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The sets of removable singularities of a partial differential equation (removable 
sets, in short) are usually defined in this manner: Let u be a solution of such an 
equation in an open set U with a closed set K removed and let u belong to a certain 
class of functions (for instance u is in Lv or u is a continuous or a Holder-continuous 
function); we shall call K a removable set if it follows from this that the function u 
is a solution of that equation in all of U. 

1. Notation. Let Rn be the ^-dimensional Euclidean space, 3n the space 
of all infinitely differentiate functions with compact supports in Rn, Q>'n the space 
of all distributions on 3)n (cf. [2]). For a function (or a measure) (p on Rn let spt (p 
be the support of (p. If Q <=- Rn then we put 

3(Q) = {(p e@n; spt (p <= Q) 

and let Q)'(Q) denote the system of all distributions on 3(Q) (cf. [2]). 
In this paper we shall deal with sets of removable singularities of the equation 

0 (1) 
dxdy 

in #2 . 
Let Q c: R* be an open set, u a continuous function on Q. We can define 

a distribution Tu e &(Q) if we put 

Tu(<p) = J 7 <P(X> y) u(x, y) dxdy ((p e 9(Q)) . 
Q 

The function u is called a solution of the equation (1) in the distributional sense 
(in short: u is a solution of (1)), if the distributional derivative ftTu/dxdy is the 
zero distribution, i.e. 

d2(p If - (x, y) u(x, y) áxdy = 0 
9JC3V 

D 

for any function (p e 3(Q). 
In this article we shall consider sets of removable singularities in the following 

sense: Let Q ^ R2 be an open set, K <= R2 a closed set. We shall say the set K 
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is a removable in Q (with regard to the equation (1)) if for every continuous function 
uonQ the following implication is valid: 
u is a solution of (1) on Q \ K=> u is a solution of (1) on Q. 

Let us introduce some other notations. A straight line p ^ R2 will be called 
an axially parallel one if p has either the form p = {[xo, y]; y e R1} or the form 
P = {[x,yo]i xeR1}. 

We define I as the system ofallBorel sets B <-= R* for which there are countably 
many axially parallel straight lines pn such that 

B c U pn. 

The aim of this article is to prove the following assertion. 
2. Theorem. A closed set K ^ R2 is removable in R2 if and only if K e I. 
3. If we want to prove that every removable (closed) set in R2 belongs to / 

it is sufficient to show that for every closed set K <= R%y K $ I there is a continuous 
function u on R2 such that u is a solution of (1) on R2\K, but u is not a solution 
of(l)on_R2 . 

Let K <^ R2 be a closed set with K $ I. Then it follows from [1] (auxiliary 
theorems 4 and 6) that there exists non-negative and non-zero measure n with 
spt /u c: K such that the function 

u(x,y) = J j E(x — x'y y — y ) d/*(*',y) 
R* 

(where E(xyy) = 1 if x > 0, 3> > 0; E(xyy) = 0 elsewhere in R2) is continuous 
on R2. Considering that E is a fundamental solution of the equation (1) (cf. [1]) 
it is seen that u is a solution of, (1) on R2\ K (for spt ju <-= /C), but « is not a 
solution of (1) on I?2 (for ju is not zero measure). 

4. Lemma. Let ai </#i, a2 </? 2 (where a<, /?* are finite or infinite), 
Q = ( a i , j8i) x (a2, /?2). Then for every L e 9'(Q) 

* L 0 (2) 
dxdy 

holds if and only if 

L=U + V, (3) 

where Uy V e @'(Q), U is independent of the variable #, V is independent of 
the variable y (the definition of the independence of the variable x see for instance 
in [2]). 

Proof. If L is of the form (3) then certainly (2) holds (in [2] we can see that 
a distribution T e $)'(Q) is independent of x if and only if dTjdx = 0). 

Let us suppose Le@'(Q) and (2) is satisfied. Then the distribution Li = dLjdy 
is independent of x. 

For S 6 Q}'m, T e 3'n let S ® T denote the direct product of the dis-
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tributions S, T(S ® T e @'m+n; see [2]). Let us define the distribution A e @[; 
we put 

oo 

A(q>) = J <p(x) dx 
— O O 

for every function <p e _#i. It is seen from the examples behind the chapter IV 
in [2] that a distribution T e Q)i is independent of x if and only if there is a Pi e £?_ 
such that T = A®Ti. 

So there is L\ e ®\(a<L, (i2)) such that 

L1 = A®L{. 

Furthermore there exists U* e _ '̂((a2> fe)) (see [2], chap. II , theorem 1) such 
that 

dU* _, 

Put U = A ® U*, V = L — U. U is independent of x. It is sufficient to prove 
that V is independent of y, which follows from 

dV BL dU _ . _ dU* _ . _ _, A •-5— = -a 5— = Li — A ® —=— = Li — _4 ® Lx = 0. 
c[y dy qy qy 

5. Lemma. Let J2 = (ai, /?_) x (a2, ^2), u be a continuous function on Q. 
Then FM is independent of x if and only if u does not depend on x in the usual 
sense. 

We could easily prove this assertion from the definition of the distribution Tu 

and the definition of the indipendence of one variable. 
6. Lemma. Let Q = (ai, /?_) x (a2, ̂ 2). A continuous function u on Q 

is a solution of (1) on Q if and only if we can write 

u(x,y) = / ( * ) +g(y) ([xyy] eQ), (4) 

where f(g) is a continuous function on (a_, /J_) ((02,^2)). 
Proof. If the function u is of the form (4) then u is a solution of (1) on Q 

(see lemmas 4 and 5). 
Let u be a continuous solution of (1) on _Q. It follows from lemma 4 that we 

can write 
Tu = U + V, 

where c7, Ve@f(Q), Uis independent of x and Vis independent of y. Since dVjdy = 0, 

for every 9? e £?(-Q). £7 is independent of * and thus dUjdy is independent of x. If 
9? G 3)(Q) there is a h<p > 0 such that for every /* e R1, \h\ < h<p, is yh e @(Q) if 

9^(*>.y) = <p(x— h,y) . 
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It is seen from (5) and the definition of the independence of x that for every y e @(Q), 
heR\\h\ <h<p 

J J (u(x, y) — u(x + h, y)) --— (x, y) dxdy = 0 (6) 

is valid. Let 0 < ho < Ki#i ~~ a i ) (w e c a n suppose ai, /Si are finite for 
simplicity). For h e Rl with \h\ < ho we can define a distribution Kn e 
€ Q)'((ai + ho, /Si — ho) x (a2, /?2)) in natural way by means of the function 

u(x,y) — u(x +h,y) . 

It follows from (6) that for every h e Rl with \h\ < ho 

dK^=Q 

dy 

and thus (see lemma 5) there is a function fh which is continuous on (ai + ho, 
fii — ho) and 

u(x, y) — u(x +h,y) = fh(x) 

for every x e (ai + ho, pi — ho) and y e (ai, fi2). Let xo belong to (ai + ho, 
fii — ho) and let us put 

/(*) =f(x.-x)(x) 
if x e (ai + ho, Pi — ho) f] (xo — ho, xo + ho). Then for these x and for y e (a2, /}2) 
the following equality is valid 

u(x,y) =f(Xo_x)(x) +u(x +x0 — x,y) =f(x) +g(y) , 

where g(y) = u(xo,y). Hence we can write the function u in the form (4) on every 
set of a form ((ai + ho, Pi — ho) f] (xo — ho, xo + ho)) X (a2, fi2). 

Let us have two sets Ii, I2 of that form and suppose Ii f) I2 =£ 0 and 
u(x,y) =fi(x) +gi(y) on h(i = 1,2). Then 

fi(x) — f2(x) = g2(y) — gi(y) (= c) 

on Ii f| h (c is a constant). We put f(x) = fi(x) if there is y with [x, y] e Ii and 
f(x) = f2(x) + c if there is y with [x, y] e I2; then 

u(x,y) =J(x) +gi(y) 

on Ii f| I2- Consequently, u is of the form (4) on (ai + ho, />i — ho) x (a2, fi2). 
It is sufficient for the completion of the proof to let ho tend to zero. 

7. Let us show now that every axially parallel straight line is a removable set. 
We are going to prove the following simple assertion (in which we consider the case 
when the straight line p has the form p = {[xo5 J>]; y e R1}', in the other case the 
assertion can be proved in a similar way). 

Let u be a continuous function on D = (ai, /?i) x (a2, f$2), xo e (ai, /?i) and 
let u be a solution of (1) on Q with the set {[xo,^]; y e (a2, @2)} removed (i.e. u is 
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a solution of (1) on (ai, xo) x (a2, p2) and on (xo, Pi) x (a2, p2)). Then the function 
w is a solution of (1) on :Q. 

Proof. If follows from lemma 6 that there are functions/*, gt (i = 1,2) such 
that 

u(x,y) =fi(x) +gi(y) 

for every [x, y] e (ai, JC0) x (a2, p2) and 

u(x,y) =f2(x) +g2(y) 

for every [x,y] e(x0,Pi) x (a2, p2). For any -y e(a2,p2) 

a = lim /i(x) = lim (w(x, jO —- £1(3;)) = u(x0,y) — £i(;y) 
X—>XQ— X—>XQ— 

and 
c2 = lim f2(x) = lim (w (x, y) — £2(y)) = u(xo, y) — g2(y) 

x-+x0+ x-+x0 + 

and it is seen from this that 
£2(30 = £l(30 +C1 — C2 

for every y e(a2 , p2). Defining a function/ on (ai, pi) as follows 

,fi(x) x e (ai, x0) 
f(x) = ^~ci x = xo 

J2(x) — c2 +a x e (xo, Pi), 

we see that the function/ is continuous on (ai, pi) and 

u(x,y) =f(x) +gi(y) 
on Q and thus u is a solution of (1) on all of Q. 

Let us note that a "cross" (a set of a form 
{[*o,3>]; y eR1} (J {[x, yo]; x eR1}) is a removable set. That may be proved in 
the same manner as the last assertion. We shall next use this fact. 

In the end let us remark that a straight line which is not axially parallel is not 
a removable set. Put Q = (0,1) x (0,1) and define a function u on Q putting 

u(x, y) = min {x, y} ([x, y] e Q) . 

It can be easily seen the function u is continuous on Q, u is a solution of (1) on 
Q — {ix>y]; x = y}, but is not a solution of (1) on the whole Q. 

8. Lemma. Let K el with K 7-= 0 be a closed set. Then there are 
[*o, yo] e K, S > 0 such that 

- K n t f * ^ ] ; 0 <\x-Xo\<d, 0 <\y-y0\ <d}=0. (7) 

Proof. Let us suppose that there are no such [x0,.yo] e ^ a n d ^ > 0 and 
show that then for any axially parallel straight line p the set K (] p is nowhere 
dense in K. Since K f] p is a closed set it is sufficient to show that the set K\p 
is dense in K. Let [a, b] e K f)p; then for any 6 > 0 

{[x,y]; 0 < | x - a | < o , 0 <\y-b\<d}C\K^0 
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(as we suppose that (7) holds for no [xo, yo] e K, d > 0) and this set is contained 

in K\p. So K ^ K\p. 
Kel and thus there are axially parallel straight lines pn (n = \, 2, ...) 

such that 

K= (J (Kf]Pn). 

But this is a contradiction since K is of the second category in itself and we have 
just shown the sets K f]pn are of the first category in K. 

Let us note that the term square will here stand for an open set of a form 
(x, x + h) x (y, y + h) (where [x, y] e R2, 0 < h e R1) and the term rectangle 
will signify an open set of a form (x, x + hi) x (y, y + h2) (where [x, y] e R2, 
0 < hi, h2 e R1). 

9. Lemma. Let C = (ai, fli) x (a2, ($2) (a*, fa are finite or infinite) and 
Kel be a closed set. L e t / be a continuous function on C and suppose that for 
any square M <-- C, M f] K -= 0 the function / may be written on M in a form 

f(x,y) = <p(x)+y>(y). (8) 

Then the function / is of the form (8) on the whole C. 
Proof. Let 9JI stand for the system of all squere M c C o n which there are 

decompositions (8) of the function / . Putting 

KX = K\{J M (=(K\C)[J(C\ U M)) 
MEW Mem 

it would be easy to prove that for any rectangle A <= C, A f] Ki = 0 there is a 
decomposition (8) of/ on A (at first we should prove tha t / is of the form (8) on any 
rectangle A <= C for which A <-= C \ K\ (as for such a rectangle there are finitely 
many squares belonging to 2R which cover A) and then we prove it for any rectangle 
A <= C\Kx). 

Let us show now that 
Kxf]C = 0 (9) 

(when that has been proved the proof will be complete). 
Let us suppose that (9) does not hold. Then, since K\ is closed and K\ <= K, 

there are d > 0, [xo, yo] eKi f] C such that 

{[x, y]; 0 < \x - xo\ < 6, O<\y-yo\<d}f]K1f]C = 0 (10) 

(we apply lemma 8 to the set Ki f] C). 
First we show that 

[x0,yo]$C (11) 

Let us suppose that (11) is not valid, i.e. [xo,yo] eC; we then can assume that d 
is chosen such that 

M = {[x,y]; | * - * o | < * , \y -yo\ <d} cz c. 
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Then the squares 

{[x,y]; 0<x — x0<d, 0<y—y0<6}, {[x,y]; 0<x—x0<d, — 6 <y—y0 <0} , 

{[x,y]; — 6<x-x0<0, 0<y—y0<d},{[x,y]; —d<x-x0<0, — d <y—y0<0} 

do not meet Ki (see (10)), are contained in C and there are decompositions (8) of the 
function / on those squares. Now it follows from the part 7 that / is of the form (8) 
on the whole M; i.e. M e-Jft. But that is a contradiction ([*o,:yo] eM f] Ki and 
M f] Ki = 0 which follows from the construction of Ki and the fact that M e ffi). 

We have thus shown that [x0, y0] e dC. If C = R2 (i.e. all at, fa are infinite) 
then dC = 0 and that is a contradiction. 

Assuming dC =£0 let B stand for the set of all [x0, y0] e Ki (] C for which 
there is 6 > 0 such that (10) is valid. 

Let [*o,:yo] GB and 6 > 0 be such a number for which (10) holds. Then any 
point 

[xi,yi]eCClKiC){[x,y]; \x - x0\ < 6, \y-y0\<d} 

is either of the form [xi, y0], where \xi — x0\ < d, or of the form [xo3.yi]5 where 
b i — y0\ <d-

Let the point [x±, y{] e C f) K± be for instance of the form [*i,;yo]5 

|*i — *o| <8> xi ^ x0. Putting di = min {\x0 — *i|, d — \x0 — xi\} we get 

{[x,y]; 0 < | J C I - J C | <du 0 <\y-y0\ <d1}(]C()K = 0 

and thus [xi, y0] e B. It is seen from this the set B is an open set with regard 
to Cf]Ki. 

Let us put 
^ 2 - = C n ^ i \ - B . (12) 

Then (as B <= dC and we suppose Ki f] C # 0) K2 ^ 0 and K2 is closed. 
It follows from lemma 8 that there are [x'Q, y'o] e K2, d' > 0 such that 

{[x,y]; 0 < | * - * < ; | <d', 0<\y-yl\ <d'}()K2 = 0. 

If we apply a similar consideration as preceding, we get [XQ, y'0] e dC. There is 
61 > 0 such that the set 

{[x,y]; \x-xi\ <du \y-y0\ <h}\{[x0,yo]} 

does not contain any "corner point" of C (i.e. a point of the form [au fa], where 
i,j = 1 , 2 and ai, ^ are finite). Then 

{[x,y]; 0 < | * - * J | <Ai, 0 <\y-y0\ <d1}r\B = 0 

and putting d -= min {d', Si} we arrive at 

{[x,y]; 0 < \x - jco| < d, 0 < \y - y0\ < 6}f] Cf] Kx = 0 

from which it follows that 
[x^y^eB. 

That is a contradiction to (12). In fact, (9) is valid. 
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If we assume that C is bounded the assertion follows directly from (9) (as is this 
case it follows from (9) that C eW). 

If C is not bounded then C can be expressed as a sum of an increasing sequence 
of rectangles. On any such rectangle there is a decomposition (8) of / (as it does 
not meet K{). Hence we can deduce the function/ is of the form (8) on C. 

10. Theorem. Let G <= R2 be an open set, K e I be closed and u be a continuous 
function on G which is a solution of (1) on G \ K. Then / i s a solution of (1) on C 

Proof. It is sufficient to prove that for any point which lies in G there is an 
open set containing that point, on which u is a solution of (1). 

Let [JCO, yo] e G. There is a rectangle Q such that [>o, j>o] e Q <= G. Then 
the sets Q> K and the function u satisfy the presumptions of lemma 9 (that follows 
from lemma 6) and thus we can write on Q the function/ in the form (8). But this 
means that the function/ is a solution of (1) on C. 

Let us note that theorem 2 follows now from the theorem 10 and the part 3. 
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