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1969 ACTA UNIVERSITATIS CAROLINAE MATHEMATICA ET PHYSjCA VOL.10 

ON THE CROSSING NUMBERS OF GRAPHS 

M. KOMAN 

Department of Mathematics, Pedagogic Fakulty, Charles University, 
Prague 

In the last ten years a number of authors have been concerned 

with different questions arising from the problem of embedding a 

given graph into a given topological surface. (See e.g. the 

summarizing paper of Beineke /!/•) One of these questions has 

led to the study of crossing numbers of different graphs. 

The crossing number of the graph G for a given topological 

surface equals the minimum number of crossings of edges which 

a model (drawing) of the graph G on this surface can have. 

The crossing number of the graph G for a closed orientable 

surface having genus i will be denoted ct(G), and for a closed 

nonorientable surface having genus i, it will be denoted c.(G). 

So far, all the authors concerned with the problems of crossing 

numbers have only paid attention to two topological surfaces -

a plane (sphere) and torus. For the first time, this paper will 

pay attention to two non--orientable surfaces - the projective 

plane and Klein*s bottle. 

The article is divided into two parts. In the first part I shall 

give a summary of the most important results known so far, concer

ning orientable surfaces. Some of these results are, however, 

only under print and will be quoted here for the first time.In the 

second part the crossing numbers of complete graphs for non -

orientable surfaces - the projective plane and Klein*s bottle -

are investigated. 



l.-A. P L A N E ( S P H E R E ) 

1,1. The regular bicomplete graph K , is the graph with 

two chromatic classes with m and n vertices in which each two 

vertices belonging to different classes are joined by one edge. 

The regular bicomplete graph Km was the first graph ever 

for which the crossing number was investigated. The impulse to 

study this problem came from P. Tur6n and the first to study 

it was Zarankiewicz in /2/. Here the equality 

•: <vn> • I • F3 • [i • M • 
which is now known as Zarankiewicz*s crossing number hypothesis 

or first crossing number hypothesis, was published. 

This hypothesis has, however, not yet been proved. Only some 

partial results are known. E.g. Blaiek and Koman (see /3/) veri

fied Zarankiewicz s hypothesis for all the graphs K for which 
m, n 

e i ther 
min (m,n) < 4 

or 
max (m,n) t£ 6. 

The following table of the numbers c 
3 S n S 1 0 can be obtained from there. 

TABLE 1. 

^m.n* f ° - * 3 < m ^ 7 , 

cX,n> 3 4 5 б 7 8 9 10 

3 1 2 4 6 9 12 16 20 

4 2 4 8 12 18 24 32 40 

5 4 8 16 24 
* 36 

ž 34 

i 48 

=- 46 

i 64 

=" 60 

t "80 

=• 75 

б 6 12 24 36 
= 54 

= 51 

= 72 

-*69 

* 96 

= 90 

= 120 

="113 

7 9 12 
- 36 

= 34 

= 54 

* 5 1 

= 81 

ž 72 

= 108 

* 97 

= 144 

= 127 

= 180 

= 150 



For the other cases these inequalities can be proved: 

<» •x .n ' s»: M • ffl • M • M • M . 
<2> »x,„> sKi)t?] • ffl> <-*5» 
<» •;<-...> »*©ffl • [¥], ,.-,„. 

According to R. K. Guy the above hypothesis has been proved 

by D. Kleitman for all regular complete graphs Km n for which 

min (m,n) ^ 6. 

From there the lower estimates follow: 

C « ( K m « 

o m,n 
>•! (n* 7); 

(iS 7). 

[f] • [*]. 
•X..>«f© [§]•[¥]. 

Using these inequalities and the upper estimate (1) we get 

"••»P«X.n'®"1(?)"1*7. 
11. inf cX,n>(f' (S)-

1 **• 
1.2. The complete graph K , i.e. the graph with n vertices 

each two of which are joined by a single edge. The problem of 

finding the crossing number of the complete graph K was given 

by P. Erdos. R. K. Guy /4/, F. Harary and A. Hill /5/, J. BlaSek 

and M. Koman /6/f A. Saaty /!/ and others have been concerned 

with this problem. It is, however, not yet solved. 

For 5 £ n 4 16 the following results are known:*" 

TABLE 2. 

n 5 6 7 8 9 10 11 12 13 14 15 16 

k<*> 1 3 9 18 36 60 
= 100 

^ 95 

= 150 

- 14: 
= 225 

= 207 

5 315 

= 290 

= 441 

Ž 396 
= 55Í 

= 52£ 

R. K. Guy gives the equations C Q ( K Q ) = 36, C Q ( K
1 0 )

 = 6 0 (not Pu~ 

blished). In some papers (e.g. /4/) it has been stated - with 

reference to F. Harary - that with the help of computers it has 

been found that for n 5 16, the crossing numbers of the graph 

K equal the upper estimates of the table 2. According to 
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R. K. Guy, however, Harary's information turned out to be wrong. 

To obtain the crossing numbers of graphs K for small n it is 
+ 

usually also necessary to determine the number fl
0
(-O of topolo-

gically different models of the graph K
n
 with the minimal number 

of crossings. For these numbers R. K. Guy gives the table 3. 

TABLE 3. 

n i 2 3 4 5 6 7 8 

aX> i 1 1 1 1 1 5 3 

For the crossing numbers
 c

0
(K

n
) the so-called second crossing 

number hypothesis seems to be valid: 

o <cv - «>> . J • [§] • [̂ 1] • [*j2] • [nji]. 
This hypothesis has so far been verified for n - 10. For the 

other n it is possible by two constructions giving topologically 

different n 

inequality 

different models of the graph K (see e.g. /6/) to prove the 

(5) C
Ж > -

 H
o

(n)
« 

The lower estimate is given by the inequality 

(6)
 c

o
(
V "

 D
o

( n ) =
 54 n(n-l)(n-2)(n-3)

f 

which follows from the equality C

0
( K T O )

 =
 60 and the inequality 

c(K
n
) ? c(K

r
)(;)(J)'

1
, n ? r t 4. 

This inequality is valid not only for a plane, but for all topo

logical surfaces; we therefore only write c(K ) instead of 
c
o<V« 

Because the majorant polynomial of the function c (K ) is of 
+ V*. •+• A 

the 4 degree, it is natural to study the function c (K ).n • 

Using the upper and lower estimates (5), (6) we easily obtain 

lim sup c
Q
(K

n
).n~

4
 = 64"" , 

lim inf c^(K
n
)*n~

4
 ? 84"

1
. 
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P. Kainen /8/ has moreover proved that, supposing that Zarankie-

wicz*s hypothesis is valid, 

lim c^K^.n" 4 = 64"1* 

I shall also mention three problems related to the problem 

of crossing numbers of the graph Kn. J. W. Moon has put himself 

an interesting question. He investigated the socalled geodetic 

crossing number of the graph Kn for a sphere. We ottain the 

geodetic crossing number as follows: We choose at random n ver

tices on the surface of the sphere and join them pairwise by 

the shorter arcs of great circles. The expected number of cros

sings is called geodetic crossing number gQ(Kn)• J. W. Moon has 

shown in /9/ that 

go ( Kn ) = 2~6.n(n-l)(n-2) fn-3). 

G. Ringel proved /10/, that any model of graph Kn (where n = 5) 

in a plane has 

h(n) = 2n-2 

edges without crossings at the most. However, all models having 

just h(n) edges without crossings are homeomorphic. 

H. Harborth investigated the intersections of diagonals in 

convex polygons. He was interested specially in multiple inter

sections. For instance, in the paper /ll/ the following is proved: 

For n = -2 (mod 6) in a regular n-gon no point except its cen

tre and vertices can be the intersecting point of more than three 

diagonals. While the number of triple points of intersection is 

given by the formula 

E3(n) = ^ n(n-2)(5n-38), if n s ±2 (mod 12); 

E3(n) = ̂ | n(n-4)(5n-28), if n S -4 (mod 12). 

1,3« The complete k-chromatic graph Kn-,^•••-!., that is the 

graph with k chromatic classes having n,(i=l,2,...,k; k - 2) 

vertices in which each two vertices belonging to different clas

ses are joined by a single edge. 

The problem of crossing numbersof these graphs was studied 

e.g. by J. Bla2ek, M. Koman and H. Harborth. I shallnemtion the 

results of papers /3/ and /13/ here. To simplify the expression 

13 



of the main theorem concerning crossing numbers of the graphs 
K.J n ... , I shall give some denotations beforehand. 

Let K« « •••„ be the given graphs For all i = l,2,...k let 
1 2 k 

us denote 

Ni = (nl * n2 + *•• + nk^ " ni* 

For all l = r , s, t, u - k let us define 
L(r a t û  = a a â a + a a b^b + a b b^a + -uvi,s,x,u; r a t u r 8 t u r 8 t u 

+ b b b.b + b b a.a • b a a.b . r 8 t u r s t u r a t uf 

where a., b^ (i = l,2,...,k) are non-negative integers for which 

a. + b. = n., 0 =* (a.-b^t-l)11! + «2 + ••• + »i I i 

holds. 

We can now give the upper bound for the crossing numbers of 
the graphs K^ _ •••„., • We shall consider only the cases when 
^ w nl 2 nk 

k = 3, because the case of k = 2 has already been discussed. 

1) For k = 3 the crossing number c0(
K
ninX

##
nk) has the upper 

bound 

3 3 

(7) H;(nlfn2,n3) = J I H^n^N.) - £ Z H^n.,^). 
l-l i.j-1 

-<j 
2) For lc= 4 the crossing number c (K • • • n ) w* have ob

tained the upper bound 

(8) H*(n, ,n2 , . . . ,n,J = 2 L H*(n.,N.) - 2 1 H*(n.,n.) + 
0 x * K i=l ° x * i.j.l ° x J 

k 

y 
+ / L(r , s , t ,u ) . 

r,8,t,u=l 
r«s<t<u 

It can be proved that the function (8) is symmetric, i.e. its 
values are independent of the order of the numbers n-. , n 2 f Miv• 

If all n. (i = l,2,...,k) are even, we can rewrite the fun

ction (8) in this form 

H^(n1,n2,...,nk) = Zl H ^ n ^ N ^ - ̂ ^ Ho(ni»nj> + 

XI<j 

14 



k 

r<s<t<u 

For some special graphs Knin9«««ni,
 tne summations of the function 

(8) can be enumerated. In the paper /13/ the following three 

results were found: 

H+(2,4,...,2k) --J! ̂ J 1 ) (3k2 + Ilk + 4)(3k2 - k - 6); 

If n, = ng = ... = nk = n, then 

H*(n,n,...,n) = k.H*(n,kn-n) - (|) H*(n,n) + 

+ 4H*(k).Hj(n+l,n+l) + H^k) ([--$ + [f] j 

+ H ; (k+ l .k-2) ( [S . ] . [BJ-]3 + [f]3 . [--$->]) + 

+ K(n+i,n+l) . [*?] . [-̂ ) . [| . M 
holds, specially for even n we have 

Hj(n,n,...,n) = -^ n3(n-2) (*) + -§ n4(*). 

If n1 = njHg = ... = n^ = 1, then 

H*(n,l,l,...,l) = H*(nfk-1) + H^(k-l) + [§]. [(f) + 2(*)] + 

where r *[̂ 2~L s =[jj* 

For the crossing numbers of graphs K we can give the 

socalled third crossing number hypothesis 

co(Knin2...nk
) = Ho(nl>n2>•••tnk>• 

This hypothesis is, however, proved only for a few cases* Using 
the inequality 

Ž-J n. *c(] i=l *-*" ni,n2,...nj__j_,ni-l, nj+i, ...n^ 

= (n1+n2+...*nk-4)c U ^ - . ^ ^ ) 

which is true not only for the Euclidean plane but for all topolo
gical surfaces (we therefore write only c instead of c ) and from 
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some further considerations we can obtain: 

1) I f k = 3 , then for ^ ^ n2 = 2 or ^ + n2 + n, = 7 

co^nin 2n 3
) = ^ ( n ^ n ^ ) 

holds. For 8 =* n1 + n2 + n^ £ 10 the estimates from these tables 
are true: 

TABLE 4. 

Һ1 
n
2 n

3 
loweг b. uppeг b. nl 

n
2 |n3 

loweг b uppeг bJ 

1 3 4 5 6 1 3 6 14 15 

2 3 3 5 7 1 4 5 17 20 

1 3 5 10 10 2 3 5 16 21 

1 4 4 10 12 2 4 4 17 20 

2 3 4 10 12 3 3 4 16 25 

3 3 3 9 15 

2) If k = 4, then for n, s n
2
 - n-

 s
 1 OP ̂  + n

?
 + n, + n. » 7 

holds. For 8 

following tables are true 

c
o

( K
nin

2
n

3
n

4

) = H
o(

n
i»

n
2»

n
3'

n
4

) 

n
l
 + n

2
 + n

3
 + n

4 -0 the estimates from the 
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TABLE 5. 

n l n
2 

n
3 

n
4 loweг b. upper b. 

n
l n2 

n
3 

n
4 loweг b. uppeг b. 

1 1 2 4 б б 2 2 2 3 11 15 

1 1 3 3 б 8 1 1 2 б 12 15 

1 2 2 3 б 8 1 1 3 5 18 23 

2 2 2 2 б б 1 1 4 4 • 16 24 

1 1 2 5 10 10 1 2 2 5 18 23 

1 1 3 4 11 14 1 2 3 4 19 27 

1 2 2 4 11 14 2 2 2 4 19 24 

1 2 3 3 11 19 2 2 3 3 19 30 

H. Harborth has, according to If* Fiedler, also proved the 

equality 

^,2,...,2>-«.(J). 
In the paper /3/ there is one more limit theorem for crossing 

numbers: 

For a given k = 2 let G
i
 = K (i)

n
 (i) (i) be such 

a sequence of graphs, that lim N. s oo holds for the nurtere 

i^oo
 x 

N. - a
x
<

i
> • n

2

( i )
 + ...

 +
 n^

1
*. Then 

* . = 
k
 - lim sup N.-

4
.c>.) = ^ [ 2 (J)*(Y)], 

lim sup«C
v
 - 64*"

1
. 

k-»-0D
 K 

Supposing Zarankiewicz's hypothesis is true we can obtain 

limo<
k
 a 64"

1
. 

k-»co 

In my paper /12/ I have been interested in two problems: For a 
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given N = k = 2 I have investigated the maximal and minimal cros

sing numbers 

P(Nfk) = max c*(K ), p(Nfk) = min c+(K ) f 
D(N,k) ° " i / V 1 ^ D(N,k) ° nin2*-*nk 

where D(N,k) denotes the set of all decompositions of the num

ber N into k integer addends n-^np,. •• ,n, • 

I have found the decompositions for which, for the given 

N = k = 2 the function 

(9) H0(nlfn2,...,nk)f where N = n-̂  + n2 + ... + nk 

reaches its extremes. These extremes then give the upper bounds 

for the numbers P(N,k) and p(Nfk). 

Order not considered, there exist three different decomposi

tions of the number N into k integers at most, for which the 

function (9) achieves its maximum. All the summands m. of these 

three decompositions fulfil the inequalities 

2m - 1 = m^ i 2m + lf where m -* [ gfc ' I • 

It is relatively complicated to calculate the number of indi

vidual addends and I shall omit it here. See /12, theorem 3/. 

I shall therefore only give a simple corollary of this theorem 

here: 

P(N,k) = H*(2m+l,2m+l,...2m+l); 

Ultimately if N = k(2m-l)f then 

P(Nfk) = H*(2m~l,2m-1,...2m-l). 

We can easily obtain the upper bound for the number p(Nfk). 

We have 

p(N,k) ^ H^(W-k+l,lflf...fl). 

B. T O R U S 

1«4. The complete graph Kn. The problem of crossing numbers 

was originally proposed only for a plane. The first time these 

questions were discussed for a different topological surface 

was in the case of a complete graph by R. K. Guy, T. Jenkyns and 

J. Schaer for the torus. In thier paper /14/ they proved for 

n = 16: 
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TABLE 6 . 

n Í 7 8 9 10 11 12 '13 14 15 16 

C Î<V 0 4 9 23 
=-42 

- 37 

* 70 
ž 56 

= 105 
-* 81 

= 154 
= 114 

"= 22í 

= 155 

= 326 

= 208 

For the numbers n - 15 these estimates are proved: 

(10) c l ( K n ) * D l ( n ) * OT n(n- l ( (n-2)(n-3) , 

(11) c l ( K
n

) " H l ( n ) = 5?§4 (n-D(n-2)(n-3)(n-4) . 

The next two results are an easy consequence of the given inequa

lities (10). and (11). 

In the paper /14/ J. W. Moon's method for studying geodetic 
crossing numbers of the graph K were used for a torus. The 
result is 

gl(Kn) ~ " A n(n-l)(n-2)(n-3). 

1.5* The regular bicomplete graph Km,n. The crossing number 
cl(Km n) w a s investigated by R. K. Guy and T. Jenkyns. For small 
numbers m, n we can find in /15/> besides others, the following 
results: 

4< K
n n> 4 5 6 7 8 9 10 

0 2 4 6 8 
Í 1 2 
S l l 

=16 
> 
=14 

2 5 8 12 
=18 

=16 
Í 2 4 
-fei 

^30 

=*27 

4 8 12 
=22 

="18 
Ž32 

Ž24 

*42 

-fзi 

Ś56 
*41 

6 12 
=22 
=18 

Í 3 5 
=26 

Í 4 8 
?35 

= 64 
> 
=45 

=84 
S 5 8 
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The crossing number c£(Km n) is known if min (m,n) = 3. E.g. 

The main result of /15/ is the theorem: 

ii (?) (?) * *-..»> * i ("# ("# 
provided in the lower bound m and n are at least equal to one of 

the (unordered) pairs (7,45), (8,44), (10,43), (14,42), (19,41). 

The crossing number c^(K? n) was also investigated by D. Kleit-
man /16/. 

C Orientable surfaces of genus g = 0 

1.6. The graph G(n«nut). We denote by G(n,m,t) a graph without 
loops and parallel edges of n vertices, m edges having the girth 
t (minimum number of edges in a cycle). Because trees are planar 
graphs, it can be assumed that t = 3. 

A lower bound for crossing numbers of graphs G(n,m,t) for 
orientable surfaces has been found recently by P. C. Kainen /18/: 

For all orientable surfaces of genus g = 0 and all graphs G = 
= G(n,n,t), where t = 3, we have 

cg(G) * </g(G) = m " tfe [n " 2(1 - *J • 
Simultaneously examples are shown of graphs G = G(n,m,t), for 

which 

c*(0) > <T(G). 

However P. C Kainen gives the hypothesis: 

Cg(G)<G> = < W G > ' 
where G is either a complete graph or a regular bicomplete graph 
and g(G) is the greatest integer for which « T / M = 0. 

He also shows, that the hypothesis holds for K.-, Kg, K7, K-, ̂ , 
L ., L ,, From the results of R. K. Guy /14/ and /16/ follows 
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the hypothesis for K
g
 and K-- ,« 

In /18/ the crossing numbers of multigraphs are also studied. 

Among others the following theorem is proved: 

If G is a multigraph with at most k parallel edges joining any 

pair of vertices and UG the induced simple graph, then 

Cg(UG). 

2.-A. P R O J E C T I V E P L A N E 

2.1. The complete graph K
R
. First of all, we shall investigate 

the complete graphs K
n
 for n = 15. For its crossing numbers the 

values in the table 7 have been found. 

TABLE 7. 

n < б 7 8 9 ю 11 12 13 14 15 

c
l (
к

r
) 0 3 9 18 30 

* 57 

*49 

= 92 

= 74 

^137 

?Ю7 

^ 203 

= 150 

= 287 

= 205 

These results we shall complete by the table 8, which give* for 

n = 10 the numbers
 <
3

1
(K

n
) of topologically different models of 

graphs K
n
 in the projective plane. 

TABLE 8. 

n i 2 3 4 5 6 7 8 9 10 

W i 1 2 3 2 1 2 4 2 1 
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M,(8,9>- 2 325263 .4- £2 1-3(8,9)- 4°6~ M4(8,9>- 3 4
45 6ť 

Ч .4
 l

-
г\ 

M
1
(9,18)= 6

3
9

6
 M

2
(9.18>- 6 7

2
8

2
9 

Fig. 1 
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The survey of all models M(n) of the complete graphs K for n = 
= 7,8,9,10 gives figure 1. (The projective plane and models 
M(n) in it, arise if the opposite sides and nodes of the corres
ponding polygons are identified in the usual way.) There we 
use e.g. the denotation M(7,3) = 1 2J3 for the model of graph 
K- which has three crossings distributed on its edges in the 
following way: 

a) One crossing lies on edges which coincide with each of 
certain three vertices; 

b) On edges which coincide with each of other three vertices 
there are two crossings; 

c) Three crossings lie on the edges issuing from the last 
vertex. 

From Fig. 1 the upper bounds follow 

Cl(K7) = 3, c1(K8) = 9, c1(K9) = 18, c1(K1Q) = 30. 

We shall prove that in all these cases the equalities take place. 

We shall use the inequality 

<12> r n - H ^ r n - l (n>4>, 
where r denotes the number of crossings of an arbitrary model 
of graph K and r , the minimum of the numbers of intersections 

° r n n-l 

in any of its submodel generated by n-l vertices. A corollary 

of the inequality (12) is a well-known relation between the 

crossing numbers c^(Kn) and
 ci^K

n-l^
: 

(13) C;l(Kn) = H T T ^ ^ n - l ^ (n>4). 

We shall prove 
(14) c1(K?) = 3, d1(K?) = 2. 

We know that c,(K7) = 3. If we suppose that c-̂ K--,) < 3f then 
from the inequality (12) follows that a minimal model M(7) must 
exist which contains a submodel M(6,0). In the projective plane 
it forms a map the regions of which are triangles only. Therefore 
on edges with endvertex u ̂  M(7) - M(6,0) there are at least three 
crossings, but this is a contradiction. Therefore c,(K7) = 3 
is true. From here and from Fig. 1 follows d1(K7) - 2. The 
inequality (12) implies that each model M(7,3) has as a submodel, 
one of the models M(6,0), M(6,l). It is easy to see that there 
are only two models of this type: M(6,0) = 0 , M(6,l) = 0214. 
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These can be extended into models M(7,3) = 13233 and M(7,3) = 026 

only. This completes the proof of the equality d-̂ K-j,) = 2. 

In the same way we can prove 

(15) cl(K8} = 9> W = 4* 
In the proof it is necee3ary to investigate all extentions of 

four models of types M(7,3) and M(7,4). 

Using the same method we can obtain the equalities 

(16) cx(K9) = 18, d1(K9) = 2. 

To verify C-.(KQ) = 18 it is sufficient to investigate all possib

le extensions of four models M(8,9) which are models of the 

graph KQ. The proof of the equality d-̂ CKg) = 2 is much longer. 

In this case it is necessary to investigate 9 models M(6,x), 

where x = 2, 18 models M(7,y), where y = 5 and finally 12 models 

M(8,10). 

On the other hand from (16) the equalities 

(17) ci<Kio> = 3 0' dl ( K10 } = X 

can easily be derived. E.g. the inequality c,(K,Q) = 30 follows 

immediately from (13) and (16). The equality di(K]o) = 1 can be 

verified if we investigate all extensions of two models M(9) to 

models of graph K,Q. 

V/e obtain the lower bounds of crossing numbers c, (K ) for 
^ <c x n 

11 - n = 15 given in the table 7 from the equality c,(K,Q) = 30 

using repeatedly the inequality (13). The upper estimates follow 

from the existence of models M(ll,57), M(12,92), M(13,139), 

M(14,203), M(15,287). 

E.g. the models 

M(ll,57) = 18319321224227, 

M(12,92) = 25227 30331 32 342352 

are generated by the vertices l,2,...fi (where i = 11,12) in the 

model M(13,139) = 38 39 40 41 42 43244245347. (Fig. 2; the symbol 

<J> denotes that in the regular polygon 7 8 9 10 11 12 13 all 

diagonals have been drawn.) 

24 



M (13.139) 

- 38 39 40 41 42 43244245347 

Fig. 2 

The model M(14,203) = 557617 is for n = 14 the model A(n), 

which will be constructed later. Finally the modal 

11(15,287) = 72 73 74275 76377278 79 80281 

is presented by Figure Z* 

It is interesting to give the Hasse diagram (fig. 4) of the 

binary relation Hto be a submodel" for the models of graphs K 
4L < 

with minimal number of vertices (6 - n = 10) and the models 

M(ll,57) to M(15,287) presented above. 

An immediate consequence of inequalities (13) and Cj^Kie) = 205 

is the following theorem, which gives a lower bound for the cros

sing numbers c^(K ), where n > 15* 

T H E O R E M 1, For all natural numbers n 15 we have 
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(18) C l ( K n ) ^ Dj(n) = -Ц-j n(n-l )(n-2)(n-3). 

M (15,287) 

72 73 74 275 7б 3 77 2 78 79 80 281 

Fig. 3 

We shall obtain the upper bounds for crossing numbers c
1
(K ), 

where n = 8, n f 11 by constructing the models of graphs K . 
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The auxiliary construction 1* In the Euclidean plane we shall 

construct an auxiliary model M, Let n = -2 (mod 8) be given* 

Denote 

(19) m -
 П 

m = £, г •íłb •-(?]• 

M(15,287) 

11(14,203) 

^ Ь П 
6 7

2
8

2
9

4 

Fig. 4 

We construct three regular polygons with girdles 
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W = w1w2...wm, V = v1v2...vm, U = u ^ . . . ^ , 

with a commdn centre, for the mapping 

Hx: W->V f w i->v i (i = 1, 2f...,m) 

to be a homothety with the coefficient h-, = -^ and the mapping 

H2: V-^U, v i^^u i (i = 1, 2,...,m) 

to be a homothety with the coefficient 

h2 = j, if m = 1 (mod 4), h2 = - j, if m = - 1 (mod.4). 

The points w^f v^, u^ (i = l,2,...,m) are the vertices of the 

auxiliary model M© 

Denote by C-j, Cy-j, C-^, CL, CLU the bouned closed regions 

with boundaries 

U, VuU, WuL, L = w1v1+sw2v2+sW3... wmvs, L U 

respectively. Now we shall construct the edges of models Mf which 

we shall draw as curves homeomorphic with straight segments 

even as straight segments if possible. We shall simultaneously 

take care that no unnecessary crossing take place. We shall 

divide the edges of model M into five classes. 

For all i, j = 1,2,...,m we construct 

1) a-edges a^. = v.w. in the region C^v, if 

(20) j-i i 0, +1, +2, ..., *r (mod m). 

2) b -edges b^ . = v. v . i n the r e g i o n Cyr-i i f 

(21) j - i S - 1 , - 2 , . . . , - r (mod m). 

3 ) c - edges c i - = VjU. f i f 

(22) j - i = 0 , - 1 , ^ 2 , . . . , i r (mod m) 

and simultaneously m = 1 (mod 4) or if (20) and m = -1 (mod 4) 

hold.,We construct all c-edges so that they are parts of the 

region Cvu^ 

4) d-edges d. . = u^w., if (20) and m = 1 (mod 4) is fulfilled 

or if (22) and m = -1 (mod 4) is fulfilled. We draw all d-edges 

in the region C-.-J 
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5) e-edges e^. » u^u. for all i jf j in the region Cy. 

We conctruct the model so that the parts of the model M belon

ging to "opposite" triangles 

wiviwk* viwivkf where j~i = i-k = s (mod m) 

are homeomorphic drawings* 

Constructions of models A(n) of the graphs K (8 = n ^ 11). 

a) Let n -= -2 (mod 8)« We shall construct an auxiliary model M. 

From the region C-. and the corresponding part of the model M we 

obtain a model of the projective plane and in it a model A(n) 

of a complete graph Kn by identifying all pairs of "opposite" 

vertices w. , v. (i=-lf2, ..., m), "opposite" a-edges. 

aii* a-in* where j-i « s (mod m) 

and corresponding crossings on these edges. The arising model A(n) 

has the set of vertices 

A0(n) = «(v1=w1, v2=w2, ..., vm=wffi, ulf u2, ..., uffl). 

b) Let n + 1 3 -2 (mod 8)-, Then the model A(n) is generated in 

the model A(n+1) by the set of vertices 

AQ(n) = Ao(n+l) - ( r ; ) . 

c) Let n + 2 * -2 (mod 8)# Then we construct the model A(n) as 

a submodel of A(n+2) generated by the set of vertices 

AQ(n) = AQ(n+2) - {vlf v ^ J 0 

d) If n + 3 *-2 (mod 8), we construct the model A(n) as a 

part of the model A(n+3) generated by the set of vertices 

AQ(n) = AQ(n+3) - {v^ vr, v 2 r - 1j . 

In this way for all n s 8, n ?- 11 the model A(n) is constructed 

for each graph K in the projective plane. The number of crossings 

of these models give the upper estimate for the number c^(K
n)» 

During the enumeration we use the following denotation: Simi

larly as for the auxiliary model M, we shal use the terms a-edge, 

b-edge, etc for the model A(n). The crossing of a y-edge and 

z-edge (y,z - a,b,c,d,e) will be called a yz-crossing. The number 

of all yz-crossings lying on the edges with endvertex x £ A(n) 

we denote Pyz(x). The number of all crossings lying on the edges 
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issuing from the vertex x will be denoted p(x). Similarly 

p (x-j,x
2
) means the mumber of yz-crossings which lie on at 

least one edge coinciding with the vertex x^ and simultaneously 

on at least one edge with the endvertex x
2
« The number of all 

crossing points of the model A(n) will te denoted a(n). 

For the model A(n), where n = -2 (mod 8) we can easily find 

the data given in the following table 9; there 

t
 s
l i"I and i =

 1,2,•••,nu 

TABLE 9. 

v i u i 

Paa *lг!) -

Pad 
6(t+г)(^ 2(t+r)(|} 

Pbb fî) -

Pbc 3(t+r+l)(
г
) ( t + r * i ) ( | ) 

Pbđ 3(t+r)(^) -

Pcc 
2 (t+r+1) ^ГГ1) 

pcđ • rr1) 4CT1) 
Pãđ 

2IT) г (T ) 
Pee - ( г tГ) 

The values p
 z
(x), which are not given in Table 9, are ,equal to 

гего» 
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From the data in the table 9 p(v.), p(u.) (i=lf2,...,m) can 
— + X X 

be calculated for n = -2 (mod 8) and from them, using the 

equality 

a(n) = j [p(v1) + p(ux)] 
the number a(n): 

For n = 2 (mod 8) we obtain 

(23) p(v±) = £r(160r2 - 87r - 1), p{n±) = £r(152r2 - 81r + 1), 

(24) a(n) = r2(4r+l)(13r-7) = 2"10n(n-2)2(13n-82). 

For n = -2 (mod 8) we obtain 

(25) p(vi) = £r(160r
2 + 165r + 41), pt^) = £r(152r2 * 147r + 31), 

(26) a(n) = r(4r+3) (13r2+13r*3) = 2"10n(n-6)(13n2-52n+36). 

Because the differences 

p(vi) - p(u±) = ^r(r-l)(4r+l) if n = 2 (mod 8), 

pC^) - p(ui) = ^r(r+l)(4r+5) if n = -2 (mod 8) 

are non-negative for all n = -2 (mod 8) f we obtain from (23) to 

(26): 

The model A(n), where n + 1 = -2 (mod 8) is e model of the 

graph K which, of all the submodels in A(n+1), has the smallest 

number of crossings; while for n + 1 = 2 (mod 8) 

(27) a(n) = ̂ r(2r-l)(156r2-47r-l) = 3"12"10(n-l)(n-5)(39n2-172n+i 

+117) is true, and for n + 1 = -2 (mod 8) 

(28) a(n) = £r(2r+l) (156r2+115r+13) = 3"12=10(n-l)(n-5)(39n2^L6Cn+33 ) 

holds. 

For further calculations we use Table 10 which is a result of 

the construction of the model A(n) for n = -2 (mod 8). The values 

pv(v.,vv) which are not given in the table 10 are all equal to 
yz j K. 
гего. 
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TABLE 10. 

j-k = -i (mod m) j-k S -(t+r-i) (mođ m) 
0 4 i š г 0 * i ^ t 

P a a ( v j ' V ľV) ( З t - D ( t - l ) - ( | ) 

P a đ ( v j ' V 2(t+r)(t- i ) 2(t+r)(t- l ) 

P ь ъ ( v j ' V г(2r-3) - J( i+l ) ( i -2 ) ( i j 1 ) - ( t-r ) i 

P b c ( v j ' V (t+г+l)(2r-i-l) -

Pbd ( v , j 'V (t+г)i 2(t+r)(r-i) 

P c c ( v j ' V 
(t+r+l-i) 

Й1) 
P C d ( v j ' V *(ÏІ 

,( .•^1) 

P d d ( v j ' V ( t T i ) (І) 

We shall now prove; For n large enough, where n+2 = ̂ 2 (mod 8) 

the model A(n) is a model of the graph K with the smallest 

number of crossings, which is a part of the model A(n+2). 

Meanwhile for n + 2 = 2 (mod 8) 

(29) a(n) = Jr(2r-1)(156r
2
-127r+25)=3"

1
2"

10
n(n-4)(39n

2
-254n+400) 

is true. For n + 2
 s
 -2 (mod 8) 

(30) a(n) = j ( 1 5 6 r 4 + 1 1 3 r 3 + 1 2 r 2 + r + 9 ) = 3 " 1 2 " 1 0 ( 3 9 n 4 - 3 9 8 n 3 + 1 2 2 4 n 2 -

«544n+?296) 

holds. 

The number of crossings of a model of the graph K
n
, where 

n
 + 2 = -2 (mod 8), which Is a part of the model A(n+1) while 
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it has the minimal number of crossings, is equal to 

(3D min fa(n+2) - p(x) - p(y) + p(x,y)j . 
x,y«A(n4-2) 
x^y 

Because p(u.), p(v-), i = 1,2,...,m are polynomials of the 3 
degree and p(u.) = p(v.) holds; because to the function p(x,y) 

r\f\ 
where x,y £ A(n+2) there exists a majorant polynomial of the 2 

p 
degree, e.g. (2m-l) , it is evident that for an n large enough 
the function 
(32) f(x,y) = a(n+2) - p(x) - p(y) + p(x,y) 
reaches its minimum (30) for some pair of vertices v.,v, . For 
these v., vv the function p(x,y) must also reach its minimum. 
Using Table 10 we can calculate that 

.min. p(v,, v.) = ir(15r-9), if n = 2 (mod 8), 
l=j<k=m J K * 

.min, p(v., v, ) = 8r2+5r+3, if n = -2 (mod 8). 
l=j<k=m J * 

In both cases the minimum is achieved for such j, k that j-k = 
= -r (mod 8). For such j,k the value of the function (32) is 
equal to the minimum (31) as well as to the value of the functi
on a(n) given by the formulae (29), (30) respectively. So we 
conclude the proof. 

Finally we shall calculate the values a(n) for n + 3 = -2 
(mod 8), n = 15. We obtain: 
(33) a(15) = 312, a(19) = 946 
and for n + 3 = 2 (mod 8), n = 23 

(34) a(n) = £(104r4-190r3+i33r2-35r+6) = 

= 2~10(13n4-138n3+572n2-630n+1719) 
and for n + 3 = -2 (mod 8), n = 27 

(35) a(n) = J(104r4+22r3-r2-llr+60) = 

= 2"10(13n4-134n3+496n2-1466n+33219). 
Formulae (33) to (35) can be deduced from the equality 

(36) a(n) = a(n+3) - Ipi^) + 2p(vlfvr) + P(v1,v2r-1) -
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While in the equality (36) for n = 15, 19 

P(vlfvr,v2r^1) = 2 

and for n >19 

P(vlfvr,v2r^1) = 0 

is true. 

Now it is easy to prove: 

T H E C R E M 2. For the crossing numbers ^(K.^) w e have 

(37) cl(Kn} " a ( n ) n ? 7, 

where the function a(n) is defined by the equations (24), (26) 

to (30), (34) and (35) if n = 2, -2, 1, -3, 0, -4, -1, 3 (mod 8) 

respectively. 

P r o o f : For n - 15 the inequality (37) follows from 

Table 7« For 16 =" n ^ 19 the theorem follows from the constructi

ons of models A(n). For n = 19 the theorem stems from the exis

tence of the model M(19, 919) of the graph K-JQ, which is genera

ted in the model A(22) by the set of vertices A (22) ={ vit v3t v5^ 

For n =19 - because of this fact - the inequality (37) gives the 

estimate 937. 

Now we shall state a few simple consequences of theorems 1 

and 2. 

T H E C R E M 3« a) For all n = 6 the crossing numbers 
c l ^ K n j fulfil the inequality 

(38) c-(Kn)<H-(n) = i^- n(n-l) (n-3) (n-6) -Wi(n)n2(4n-135), 
1 n X

 210 3.21U 

where the function h(n) is defined by Table 11. 

b) For all n = 20 the difference 

o(n2) = H-^n) - a(n) 

is a polynomial of the second degree at the most. 
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TABLE 11. 

n (mod 8) -1 0 1 2 3 4 5 6 

h(n) 6 5 4 3 3 2 1 0 

The* proof for n = 9, n f 19 follows from Table 12, where the 
differences H^n) - a(n) are noted. For n = 19 we obtain H,(19) 
= 9 2 3 , 9 8 . . . . From the inequality c ^ K ^ ) ^ 919, for,n = 19 the 
inequality (38) i s proved. For n = 6, 7, 8 the proof i s obvious, 

TABLE 12. 

n (mođ 8) H2(n) - a(n) 

-1 207(n-3)2 + 2016(n-3) + 270 

0 362 n2 + 898n 

1 289(n-l)2 + 1438(n-l) + 564 

2 348n2 + 282n 

3 3696(n-27) + 135 

4 119(n-9)2 + 1984(n-9) + 921 

5 10(n-l)2 + Зlб(n-l) + 141 

6 9(n-6)
2
 + 54(n-б) 

T H E O R E M 4. a) For a l l natural numbers n>5 

( 3 9 ) c l ( K n > < $ K M " O f8125.H;<n) f 

holds, where H*(n) i s given by ( 4 ) . 

b) For a l l natural numbers n > 16 

(40) c l ( K n ) < 5 9 ^ H*(n) < l,1155.H+(n) 

holds, where H^n) is defined by (11) 
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The proof of (39) for n a 33 and n = 22,30 follows from 
the inequalities 

Hx(n) = ij0 n(n~l)(n-3)(n-6), 

n(n-l)(n-3)(n-6) 4 (n-l)(n-2)(n-3)(n-4), 

j§- n(n-l)(n-3)(n-6) < [§] . [-Ŝ i] . [ ^ # [figi] . 

The proof of (39) for 11 = n = 33 follows from inequalities 

H l ( n ) " ifen(n-D(n-3)(n-6) + ^ n2(135-4n)< T5~H*(n). 

For all other n the inequality (39) follows from the table 7# 

The inequality (40) for 23 » n<33 follows from these 
inequalities 

Hi ( n ) = ̂ Kn(n-l)(n-3)(n-6) + ±* n2(135-4n)< i i i ^ ^ n ) . 
1 2 1 0 29 59.24 -1 

For 17= n = 22 we obtain the estimate (40) from the inequalities 

H,(n) ̂  i^n(n-l)(n-3)(n-6) + • ̂ A n2(135-4n)< i-k^H.T(n)0 1 2ID 3#210 59.24 1 

Thus theorem 4 is proved. 

I shall conclude with the limiting property of crossing 
numbers. 

T H E O R E M 5. For crossing numbers c-^d^) the 
inequalities 

(41) lim sup c^K^.n"4 = ^ = 0,0127, 

(42) lim inf c^K^.n'4 = | ^ = 0,0063 

hold. 

The proof follows immediately from the inequalities (38) 
and (18). 
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B. K L E I N ' S 3 0 T T L E 

2,2. The complete graph & . Similarly as in other preceding 

cases, first of all I give the results concerning the crossing 

numbers of the graphs K for n - 15. They are given in the 

table 13. 

TABLE 13. 

n = б 7 8 9 10 11 12 13 14 15 

c
2
(K

n
) 0 1 4 9 

^ 2 4 

= 22 

* 4 4 

? 3 5 

* 7 2 

-*53 

= 109 

=>
 7 7 

= 161 

= 108 

= 239 

= 148 

The upper bounds follow from the existence of corresponding 

models M(n) of the graphs K
n
(n = 7,8,...,15) in Klein's bottle. 

The figure 5 shows the models M(n) for n = 7,8,...,il. The Klein's 

bottle and on it the models M(n) ariee if we identify the oppo

site points on each of two polygonal boundaries of presented re

gions. (The regions are homeomorphic to an annulus.J 

The model M(12,72) = 19 20 23
3
24 25

2
26

2
27

2
 is generated by the 

vertices 1.2,...,5,7,8,..•,13 in the model M(13,109) = 

= 31
2
32*33

3
34

3
35 37

2
. We can construct this model in this way: 

We draw two auxiliary models M-, and ^ 9 ^ (fig. 6a,b) in two pro

jective planes with polygonal holes 1,2,...,9. After identifying 

the corresponding vertices 1,2,...,9 lying on these two surfaces 

we obtain Klein's bottle and the model M(13,109) on it. 

The model M(14,161) = 40
2
44

2
45

2
46 47

2
48

3
51

2
 is generated by 

the vertices 1,2,...,14 in the model 

M(15,239) = 53 55 57
2
59 60 61 62

2
64 66 71 73 78

2
. 

We draw it similarly to the model M(13,139). We construct two 

axiliary models M
2
 (fig. 7) and 4^9$ (fig. 6b) in two projective 

planes with polygonal holes 1,2,...,9. After identifying the 

corresponding points 1,2,...,9 lying in these two surfaces the 

Klein's bottle arises with the model M(15,239). 

37 



4 " 1 L 

M(7,l) * 0 3
1

4 
M(8,4) « 1

2
2

4
3

2 

М(10,24) 

- 7
3
8 9

2
10 11 13 15 

M (11,44) = 

= 14
4
16

3
17

2
19

2 

Fig. 5 
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Fig. 6a, b 

Now we shall prove the lower estimates from the table 13. It 

is known that c0(K7) > 0 (see e.g. G. Ringel /15/). This inequa-
f < 

lity together with c2(K„) = 1 gives 

(43) c2(K?) = 1. 

We shall prove 

(44) c2(K8) = 4 . 

Suppose, that c2(Kg) = x < 4. Then any model M(8,x) has at least 

one submodel M(7,l). Each model M(7,D forms in Klein's bottle 

a map P, which has one qudrangle and 14 triangles. The map has 

namely a = 7+1 = 8 vertices, ^ = 21+2 = 2 3 edges and from 

Euler's polyhedral formula a2 = 23-8 = 15 regions. The number 
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10 ^-< 15 

^ - - ^ X Л ^ 

14 

\ 
\ 
\ 

Л 1 \ 14 

т я Г 9 8 Ttř 

*ř2 €9» Ж 

Ç 1 \ 
\ \ 

\ \ 
•ч \ \ 
^ v \ \ 

* ч j \ \ \ \T^~^*-І!^.l 
11 

V 

^ . 3 ^ ^ 

P^Tio 

11 

V 
P^Tio 

11 

V 

íï чj 
P^Tio 

\ \ 7 
\ \ / 
\ \ / 
\ \ /> 
\ \ / / 

12 « ^ 1/ M* \ \ / 
\ \ / 
\ \ /> 
\ \ / / 

12 « ^ 

. 

13 

Fig. 7 

of edges can be expressed also from the known equality 

(45) 2a
л 

Зa
2
 + ч

 + 2t
5
 + Зt

б
 + 

where t, (k = 4,5f«) denotes the number of k-sided regions. 

Hence we obtain t - = 1, t-- = tg = • • • = 0. The number of triang

les follows from the equality 

(46) 2a, Зt
3
 + 4t

4
 + 5t

ş
 + ... 

The point u ( M(8,x) - M(7,l) belongs to a region of the map P. 
It can be easily verified that on the edges issuing from the ver

tex u, there are at most three crossings, that means x = 1+3 = 4, 

but this \s a contradiction. Therefore it is true that C£(KQ) = 4« 

Hence together with the inequality Cp(Kg)
 =
 4 we obtain Cp(Kg) = 

= 4. 
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Similarly we shall prove 

(47) c2(K9) = 9. 

Suppoae that c2(Kg) = y < 9. Then any model M(9,y) must contain 

at least one submodel M(8,4). The corresponding map P has, accor

ding to (12), triangular regions only. Therefore on the edges 

which are incident to the vertex uf M(9,y) - M(8,4) lie at least 

five croesings and hence we obtain y = 4+5 = 9, but this is 

a contradiction. Thus C 2(KQ) = 9. Now from the existence of the 

model M(9,9) - 49 follows c2(Kg) « 9. 

For the next crossing number we shall only prove 

(48) 22 = c2(K1Q) = 24. 

According to (13) the inequality C 2(K^Q) = 15 holds. Le us sup

pose that C 2(K^Q)
 S 15• Then every model M(10,15) must contain 

a submodel M(9,9). The corresponding map P has, according to (45), 

36 faces in all, all of them triangular. Therefore on every edge 

there is, at the most, one intersection point (otherwise all the 

faces could not be triangular). All triangles of the map P have 

two vertices §nd one crossing of the model M(9,9) as thier verti

ces. From this it is easy to find out that every model M(10) which 

contains the submodel M(9,9) has at least 24 crossings. That is 

a contradiction to the suppo3ition C 2 ( K 1 Q ) = 15. So c2(K1Q) = 16* 

Let c2(K1Q) = y < 19. Then there exists a model M(10,y), every 

submodel M(9) of which has at least 10 crossings, of which at 

least one has exactly 10 crossings. The respective map P has 37 

regions one of which is a quadrangle and the others are triangles. 

It is easy to find out that the quadrangle has, as vertices, 

3 .crossings and one vertex of the model M(9). Of all the triangles 

of the map P only one has for vertices only vertices of the model 

M(9,10). If the vertex u £ M(10,y) - M(9,10) belongs to the 

quadrangle, then at least 15 crossings lie on the edges outgoing 

from it. If the vertex u belongs to a triangle, then on the edges 

incident to it there lie at least 12 intersection points. There

fore y = 10+12 = 22 holds and that is a contradiction to the 

supposition C2(K-,Q) < 19. 

Let C 2(K,Q) = 19. Then there exists a model M(10,19), which 

contains a submodel M(9,ll) and does not contain any submodel 
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M(9,y), where y < 11. Every model M(9
f
ll) forms a map P, which 

has 38 regions. Either 36 of them are triangles and two are 

quadrangles or 37 are triangles and one is a pentagon. In all 

cases there are at most four triangles all the vertices of which 

are vertices of the model M(9,ll).From this it is easy to find out 

that on the edges outgoing from the vertex u t M(10,19) - M(9,ll) 

there lie at least 12 crossings; that is a contradiction. There

fore c
2
(K

1 Q
) = 20. 

Let c
2
(K

1 Q
) = y, where 20 = y ^ 21. Then there must exist 

a model M(10,y) which contains the submodel M(9,12) but no sub

model M(9,z), where z < 12. An arbitrary model M(9,12) forms a 

map P which has 39 regions, there are either 3 quadrangles or 

one quadrangle and one pentagon or one hexagon. In all cases 

there are at most 6 triangles the vertices of which are all 

vertices of the model M(9,12).Therefore at least 10 crossings lie 

on the edges issuing from the vertex u f M(10,y) - M(9,12); that 

is a contradiction to the supposition c
2
(K

1 Q
) = 21. 

So at last the inequality c
2
(K

1 Q
) - 22 is proved. The inequa

lity c
2
(K

1 0
) = 24 follows from the existence of the model M(10,24X 

Lower estiшates 

(49)
 c

2
(

к
n > *

 3 5
» c

2
(K

1 2
) ì 53, 

c2(K14) - 108, c2(K15) = 148 

c (K-,0 = 77, 2
VЛ
13 

are gained by using repeatedly the inequalities (13)* 

As direct consequence of the inequality (13) and the inequali

ty c
2
(K

1 5
) = 148 we obtain the lower estimate for an arbitrary 

crossing number
 c

2
( K

n
) , where n > 15« 

T H E O R E M 6. For all natural numbers n > 15 

(50)
 C

2
(
V *

 D
2

( n ) =
 3T5ff n(n-l)(n-2)(n-3). 

We obtain the upper estimate for the number c
P
(K ), where 

n s 8, n / 11 using the construction of the models of the graphs 

v 
Auxiliary construction 2. In the Euclidean plane we shall con

struct an auxiliary model M. Let a number n = -2 (mod 8) be given. 

The numbers m, r, s will be defined by (19)* We construct two 
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regular concentric polygons with girdles 

U * u ^ . . ^ , T = t^...^, 

so that the mapping 

H : U-^T, ^ - ^ t j (i = 1,2, ...,m) 

is a homothety with the coefficient h = - -j. 

The points Uj, t^ (i = l,2,...,m) are vertices of the model 

M. Let us denote by C-jm, C-JQ the bounded closed sets with boun

daries U u T, U U Q respectively, where 

Q =: "A+s^+sV • -Vs* 
Now we shall construct the edges of the model B, which we shall 

draw as curves homeomorphic with a straight segment, or where 

possible, as straight segments. We shall at the same time take 

care, that no unnecessary crossings form.we shall divide the 

edges of the model M into two groups. For all i,j = 1,2,...m 

we shall construct inside the region C-j-

1) f-edges fjj = Ujtji if (20) holds; 

2) g-edges g^. = titjt S[A S uiujt i-f i ̂  J an<* (22) hold. 

During the construction we take care to obtain homeomorphic 

drawings as parts of the model U belonging to the "opposite" 

triangles 

ui^iuk» t^i^k* where j-i » i-k = a (mod m). 

Now from the set C-JQ and the appropriate part of the model M 

we obtain a model of the Mobius strip and a model G(m) ot the 

graph K^ by identifying all pairs of "opposite" vertices u^, 

t^ (i=l,2,...,m), "opposite" edges f^., f.^, where j-i = 8 (mod m) 

and the corresponding crossings on these edges. Simultaneously 

the appropriate parts of the edges g^. and g^t after identifying 

form a single edge g^-p The model G(m) has the set of vertices 

GQ(m) - {uj-tj, u2=t2,..., um=tml. 

Constructions of models B(n) of graphs K^ for n » 8, n f 11. 

In the projective plane we construct the model A(n). From the 

projective plane we cut out a region homeomorphic with a circle 

desrcibed by the edges 8-.2, a2^t ..., e m 1. The hole thus acquired 

we "join" with the Mobius strip containing the model G(m) by 
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identifying all vertices which are denoted by the same letter in 

the models A(n) and G(m). So a model B(n) is formed. 

Now we shall find out the number of crossings of the model 

B(n). We shall use a similar denotation as during calculations 

concerning the model A(n). Only instead of "p" we shall 

always write "q". E.g. qat) means the number of ab-cros9ings of 

the model B(n). It is easy to find out that for X, y € {af b, 

c, dj., x ^ y and for n « -2 (mod 8) 

Pxy ( ui ) = V V * Pxy(vi) s <*xy(vi) 

is true. Further 

holds and finally 

<-»<«!> • Pas<vi> " 2 n ) » 

Wui> = Pbb<V • f 3> 

qfg(u.) = 8t(f). 

From here we easily obtain the theorem: 

THE E O R E M 7. For the cros3ing numbere c2(K ), where 

n - 7 the upper estimate ia 

(51) c2(Kn) = b(n) = a(n) - v(n), 

where a(n) has the same meaning as in Theorem 2 and v(n) is de

fined in this way: 

v(n) = ^ ( 4 r + l ) ( 4 r - l ) ( . r H - l ) r , if 8r-l = n = 8r+2, 

(52) 

v(n) = ^(4r+5)(4r+3)(r*l)r, if 8r+3 = n = 8r+6. 

Similarly to Theorem 3 is 

T H E O R E M 8. a) For all n =* 6 

(53) C 2 ( V * H 2 ( n ) = H l ( n ) " v(n) 

holds, where H-^n) is defined by (38) and v(n) by (52). 

b) For all n = 20 the difference o(n ) = H2(n) - b(n) is a 

polynomial of the second degree at the most. 
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From Theorem 4 it is easy to derive other estimates for the 

crossing numbers c 2 ^ n ) . 

T H E O R E M 9. a) For all natural numbers n > 5 

(54) c2(Kn) < JJ. H+(n) < 0,7709.H+(n) 

is true, where HQ(n) is given by (4). 

b) For all natural numbers n > 16 

(55) c2(Kn) < ^ 3 j H*(n) < l,0583.H^(n) 

59.2 

holds, where H-^n) is given by (11). 

The proof follows from Theorem 4 and from the inequalities 
v(n) > ^J.H^n), v(n) > --i-L^.H+U) 

59.2 

where n > 16. 

Finally I shall give two limit properties of the numbers 

c2(K ), which are an immediate consequence of the above mentioned 

theorems. 

T H E O R E M 10. For the crossing numbers c^UL) we have 

lim sup c2(Kn).n~
4 *-iX^ £ 0,0121, 

3.2 

lim ing c2(Kn).n"
4 *-s^-j - 0,0045. 
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