space
is a Čech g-space.

Definition 28. A sequence of open covers (Cn)ω is said to be monotone if Cn+1

refines Cn.

Proposition 29 ([2]). If there exists a Čech sequence (g-sequence, f -sequence) for
a space X , then there exists a monotone Čech sequence (g-sequence, f -sequence).

The following proposition provides an external characterization of a Čech g-
space comparable to that of a Čech complete space.
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Proposition 30 ([2]). For a space X the following are equivalent.

(1) X is Gδ in every Hausdorff extension.
(2) X is Gδ in σX .
(3) X is a Čech g-space.

With regard to finding H-closed extensions with countable remainder, the pre-
vious proposition indicates that Čech g-spaces may be the generalization of Čech
complete spaces we should consider. The next proposition provides more sup-
port for this observation. We begin with the following lemma which generalizes
a theorem appearing in [14].

Lemma 31. Let X be a space. If A ⊆ σX \X and A is closed in σX \X , then
clσX A is an H-set of σX .

Proof: Let U be an open cover of clσX A. Extend, and possibly refine, U to an
open cover, C, of all of σX with basic open sets of the form oU where U ∈ τ(X).
Since σX is H-closed we can find a finite subfamily of C with the closures covering
σX , and since clσX oU = clX U ∪ oU we get a finite subfamily covering A, hence
finite subfamily whose closures cover clσX A. �

Corollary 32 ([14]). Let X be a space. If A ⊆ σX \X and A is closed in σX ,
then A is compact.

Proposition 33. A space X is a Čech g-space iff EX is Čech complete.

Proof: The space X is a Čech g-space iff X is Gδ in σX , i.e. X =
⋂

ω Un

where Un ∈ τ(σX). Let Kn = σX \ Un, so σX \ X =
⋃

ω Kn and each Kn is
compact. Now recall σX \ X ∼= σEX \ EX . Consider Kn ⊆ σEX \ EX , and

let Ûn = σEX \ Kn. Note EX ⊆ Ûn, and since
⋃

ω Kn = σEX \ EX , then

EX =
⋂

ω Ûn and EX is Gδ in σEX and hence Čech complete.
The argument can also be reversed. �

Corollary 34. A space X is a Čech g-space iff Xs is a Čech g-space.

Proof: This follows from EX = EXs. �
The following proposition is another characterization of countable spaces ad-

mitting an H-closed extension with countable remainder. First we note that if X
is countable then EX is Lindelöf.

Lemma 35. Let X be a countable space, then EX is Lindelöf.

Proof: Since k : EX → X is compact, EX =
⋃{k←(x) : x ∈ X} is the

countable union of compact sets — hence Lindelöf. �

Proposition 36. A countable space X admits an H-closed extension with count-
able remainder iff X is a Čech g-space.

Proof: Clearly if X admits an H-closed extension with countable remainder,
then X is a Čech g-space.
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Now suppose X is countable and a Čech g-space, then EX is Tychonoff and
Čech complete. Also note since X is countable that X is Lindelöf. Therefore EX
is Lindelöf. Since R(EX) is a closed subset of EX , it is Lindelöf as well. By 18,
EX has an H-closed extension with countable remainder. Therefore X does as
well. �

Combining the above with 6 we have the following.

Theorem 37. For a countable space X the following are equivalent.

(1) X has an H-closed extension with countable remainder.
(2) X is Katětov and Xs is first countable.
(3) X is a Čech g-space.

The following provides a characterization of all Hausdorff spaces having an
H-closed extension with countable remainder in terms of a special class of Čech
g-sequences.

Proposition 38. The space X has an H-closed extension with countable remain-
der iff X admits a Čech g-sequence (Cn)ω for which each free open ultrafilter p is
not subordinate to Cm only for m = Np for some Np ∈ ω.

Proof: Recall X has an H-closed extension with countable remainder iff σX \
X = βEX \ EX has a countable partition of compact sets {Kn}. Let Gn =
σX \ Kn, then Gn is open in σX and so Gn =

⋃
oU where oU ⊆ Gn and

U ∈ τ(X). Since X ⊆ Gn and oU ∩ X = U , X =
⋃{U : oU ⊆ Gn}, i.e.

{U : oU ⊆ Gn} is an open cover of X . Note for each p ∈ σX \X , p ∈ Kn implies
p /∈ Km for m 6= n, i.e. p /∈ σX \ Gn implies p ∈ σX \ Gm for m 6= n. Finally
we get U /∈ p for all U such that oU ⊆ Gm implies V ∈ p for all V such that
oV ⊆ Gm for m 6= n. Let Cn = {U : oU ⊆ Gn}, then (Cn)ω is a sequence of
open covers of X . Also, for each p ∈ σX \X there is an N ∈ ω such that U /∈ p
for all U ∈ CN (i.e. p ∈ KN ). In addition, for all p ∈ σX \ X , p (as an open
filter) is subordinate to all Cn where n 6= N . Hence no free open ultrafilter on X
is subordinate to (Cn) and (Cn) is a Čech g-sequence on X — one in which each
open ultrafilter is excluded at exactly one level.

The argument above can be reversed. That is given a special Čech g-sequence
(Cn)ω , we simply notice that {Kn : Kn = σX \⋃{oU : U ∈ Cn}} is a countable
compact partition of σX \X . �

Császár [2] gives an example showing not all Čech g-spaces are Čech f -spaces,
a somewhat simpler example is provided by the following.

Example 39. Let X be the unit interval with the topology generated by open
sets of the form I \M where I is an interval and M is countable. Then X is a
Hausdorff Čech g-space which is not a Čech f -space.

Proof: Since X is H-closed, it is a Čech g-space.
To show X is not a Čech f -space, let (Cn) be a sequence of open covers of X .

Select Cn ∈ Cn such that 0 ∈ Cn and then In and Mn such that 0 ∈ In \Mn ⊆ Cn.
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Define

M0 =

∞⋃

1

Mn ∪ {0},

find some

xk ∈
((∞⋂

1

In

)
∩
[
0,

1

k

))
\M0,

and finally let

An = {xk : k ≥ n}.
After noting that An is closed by virtue of being countable, by An ⊆ In \M0 ⊆

In \Mn ⊆ Cn the system A = {An : n ∈ N} is a closed filter base subordinate to
(Cn). So since

⋂
An = ∅, X is not a Čech f -space. �

Császár goes on to ask whether every Čech f -space is also a Čech g-space. This
is not the case.

Theorem 40. There is a space which is a Čech f -space but not a Čech g-space.

The following lemma is well known and can be found in Chapter 9 of [6].

Lemma 41. If X is locally compact and realcompact, then every infinite closed
subset of βX \X has cardinality at least 2c.

We now construct a special subset of βω \ ω.
Lemma 42. There is a set D ⊆ βω \ω = ω∗ for which D intersects every infinite
compact subset of ω∗ and ω∗ \ D also intersects every infinite compact subset
of ω∗.

Proof: Note any infinite compact subset of ω∗ has a countably infinite subset.
We consider the family of sets C = {C : C is a countably infinite subset of ω∗}.
Note |C| = (2c)ω = 2c. Hence if K = {K : K = clβω C for some C ∈ C}, then
|K| ≤ 2c. We construct D recursively; begin by well-ordering K = {Kβ : β < 2c}.
Let p ∈ D0 and q ∈ E0 where p, q ∈ K0 and p 6= q.

For α+1 a successor ordinal, let Dα+1 = Dα∪{p} and Eα+1 = Eα∪{q} where
p, q ∈ Kα+1 \ (Dα∪Eα) and p 6= q. Note Kα+1 \ (Dα∪Eα) 6= ∅ since |Kα+1| = 2c

but |Dα ∪ Eα| < 2c.
For α a limit ordinal, let Dα =

⋃
β<α Dβ ∪{p} and Eα =

⋃
β<αEβ ∪{q} where

p, q ∈ Kα\(
⋃

β<α Dβ∪
⋃

β<αEβ) and p 6= q. NoteKα\(
⋃

β<α Dβ∪
⋃

β<α Eβ) 6= ∅
since |Kα| = 2c but still |⋃β<αDβ ∪⋃β<α Eβ | < 2c.

Let D =
⋃

2c Dα and E =
⋃

2c Eα. Note D ∩ E = ∅ and for each infinite
compact subset K of ω∗, K ∩D 6= ∅ and K ∩ E 6= ∅. �
Proof of 40: Consider the set D constructed above as a subset of κω. Let
X = κω \D, then X is a Čech f -space but not a Čech g-space.

To show X is a Čech f -space we must find a sequence of open covers (Cn)ω of
X for which every subordinate closed filter base has nonempty adherence. The
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sequence (Cn)ω where Cn = C = {{p} ∪ ω : p ∈ X \ ω} suffices. For suppose
F is a subordinate closed filter base, then there is some F ∈ F and U ∈ C for
which F ⊆ U . Now F cannot contain an infinite subset V of ω because then
oV ∩X ⊆ clX V ⊆ F , but oV ∩X 6⊆ U . So F ∩ ω is finite, and hence F is finite.
Now F contains a compact set and hence has nonempty adherence.

To show X is not a Čech g-space we consider the following diagram:

ω = Eω
� � //

��

EX = Xs
� � //

��

E(κω) = βω

��

ω � � // X
� � // κω.

In this case if X is a Čech g-space then EX = Xs is Čech complete. But
then EX is Gδ in every Hausdorff extension, in particular βω — contradicting
the construction of D. �

From the above a space must be a Čech g-space if it is to have an H-closed
extension with countable remainder. By 18, if we also have that the residue of
EX , R(EX), is Lindelöf, then this is sufficient to guarantee an H-closed extension
of the space with countable remainder. Hence we have the following corollary.

Corollary 43. If a space X is a Čech g-space and R(EX) is Lindelöf, then X
has an H-closed extension with countable remainder.

It seems that the next step would be to generalize the condition on R(EX)
to a condition on the original space X . What follows are several theorems and
examples obtained while trying to find conditions both necessary and sufficient
for a space to have an H-closed extension with countable remainder.

Lemma 44. The countable intersection of σ-compact subspaces in a regular
space is Lindelöf.

Proof: Let X be a regular space, Bn ⊆ X where Bn is σ-compact for n ∈ ω,
and A =

⋂
ω Bn. Note

∏
ω Bn is Lindelöf. The function e : A → ∏

ω Bn defined
by e(x)(n) = x is an embedding and e[A] is closed in the product. Therefore A is
Lindelöf. �
Proposition 45 ([13]). Let X be a Tychonoff, nowhere locally compact space.
If X has an H-closed extension with countable remainder, then X has a dense
Lindelöf subspace.

Fact 46 ([13]). A complete metric space is Katětov.

Example 47 ([13]). Let D be the discrete space of cardinality ℵ1, and P be the
irrationals. Note both D and P have compact extensions with countable remain-
der. Also, the space D × P is locally Lindelöf and a complete metric space —
hence Čech complete, first countable and Katětov. Recall P has a coarser compact
Hausdorff topology. In particular, P ∼=

∏
ω ω, and there is a continuous bijection
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f :
∏

ω ω → ∏
ω(ω ∪ {∞}). Let P′ denote P with this coarser compact Haus-

dorff topology, then D× P′ is locally compact and Hausdorff. Thus, D× P has a
coarser compact Hausdorff topology. However, since the space is nowhere locally
compact and has no dense Lindelöf subspace, D × P has no H-closed extension
with countable remainder.

The converse of 45 is false, for consider the space Q. Also consider the follow-
ing example, which has a dense subspace admitting an H-closed extension with
countable remainder, but has none itself.

Example 48. Again let D be the discrete space of cardinality ℵ1 and let D∗

be the one point compactification of D. Let R denote the real numbers with
the usual topology and let R+ denote the two point compactification of R. Let
X = P×D∗ ×R+ and note that cX = R+ ×D∗ ×R+ is a compactification of X
where cX\X = Q×D∗×R+ has a countable partition into compact sets. SoX has
an H-closed extension with countable remainder. Let Y = X ∪ (Q×D×P), then
cX is also a compactification of Y . However cX\Y = Q×[(D∗×R+)\(D×P)] does
not have a countable partition of compact sets, so Y has no H-closed extension
with countable remainder. This is despite the fact Y is nowhere locally compact,
X is a dense Lindelöf subspace of Y , and X itself has an H-closed extension with
countable remainder.

Example 49. The space X = P× 2 with the lexicographic order has an H-closed
extension with countable remainder, namely Y = R+ × 2 with the lexicographic
order, since X is both a Čech g-space and Lindelöf. The space X2 also has
an H-closed extension with countable remainder, though X2 is not Lindelöf. In
particular, notice Y 2 is a zero-dimensional compactification of X2, which has
a remainder that can be expressed as the countable union of compact Gδ sets.
Namely,

Y 2 \X2 =
⋃

q∈R+\P
[({q} × 2)× (R× 2)] ∪

⋃

q′∈R+\P
[(R× 2)× ({q′} × 2)].

Consider the following fact.

Fact 50. Let a Tychonoff space X have an H-closed extension hX with a count-
able remainder. If U is a family of pairwise disjoint open sets in X , then {U ∈
U : U ∩R(X) 6= ∅} is countable.

Proof: If U is an open set of X we denote by ohU the largest open set in hX
such that ohU ∩X = U . By the denseness of X in hX , {ohU : U ∈ U} is a family
of pairwise disjoint open sets in hX . If U ∩ R(X) 6= ∅, then ohU \X 6= ∅. As
hX \X is countable, {U ∈ U : U ∩R(X) 6= ∅} is countable. �

We define the relative cellularity of a space X relative to a subspace A as
follows: c(A,X) = sup{U : U is a family of pairwise disjoint nonempty open
subsets of X such that U ∩A 6= ∅ for all U ∈ U}.
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Thus by the fact above, if X is a Tychonoff space with an H-closed extension
with countable remainder, then c(R(X), X) = ω.

Corollary 51. If X is Tychonoff, nowhere locally compact and has an H-closed
extension with a countable remainder then c(X) = ω.

Remark 52. As the space D × P described in 47 is nowhere locally compact and
c(X) = ω1, it follows from the above that X has no H-closed extension with a
countable remainder.

The next result extends a result of Hoshina [9] which states that if a paracom-
pact space X has a compactification with a countable remainder then R(X) is
Lindelöf, and answers a question of Porter and Vermeer [13].

Proposition 53. LetX be a paracompact Tychonoff space which has an H-closed
extension hX with a countable remainder, then R(X) is Lindelöf.

Proof: Let C be an open cover of R(X). Extend each C ∈ C to an open set C′ of
X such that C′ ∩R(X) = C. Now {C′ : C ∈ C}∪{X \R(X)} is an open cover of
X and has an open refinement {Un}ω, where each Un is a pairwise disjoint family.
Also, {U ∩R(X) : U ∈ Un, n ∈ ω,U ∩R(X) 6= ∅} is a refinement of C. By 50, for
each n ∈ ω, {U ∩R(X) : U ∈ Un, U ∩R(X) 6= ∅} is also countable. Hence C has
a countable subcover. �

Considering the importance R(X) seems to play in finding extension with
countable remainder for Tychonoff spaces, we seek to generalize it all Hausdorff
spaces. There are a few possibilities to consider. To begin we make the following
notational definitions.

Definition 54. Given a space X set Rσ(X) = X ∩ clσX(σX \X).

Notice that x ∈ Rσ(X) iff for every open neighborhood U of x in σX there is
some p ∈ σX \X such that U ∈ p.

Definition 55. Given a space X , set REX(X) = k[R(EX)].

Another characterization of REX(X) is: x ∈ REX(X) iff for each U ∈ τ(X)
with x ∈ clX U there is some p ∈ σX \X such that U ∈ p.

Definition 56. Given a space X let

RH(X) = {x ∈ X : x has no H-closed neighborhood}.

Note that if U ∈ τ(X), A is an H-set of X and U ⊆ A then clX U is H-closed,
so replacing “H-closed” with “H-set” in the previous definition does not obtain a
larger set.

Proposition 57. For a space X , REX(X) ⊆ Rσ(X) = RH(X).

Proof: Suppose x ∈ REX(X), then there is some p ∈ R(EX) such that k(p) = x.
Now p ∈ R(EX) iff for each U ∈ p there is some q ∈ σEX \EX such that U ∈ q.
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Since k(p) = x then Np ⊆ p. So for every open neighborhood U of there is some
q ∈ σX \X such that U ∈ q.

Now suppose x /∈ RH(X), then there is some U ∈ Nx such that clX U is H-
closed. Now if p is an open ultrafilter on X then ad(p) =

⋂
p clX V =

⋂
p clX(U ∩

V ) 6= ∅. So every open ultrafilter containing U is fixed and x /∈ Rσ(X). Therefore
Rσ(X) ⊆ RH(X).

Finally suppose x /∈ X \ Rσ(X), then there is some U ∈ Nx for which if p is
a open ultrafilter and U ∈ p, then ad(p) 6= ∅. This means every open filter on
clX U has nonempty adherence and hence clX U is H-closed. �

The next example shows that the containment in the previous proposition can
be strict.

Example 58. Let X = [0, 1] ∪ ([1, 2] ∩ Q) with the usual topology as a subspace
of R. Let x = 1, then x has no H-closed neighborhood so 1 /∈ Rσ(X). But
1 ∈ clX(0, 1) so 1 ∈ REX(X).
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