## Acta Universitatis Carolinae. Mathematica et Physica

Jaroslav Ježek; Václav Slavík

Some examples of primitive lattices

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 14 (1973), No. 2, 3--8

Persistent URL: http://dml.cz/dmlcz/142306

## Terms of use:

© Univerzita Karlova v Praze, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

# Some Examples of Primitive Lattices 

J. JEŽEK and V. SLAVfK<br>Department of Mathematics, Charles University, Prague

Received 26 fanuary 1973

Igošin [1] investigates characterizable primitive classes of lattices, i.e. primitive classes $K$ such that any lattice belongs to $K$ iff it does not contain a sublattice belonging to a given set of finite lattices. In the present paper we shall be concerned with primitive classes characterizable by means of a single lattice. We give some examples of them and prove that there are infinitely many such classes.

Given a lattice $L$, denote by $K(L)$ the class of all lattices that contain no sublattice isomorphic to $L$. We call $L$ primitive if the class $K(L)$ is primitive.

THEOREM 1. Let $L$ be an arbitrary lattice. The following holds:
(1) The class $K(L)$ is closed with respect to sublattices and isomorphic lattices.
(2) If $L$ is subdirectly irreducible, then $K(L)$ is closed with respect to direct products.
(3) If $L$ is finite and $K(L)$ is closed with respect to direct products, then $L$ is subdirectly irreducible.
Proof. (1) is trivial. Let us prove (2). Suppose that there exists an isomorphism $j$ of $L$ onto a sublattice of the direct product $\mathrm{X} A_{t}$ of a family of lattices $A_{t} \in K(L)$. For every $t \in T$ define a congruence $\Theta_{t}$ on $L$ by $a \Theta_{t} b$ iff the $t$-th components of $j(a)$ and $j(b)$ are equal. As $\bigcap_{t \in T} \Theta_{t}$ is evidently the smallest congruence $\iota_{L}$ of $L$ and $L$ is subdirectly irreducible, there exists a $t \in T$ such that $\Theta_{t}=\iota_{L}$; this implies that there exists an isomorphism of $L$ into $A_{t}$, a contradiction with $A_{t} \in K(L)$.

It remains to prove (3). Suppose that $L$ is subdirectly reducible, so that $L$ is isomorphic to a sublattice of the direct product of some lattices of cardinality smaller than $\operatorname{Card}(L)$. As all these lattices evidently belong to $K(L)$ and $K(L)$ is closed with respect to direct products and sublattices, we get $L \in K(L)$, a contradiction.

THEOREM 2. A lattice $L$ is primitive iff it is non-trivial (i.e. of cardinality $\geq 2$ ), finite, subdirectly irreducible and satisfies the following condition:
(H) Whenever there exists a homomorphism of some lattice $A$ onto $L$, then $A$ contains a sublattice isomorphic to $L$.

Proof. Let $L$ be primitive. As $K(L)$ is non-empty, $L$ is non-trivial. If $L$ were
infinite, then any finite lattice would evidently belong to the primitive class $K(L)$, so that by [2] any lattice would belong to $K(L)$; but $L \notin K(L) . L$ is subdirectly irreducible by Theorem 1. Let us prove (H). As $L \notin K(L)$ and $K(L)$ is primitive, we have $A \notin K(L)$, too, so that $A$ contains a sublattice isomorphic to $L$. To prove the converse implication, it is by Theorem 1 enough to show that $K(L)$ is closed with respect to homomorphic images; this follows from (H).

REMARK. It is easy to see that any primitive lattice is a sublattice of the free lattice. We do not know whether any non-trivial, finite and subdirectly irreducible sublattice of the free lattice is primitive.

THEOREM 3. Let $L$ be a finite lattice. Define a lattice $L^{\star}$ in this way: $L$ is a sublattice of $L^{\star} ; L^{\star} \backslash L^{\prime}$ contains exactly three elements $u, v, a ; u$ is the smallest and $v$ the greatest element of $L^{\star} ; a$ is incomparable with all elements of $L$. The following holds:
(1) If $L$ is primitive, then $L^{\star}$ is primitive, too.
(2) If $K(L)$ is the class of all lattices satisfying a single equation $p\left(x_{1}, \ldots, x_{n}\right)=$ $=q\left(x_{1}, \ldots, x_{n}\right)$, then $K\left(L^{\star}\right)$ is the class of all lattices satisfying the equation

$$
\begin{aligned}
& p^{\star}\left(x_{1}, \ldots, x_{n+1}\right)=q^{\star}\left(x_{1}, \ldots, x_{n+1}\right), \text { where } \\
& p^{\star}\left(x_{1}, \ldots, x_{n+1}\right)=p\left(t_{1}, \ldots, t_{n}\right) \\
& q^{\star}\left(x_{1}, \ldots, x_{n+1}\right)=q\left(t_{1}, \ldots, t_{n}\right), \\
& t_{k}=\left(x_{k} \wedge i\right) \vee o \quad(k=1,2, \ldots, n), \\
& o=\left(x_{1} \wedge \ldots \wedge x_{n}\right) \vee\left(x_{n+1} \wedge\left(x_{1} \vee \ldots \vee x_{n}\right)\right), \\
& i=\left(x_{1} \vee \ldots \vee x_{n}\right) \wedge\left(x_{n+1} \vee\left(x_{1} \wedge \ldots \wedge x_{n}\right)\right) .
\end{aligned}
$$

Proof. (1) As $L$ is subdirectly irreducible, the set of all its congruences that are different from the smallest congruence $\iota_{L}$ contains a smallest member $\Theta$. The relation $\Theta \bigcup \iota_{L^{\star}}$ is evidently the smallest congruence of $L^{\star}$ different from $\iota_{L^{\star}}$. $L^{\star}$ is thus subdirectly irreducible. Let $A$ be a lattice and $f$ a homomorphism of $A$ onto $L^{\star}$. By Theorem 2 it is sufficient to prove that $A$ contains a sublattice isomorphic to $L^{\star}$. Denote by $b$ the smallest and by $c$ the greatest element of $L$. There exist $a^{\prime}, b^{\prime}, c^{\prime} \in A$ such that $f\left(a^{\prime}\right)=a, f\left(b^{\prime}\right)=b, f\left(c^{\prime}\right)=c$. Put

$$
\begin{aligned}
& v^{\prime}=b^{\prime} \vee a^{\prime}, \\
& c^{\prime \prime}=\left(c^{\prime} \wedge v^{\prime}\right) \vee b^{\prime}, \\
& u^{\prime}=c^{\prime \prime} \wedge a^{\prime}, \\
& b^{\prime \prime}=b^{\prime} \vee u^{\prime} .
\end{aligned}
$$

We have evidently $u^{\prime}<b^{\prime \prime}<c^{\prime \prime}<v^{\prime}, c^{\prime \prime} \wedge a^{\prime}=u^{\prime}, b^{\prime \prime} \vee a^{\prime}=v^{\prime}, f\left(b^{\prime \prime}\right)=b$, $f\left(c^{\prime \prime}\right)=c$. It is easy to see that the interval $\left\{x \in A ; b^{\prime \prime} \leq x \leq c^{\prime \prime}\right\}$ is mapped by $f$ onto $L$, so that it contains a sublattice $L_{0}$ isomorphic to $L$. The union $L_{0} \cup\left\{a^{\prime}, u^{\prime}, v^{\prime}\right\}$ is evidently a sublattice of $A$ which is isomorphic to $L^{\star}$.
(2) Assume that the lattice $L^{\star}$ is a sublattice of a lattice $S$. The equation $p=q$ is not satisfied in $L$ and so there exist elements $a_{1}, \ldots, a_{n}$ of $L$ such that $p\left(a_{1}, \ldots, a_{n}\right) \neq q\left(a_{1}, \ldots, a_{n}\right)$. Clearly $\quad p^{\star}\left(a_{1}, \ldots, a_{n}, a\right)=p\left(a_{1}, \ldots, a_{n}\right) \neq q\left(a_{1}, \ldots\right.$ $\left.a_{n}\right)=q^{\star}\left(a_{1}, \ldots, a_{n}, a\right)$. Thus the equation $p^{\star}=q^{\star}$ is not satisfied in $S$.

Conversely, let $S$ be a lattice and let the equation $p^{\star}=q^{\star}$ be not satisfied in $S$. Let $a_{1}, \ldots, a_{n}, d$ be elements of $S$ such that $p^{\star}\left(a_{1}, \ldots, a_{n}, d\right) \neq q^{\star}\left(a_{1}, \ldots\right.$, $a_{n}, d$. Put

$$
\begin{aligned}
& r=\left(a_{1} \vee \ldots \vee a_{n}\right) \wedge\left(d \vee\left(a_{1} \wedge \ldots \wedge a_{n}\right)\right) \\
& s=\left(a_{1} \wedge \ldots \wedge a_{n}\right) \vee\left(d \wedge\left(a_{1} \vee \ldots \vee a_{n}\right)\right), \\
& h_{\bar{\kappa}}=\left(a_{k} \wedge r\right) \vee s \quad(k=1,2, \ldots, n) .
\end{aligned}
$$

Since $p^{\star}\left(a_{1}, \ldots, a_{n}, d\right)=p\left(h_{1}, \ldots, h_{n}\right)$ and $q^{\star}\left(a_{1}, \ldots, a_{n}, d\right)=q\left(h_{1}, \ldots, h_{n}\right)$, the equation $p=q$ is not satisfied in the interval $[s, r]$. By the assumption, there exists


Fig. 1
a sublattice $L^{\prime}$ of $[s, r]$ isomorphic to $L$. It is easy to show that $d \wedge r=d \wedge s$ and $d \vee r=d \vee s$. From this it follows that the set $L^{\prime} \cup\{d, d \wedge r, d \vee r\}$ forms a sublattice of $S$ isomorphic to $L^{\star}$.

The two-element lattice is evidently primitive. There exist primitive lattices which can not be obtained from the two-element lattice by applications of Theorem 3. Some examples of ones will be now given.
H. Löwig [3] proved that the lattice $A$ in Fig. 1 is primitive and that the class $K(A)$ is the class of all lattices satisfying the equation

$$
(x \wedge y) \vee(x \wedge z)=x \wedge((y \wedge z) \vee(z \wedge x) \vee(x \wedge y))
$$

Clearly, the dual of a primitive lattice is primitive, too. Thus, the lattice $B$ in Fig. 1 is primitive and the class $K(B)$ is characterized by the dual equation.

The following two theorems give other examples of primitive lattices.
THEOREM 4. The lattice $C$ in Fig. 2 is primitive and the class $K(C)$ can be characterized by one equation.

Proof. We shall find an equation $p=q$ and show that $K(C)$ is just the class of all lattices satisfying this equation. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be variables. Put

$$
\begin{array}{ll}
o^{\prime}=x_{1} \wedge x_{2}, & i^{\prime}=x_{1} \vee x_{2}, \\
a^{\prime}=\left(o^{\prime} \vee x_{3}\right) \wedge i^{\prime}, & c^{\prime}=\left(a^{\prime} \vee x_{4}\right) \wedge i^{\prime}, \\
o_{1}^{\prime}=c^{\prime} \wedge x_{1}, & o_{2}^{\prime}=c^{\prime} \wedge x_{2}, \\
i_{1}^{\prime}=a^{\prime} \vee x_{1}, & i_{2}^{\prime}=a^{\prime} \vee x_{2}, \\
o_{1}^{\prime \prime}=o_{1}^{\prime} \wedge i_{2}^{\prime}, & o_{2}^{\prime \prime}=o_{2}^{\prime} \wedge i_{1}^{\prime}, \\
o_{1}^{\prime \prime}=o_{1}^{\prime \prime} \vee\left(x_{1} \wedge i_{2}^{\prime}\right), & o_{2}^{\prime \prime \prime}=o_{2}^{\prime \prime} \vee\left(x_{2} \wedge i_{1}^{\prime}\right), \\
i_{1}^{\prime \prime \prime}=i_{1}^{\prime \prime} \wedge\left(x_{1} \vee o_{2}^{\prime \prime \prime}\right), & i_{2}^{\prime \prime \prime}=i_{2}^{\prime} \wedge\left(x_{2} \vee o_{1 \prime \prime \prime}^{\prime \prime \prime}\right) \\
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=o_{1}^{\prime \prime \prime} \vee o_{2}^{\prime \prime \prime}, & q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=i_{1}^{\prime \prime \prime} \wedge i_{2}^{\prime \prime \prime}
\end{array}
$$

It is easy to see that in any lattice we have

$$
\begin{array}{ll}
o^{\prime} \leq o_{1}^{\prime \prime \prime} \leq x_{1} \leq i_{1}^{\prime \prime \prime} \leq i^{\prime}, & o^{\prime} \leq o_{2}^{\prime \prime \prime} \leq x_{2} \leq i_{2}^{\prime \prime \prime} \leq i^{\prime} \\
o_{1}^{\prime \prime \prime} \leq p \leq q \leq i_{2}^{\prime \prime \prime}, & o_{2}^{\prime \prime \prime} \leq p \leq q \leq i_{1}^{\prime \prime \prime} .
\end{array}
$$



## C

Fig. 2
Since $o_{2}^{\prime \prime \prime} \leq i_{1}^{\prime \prime \prime}, x_{1} \leq i_{1}^{\prime \prime \prime}$ and $i_{1}^{\prime \prime \prime} \leq x_{1} \vee o_{2}^{\prime \prime \prime}$, we have $x_{1} \vee o_{2}^{\prime \prime \prime}=i_{1}^{\prime \prime \prime}$. Similarly we can get that $x_{2} \vee o_{1}^{\prime \prime \prime}=i_{2}^{\prime \prime \prime}, x_{1} \wedge i_{2}^{\prime \prime \prime}=o_{1}^{\prime \prime \prime}$ and $x_{2} \wedge i_{1}^{\prime \prime \prime}=o_{2}^{\prime \prime \prime}$ holds in any lattice.

We are now able to finish the proof. If $C$ is a sublattice of a lattice $L$, then the equation $p=q$ is not satisfied in $L$ because

$$
p(b, d, a, c)=a \neq c=q(b, d, a, c) .
$$

Conversely, let $L$ be a lattice such that the equation $p=q$ is not satisfied in $L$. Then there exist elements $a_{1}, a_{2}, a_{3}, a_{4}$ of $L$ such that $p\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \neq$ $\neq q\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. If in the expressions

$$
o^{\prime}, i^{\prime}, o_{1}^{\prime \prime \prime}, o_{2}^{\prime \prime \prime}, i_{1}^{\prime \prime \prime}, i_{2}^{\prime \prime \prime}, p, q, x_{1}, x_{2}
$$

we write $a_{1}, a_{2}, a_{3}, a_{4}$ instead of $x_{1}, x_{2}, x_{3}, x_{4}$, we get ten elements of $L$; it is easily verified that they form a sublattice of $L$ isomorphic with $C$.


D

$E$

Fig. 3

THEOREM 5. The lattice $D$ in Fig. 3 is primitive and the class $K(D)$ can be characterized by one equation. The same holds for the lattice $E$ in Fig. 3, as it is dual to $D$.

Proof. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be variables. Put

$$
\begin{array}{ll}
o^{\prime}=x_{1} \wedge x_{2}, & c^{\prime}=\left(x_{3} \vee o^{\prime}\right) \wedge\left(x_{1} \vee x_{2}\right), \\
s^{\prime}=x_{1} \wedge c^{\prime}, & t^{\prime}=\left(x_{4} \vee o^{\prime}\right) \wedge x_{2}, \\
i^{\prime}=s^{\prime} \vee x_{2}, & b^{\prime}=x_{1} \wedge i^{\prime} \\
t^{\prime \prime}=x_{2} \wedge\left(b^{\prime} \vee t^{\prime}\right), & r^{\prime}=b^{\prime} \vee t^{\prime \prime} \\
c^{\prime \prime}=\left(\left(c^{\prime} \wedge i^{\prime}\right) \vee t^{\prime \prime}\right) \wedge r^{\prime}, & s^{\prime \prime}=b^{\prime} \wedge c^{\prime \prime} \\
a^{\prime}=s^{\prime \prime} \vee t^{\prime \prime}, & \\
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=a^{\prime}, & q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c^{\prime \prime} .
\end{array}
$$

The following relations are evident:

$$
\begin{array}{ll}
o^{\prime} \leq s^{\prime \prime} \leq a^{\prime} \leq c^{\prime \prime} \leq r^{\prime} \leq i^{\prime}, & s^{\prime \prime} \leq b^{\prime} \leq r^{\prime} \\
o^{\prime} \leq t^{\prime \prime} \leq a^{\prime}, & t^{\prime \prime} \leq x_{2} \leq i^{\prime}
\end{array}
$$

Since $t^{\prime} \leq t^{\prime \prime}$ and $t^{\prime \prime} \leq b^{\prime} \vee t^{\prime}$, we have $b^{\prime} \vee t^{\prime \prime}=b^{\prime} \vee t^{\prime}$ and hence $r^{\prime} \wedge x_{2}=t^{\prime \prime}$.

Since $s^{\prime} \leq b^{\prime} \leq x_{1}$ and $s^{\prime} \leq c^{\prime}$, we have $s^{\prime} \leq c^{\prime \prime}$. Now it is easy to see that $s^{\prime} \leq s^{\prime \prime}$ and hence $i^{\prime}=s^{\prime} \vee x_{2}=s^{\prime \prime} \vee x_{2}$.

We shall now prove that a lattice $L$ belongs to $K(D)$ iff the equation $p=q$ is satisfied in $L$. First assume that $L \notin K(D)$. Then the equation $p=q$ is not satisfied in $L$ because

$$
p(b, d, c, t)=a \neq c=q(b, d, c, t) .
$$

Conversely, let the equation $p=q$ be not satisfied in $L$. Then $p\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \neq$ $\neq q\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ for some $a_{1}, a_{2}, a_{3}, a_{4} \in L$. If in the expressions

$$
o^{\prime}, i^{\prime}, s^{\prime \prime}, t^{\prime \prime}, a^{\prime}, c^{\prime \prime}, b^{\prime}, r^{\prime}, x_{2}
$$

we write $a_{1}, a_{2}, a_{3}, a_{4}$ instead of $x_{1}, x_{2}, x_{3}, x_{4}$, we get nine elements of $L$; they constitute a sublattice of $L$ isomorphic with $D$.

It follows from Theorem 3 that we have six infinite sequences of primitive lattices: we may start either from the two-element lattice or from one of the lattices $A, B, C, D, E$ in Figures 1, 2, 3. If we take any member of these sequences, then the corresponding primitive class is characterized by one equation.

## References

[1] Игошин В. И.: Характеризуемые многообразия решеток. „Упорядоченные множества и решетки‘‘, вып. 1, Издательство Саратовского университета, 1971, 22.
[2] Jónsson B.: Algebras whose congruence lattices are distributive. Math. Scand., 1967, 21, 110.
[3] Löwig H.: On the importance of the relation [(A, B), (A, C)] $<(A,[(B, C),(C, A),(A, B)])$ between three elements of a structure. Ann. Math., 1943, 44, 573.

