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In the paper, a connection between cancellative relations and certain matrices is investigated.
V &lanku se studuje souvislost mezi relacemi s kracenim a jistymi maticemi.

B cTaThe M3y4aeTcs CBA3L MEXIY OTHOIIEHMSMHM CO COKpALEHHEM M HEKOTOPHIMHM MaTpPHIAMH,

1. Introduction

Throughout this paper, let N* denote the set of non-negative integers, N that of
positive integers and Z the ring of integers.

Let ne N and let r be an n-ary relation defined on a set M, i.e. r € M™. We
denote by Q{(r), 1 < i < n, the set of a € M such that (ay, ..., a;-1, a, a;41, ..., a,) €
er for some ay,...,a;_y, 41, ..., a,€ M and we put g(r) = card (Q(r)). The
relation r is said to be cancellative if b = ¢ whenever 1 <i < n, by,..., b;_4,
bitis--o» byyb,ce Mand (by,....,b;—1,b,b;y1y..b,),(bys.o by 1,6, bi4q, ..., b,) €T

Let Q(r) = Q,(r) U ... U Q,(r) and let S be a semigroup with unit element .
A mapping ¢: Q(r) > S is said to be a homomorphism if ¢(a,) ... ¢(a,) = 15 for
every (ay, ..., a,) € r. The homomorphism ¢ is said to be trivial if card (¢(Q(r))) =
= lforeachl1 £ i < n.

Let G(+) be an Abelian group and let 1 < i < n. A mapping ¢: Q(r) - G(+) is
said to be an i-homomorphism if {a;) + ... + ¢(a;—;) + ¢(a;4,) + ... + ¢(a,) =
= ¢'a;) forevery (ay, ...,a,) er.

2. Matrices of special type

Throughout this paper, let R be a non-trivial associative and commutative ring
with unit element 1. We denote by P = P(R) the prime subring of R, i.e. the subring
generated by 1z. Then P is isomorphic to Z, for uniquely determined o € N*, o + 1.
Notice that o is a prime number, provided ¢ + 0 and R is an integral domain.

*) Sokolovska 83, 186 00 Praha 8, Czcchoslovakia.
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For m, ne N, let M(R, m, n) designate the set of matrices of type (m, n) over R.
Then MY(R, m, n) is a free R-module of rank equal to mn. If A (B, ...) is a matrix
then a;; (b;;, ...) will be the elements of 4 (B, ...), a;(b;, ...) the rows and a (;b, ...)
the columns. ,

Consider the following conditions for a matrix 4 € MR, m, n):

(1) a;;€{0,1} foralll <i<mand1 <j<n.

(2) For every 1 < j < n there exists at least one | < i < m with a;; = 1.

Let xeN,2=<a=<n+ 2.

(3,a) If 1 £i < k < mthena,; =1 = g for at most « — 2 indices j, 1 < j <

Let xe N, « < n and let f € N® be such thatZf = B, + ... + B, = n.

(4, o, B) For every 1 < i < m there are exactly « indices t,,...,t, with 1 < 1,
Sh<th, Ef+B<.. =SBt F+Pi<t, EB+..+B=
and a;; = 1 iff je{t,, ...t}

=

s A

2.1. Lemma. (i) If 4 satisfies (1) then A € M(P, m, n).
(ii) If A satisfies (1) and (2) then A satisfies (4, «, §) for at most one ordered pair
(¢, ) withl < a < n, feN®and n = Zp.
Proof. (i) This is obvious.
(ii) Suppose that A satisfies (4, «, ) and (4, o, f'). Let B, < B; and B, < j < B;.
Then it is easy to see that the column ;a is a zero column, a contradiction with
(2). Hence B, = B;. Similarly, B, = B3, etc., and therefore a = «'.

22. Lemma. Let 3<a <n,(n —a+ 2))2<meN, feN®, 8 = n, be such
that there exists a matrix A € M(R, m, n) satisfying (1), (3, «) and (4, «, B). Then:
(card({l1 i a|fi=1})Sa—3.

(iilye+3<nand 3<m.

Proof. Easy.

3. Annihilators

Let A € M(R, m, n). We denote by Mod (4, R) (resp. Mod (R, A)) the submodule
generated by the rows (resp. columns) of 4 in the free R-module R™ (resp. R™).
Further, let Ann (4, R) = {weR™ | Aw = 0} and Ann(R, 4) = {weR™ |wd =
= 0}. Then Ann (4, R)is a submodule of R™ and Ann (R, A4) s a submodule of R“™.

Now, suppose that Ae %(P, m, n). Then there exist invertible matrices C e
€ M(P, m, m) and D € M(P, n, n) such that the matrix B = CAD is diagonal and b,
divides b;, 4, ;44 in Pforall 1 £ i < k = min(m, n).

3.1. Lemma. Rb,; 2 Rb,, 2 ... 2 Rb,, and both the R-modules Mod (4, R)
and Mod (R, 4) are isomorphic to the outer direct sum Rby; @ ... ® Rby, of
principal ideals of R.

Proof. Obvious.
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3.2. Lemma. (0:by,)g S (0:b,,)r = ... = (0: byy)r, the R-module Ann (4, R)
is isomorphic to the outer direct sum (0: by)g @ ... @ (0: by )r ® R ¥)and the
R-module Ann (R, 4) is isomorphic to the outer direct sum (0:b;,)z ® ...

.. @ (0: by)r ® R™¥) of annihilator ideals of R.

Proof. Obvious.

Although the invertible matrices C and D and the diagonal matrix B are not
determined uniquely by A, it follows from the next lemma that the number of non-zero
elements of B is determined uniquely by 4. We denote this number by rank (4). So,
0 < rank (4) < min (m, n).

3.3. Lemma. Let 1e N and let x,,..., x;, ¥1»..., ¥; € R be such that Rx; = ...
.2 Rx;, Ry, 2... 2 Ry, and the R-modules X = Rx; ® ... ® Rx, and Y =
= Ry, @ ... ® Ry, are isomorphic. Then Rx, = Ry,, ..., Rx; = Ry,.

Proof. We shall proceed by the induction on I. For I = 1 there is nothing to prove.
Assume | = 2 and let ¢ be an isomorphism of X onto Y. Clearly, ¢(x,) = iy, and
¢~ '(y,) = gx, for some 4, ¢ € R. Consequently, ¢(Rx,) = Ry, and the R-modules
Rx, ® ... ® Rx; = X/Rx, and Ry, ® ... ® Ry, = Y/Ry, are isomorphic.

3.4. Corollary. Suppose that either ¢ = 0 or o is a prime. Then Ann (4, R) is
a free R-module of rank equal to n — rank (4) and Ann (R, 4) is a free R-module
of rank equal to m — rank (4).

Letl < o« < nandlet B € N® be such that 28 = n. We denote by R(a, B) the set of
allwe R™Wsuchthat wy = ... = Wp,, Wp, 41 = .. = Wpapys eeos Woydotpoo o1 = -+

.=w, and wg, + Wg 45, + o + Wg,4otp_,+1 + W, = 0. Obviously, R(a, ﬁ) is
a submodule of R™ and R(«, /3) is a free R-module of rank o — 1.

A matric 4 € M(R, m, n) will be called (R, «, B)-flat if Ann (4, R) = R(a, f).

3.5. Lemma. Let 4 € M(R, m, n) be a matrix satisfying (1) and (4, «, B). Then:
(i) R(«, B) = Ann (4, R).

(ii) rank (4) S n —a + 1.

(iii) rank (4) =n — a + 1 and m = n — « + 1, provided 4 is (R, o, p)-flat.

Proof. (i) This is an easy consequence of (4, a, f).

(ii) By (i), P(a, B) = Ann (4, P) and P(a, p) is isomorphic to P*~1. By 3.3,
Ann (A, P) is isomorphic to P~ @ M where | = rank (4) and M =
=(0:by1)p® ... ®(0:b,)p. In particular, bM = 0, b = b,. If ¢ = 0 then
M =0 and clearly « — 1 < n — I. Suppose that o % 0. Then the module
(Pb)™~" contains a submodule isomorphic to (Pb)*~ Y, and hence r*~! < "7},

r = card (Pb) = 2, r finite, so that« — 1 < n — L
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(iii) Put I = rank (4). By (ii), I £ n — « + 1. By 3.3, Ann (4, R) possesses a free
direct summand of rank n — I. But Ann(4, R) = R(«, B) is a free module
of rank « — 1. Consequently,n — I £ a2 —landn —a+ 1= 1.

3.6. Lemma. Let 4 € M(R, m, n) be a matrix satisfying (1) and (4, a, §). Suppose
that 4 is (R,o, f)flat. Then ! =rank(Ad)=n—a+1 and (0:b ) = ...
ce.=(0:by)r = 0.

Proof. First, | = n — o + 1 by 3.5(iii). Further, by 3.3, Ann (4, R) is isomorphic
toR“™DOMM=(0:b1,)g® ... ®(0:b,)g On the other hand, Ann (4, R) =
= R(, B) is isomorphic to R~ ", and therefore R®~ ") is isomorphic to R*™" @ M.
We are going to show that M = 0. Assume on the contrary that M #+ 0. The module
M as a direct summand of R~ 1 js finitely generated. Hence IM % M for a maximal
ideal I of R. Put S = RJI, so that S is a field. The S-modules S“~ ! and S*™ " @
@ M/IM are isomorphic, hence M[/IM = 0, IM = M, a contradiction.

3.7. Proposition. Let 4 € M(R, m, n) be a matrix satisfying (1) and (4, a, B). The
following conditions are equivalent:

(i) A is (P, a, p)-flat.

(i) I =rank(4) =n —a + 1and(0: b,)p = O(then(0: byy)p = ... = (0: by)p =
= 0).

Proof. (i) implies (ii) by 3.6.

(ii) implies (i). First, let ¢ = 0 and let Q be a quotient field of P. Then both Q(«, B)
and Ann (4, Q) are isomorphic to Q™ !). Consequently, Q(«, ) = Ann (4, Q)
and it is easy to see that 4 is (P, «, f)-flat. Now, let ¢ # 0. Then the equality
card (P{a, B)) = card (Ann (4, P)) yields the equality P(a, f) = Ann (4, P).

3.8. Corollary. Suppose that either ¢ = 0 or ¢ is a prime. Let A € WM(R, m, n) be
a matrix satisfying (1) and (4, o, B). Then A is (P, o, p)-flat iff rank (4) = n — « + 1.

3.9. Proposition. Suppose that R is a domain. Let 4 € M(R, m, n) be a matrix
satisfying (1) and (4, o, B). Then A is (R, «, p)-flat iff rank (4) = n — a + 1.

Proof. Similar to that of 3.7.
4. Auxiliary results

Leta,n,meN,a < n, fe N, L8 = n. Let A € M(R, m, n) be a matrix satisfying

(1) and (4, a, B).
4.1. Lemma. Suppose that 4 is (R, «, f)-flat. Then 4 satisfies (2).
Proof. Easy.
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4.2. Lemma. Let a; = a, forsome 1 < i < k £ mand let B be the matrix obtained
from A by omitting the k-th row. Then:
(i) Be MYR, m — 1, n) satisfies (1) and (4, a, f).
(ii) B satisfies (2) iff 4 does so.
(iii) Ann (4, R) = Ann (B, R).
(iv) Bis (R, a, p)-flat iff 4 is so.

Prcof. Easy.
Now, let 1 £i < k < m be such that a; # g, and a;;, = a;j, = ... = a;;,_, =
= a;,_, = 1for some 1 < j; <...<j,—; < n (in particular, A does not satisfy

(3)). Then there exist 1 < r, s < n such that r s, r, s # j;, ..., j,~, and a;, =
= a,, = 1. Moreover, both r and s are contained in just one from the intervals
[LB]) [Bi+ 1, By + B2 [Br+ oo + Ba—y + 1,n]. Let r, se[By + ...
o+ By + 1, By + ...+ Biyq], where Bo=0,0=1=<a—1 Put {=min(r,s)
and u = max (r, s). We shall define a matrix Ce M(R, m — 1, n — 1) as follows:
¢y =4ay and ¢;;, =a,,,, forall 1 £ x<k<z=<m-—1 and all y such that
either S y<tort<y<u;cy=ac,, forall sx<kandalu<ycs
Sn—1,cy=a g+ foralk = x<m-landusy=sn-1;c,+a,+
+aforall |l S x<k;cy=0au41,+ ageyforallk S x<m— 1.

4.3. Lemma. (i) Ce M(R, m — 1, n — 1) satisfies (1) and C satisfies (2) iff 4
does so.
(ii) C satisfies (4, &, 7) for y = (Bys .. Bis Bie1 — L, Brsas oo Ba)-
(iii) If z € Ann (A4, R) then z, = z,.
(iv) Cis (R, a, y)-flat iff 4 is (R, «, )-flat.

Proof. Let we R™™1) and x € R™ be such that x; = wy, ..., X, = Wu_q, X, =
=Wy, Xy41 = Wy oees Xy = W,—;. Let Cw = vand Ax = y. Thenv, = y,,...,0,_{ =
= Vk-1> Ok = Vit1s -5 Up—q = Ypand v; = y, = y;

In the next lemma, let 9,,...,0,€R and 1 < i < m be such that g,a, + ...
...+ 0na, = 0 and (0:¢,)x = 0. Denote by D the matrix obtained from A by
omitting the i-th row.

4.4. Lemma. (i) D e MR, m — 1, n) satisfies (1) and (4, o, B) and D satisfies (2)
iff 4 does so.
(i) Ann (D, R) = Ann (4, R).
(iii) D is (R, a, p)-flat iff 4 is so.

Proof. Easy.
5. Determinants

Leta,n,meN,2Za<nandm=n-oa+1l.LetlSr;<..<r,_;=<n
For a matrix A€ YR, m,n) we denote by A(ry,...,r,—,) the square matrix of
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type (m, n) obtained from A4 by omitting the r,, ..., r,_;-th columns. Further, define
a square matrix C = A[ry, ..., r,—4] of type (n, n) as follows: ¢; = a; for all 1 <
Sismycpjp=0foralll<js<a—-1land 1Sk=n k+r; Cmtjir, =
forall £ jsa—1.

—

5.1. Lemma. det C = (—1)'det Bfor l =ry + ... + ryoy + (@ — 1) n —
= (a = 1) (a = 2)2.

Proof. Easy.

5.2. Lemma. (i) we Ann (C, R)iff we Ann (4, R)and w, = ... = w

Proof. Obvious.

Now, let fe N®, £8 = n. Denote by J(B) the set of all ordered « — I-tuples
s = (Sy5...,8,—) such that 1 <5, <... <s,_; < n and each from theintervals
[1,B8:). [B1 + L, By + Bs]s--s [By + .. + Ba—y + 1, n] contains at most one from
the numbers sy, ..., s,—;. Then exactly « — 1 intervals contain each just one of those
numbers and one interval contains none.

Let r = (ry, ..., 7e-1) € J(B), let A€ M(R, m, n) be a matrix satisfying (1) and
(4,0, B) and let B = A(r) and C = A[r].

5.3. Lemma. Ann(C, R)n R(a, f) = 0.

Proof. This is an easy consequence of 5.2.

5.4. Lemma. Suppose that 4 is (R, a, §)-flat. Then:
(i) Ann(C,R) = 0.
(ii) rank (C) = n.
(iii) (0 : det C)g = O.
(iv) If ¢ * O then C is invertible in M(P, n, n).
(v) C is invertible in SIR(S, n, n) where S is the classical quotient ring of R.

Proof (i) We have R(x, ) = Ann (4, R), Ann (C, R) = Ann (4, R) and
Ann (C, R) n R(a, B) = 0. Thus Ann(C, R) = 0.
(ii) This is an easy consequence of 3.2.
(iii) This is clear from (i).
(iv) Put ¢ = det C. Then (0 : ¢)g = 0, so that c is invertible in P and C in M(P, n, n).
(v) Similar to (iii).

5.5. Lemma. If Ann(C, R) = 0 then 4 is (R, «, f)-flat.

Proof. Let w € Ann (4, R). We shall restrict ourselves to the case r,_; < f, + ...
... + Pa—y, the other cases being similar. Consider x € R™ such that x, = ...

= Xpgy = Wy Xgi1 = e = Xgiapy T Wrps oo X bt B p bl T cee
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e = Xphapy s =W ANd Xp g h T e =Xy = W — o — W,

Then x ¢ R(a, ) Moreover, w — x € Ann (C, R) by 5. 2(1) Hence w = x and we
€ R(, p).

5.6. Proposition. The following conditions are equivalent:
(i) A is (R, «, B)-flat.

(i) Ann(C, R) = O

(iii) (0 : det C)g =

Proof. (i) implies (ii) and (iii) by 5.4, (ii) implies (i) by 5.5 and the implication (iii)
implies (ii) is easy.

5.7. Proposition. Suppose that either ¢ = 0 or ¢ is a prime. The following conditions
are equivalent:
(i) 4 is (P, «, )-flat.
(i) rank (4) = n — « + 1.
(iii) rank (C) = n.
(iv) det C # 0.
(v) det B 0.

Proof Use 3.8 and the fact that P is an integral domain.
Let r, s € J(B).

5.8. Lemma. Let I be a prime ideal of R. Then det A[r] eI iff det A[s] eI.

Proof. Denote by g the natural homomorphism of R onto S = R/I and suppose
that det A[r] eI. We have g(A[r]) = g(A4) [r], 0 = g(det A[r]) = det g(4) [r] and
rank (g(A)) < n — o« + 1by 5.7 and 3.5(ii). However, now we can proceed conversely
and we have det A[s] e1.

6. Some matrices

Let4 < meN, meven, k = m/2and n = m + 2. Let Be M(Z, k, k) be a matrix
satisfying (1), (2) and (4, 1, k) such that b,; = 0 for each 1 £ i < k. Notice that each
column as well as each row of B contains just one non-zero element. Consider the
following matrix 4 € M(Z, m, n):

L I, ]1]0
1]o0
o1 |’

I, | B|:|:

\ 0]1)

where I, € M(R, k, k) is the unit matrix.
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6.1. Lemma. 4 satisfies (1), (2), (3, 3) and (4, 3, g) for B = (k, k, 2).

Proof. Obvious.
Now, put C = A(m, n) (clearly (m, n) € J(4)). The matrix C has the following

form:
( L)
Ik Ik—l |
0...0 |1
o’
wlo |7
0)

where D is the matrix obtained from B by omitting the last column. It is easy to see
that det C = + det E, where E is the following matrix:

I
I | Ii—y , :
0..0 | 1
i |—1 ’
0 | D——Ll :
|
\ | =1)
Here, L= (I,_, \eM(Z, k, k — 1).
0...0
Similarly, det C = + det F, where F is as follows:
0
I, | 0 :
0
-1
0| D-L .
\ —~1
—1
Denote by G the matrix (D — L, * |e WM(Z, k, k).
-1

6.2. Lemma. det C = + det G.

Proof. The result follows easily from the equality det C = + det F.
Let H be the matrix obtained from B by omitting the last row and the last column.
Put K=H -1I,_,.

6.3. Lemma. det C = t+kdetK.
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Proof. If we add in G to the last row the remaining rows, we get the following matrix:

-
K |
=
0.0 —k

6.4. Lemma. detK €{0, 1, —1}.

Proof. By induction on I € N, we shall prove such an assertion: Let Ve M(Z, | 1)
be a matrix satisfying (1) such that each row as well as each column of ¥ contains at
most one non-zero element. Then det We {0, 1, —1}, where W= V — I,. First,
observe that if v;; = 1 for some 1 < i </ then W contains a zero row, so that
det W = 0. Hence assume that v;; = O for each i. Further, if the matrix V contains
a zero row (resp. column), then we can apply the induction hypothesis. So, let each
row as well as each column of V contain exactly one non-zero element. Then the
sum of all rows of Wis equal to zero, so that det W = 0.

There is a permutation p of the set {1, 2, ..., k} such that b;; = 1iff j = u(i).

6.5. Lemma. Suppose that k = 3. Then det K # 0 iff u is a cycle.

Proof. Denote by f the natural homomorphism of Z onto Z/2Z = S. Clearly,
det K + 0 iff det f(K) + 0. However, det f(K) # 0 iff the rows of f(K) are linearly
independent over S. It is easy to see that if T is a proper non empty subset of
{1,2,...,k} then ). f(k;) = Oiff 4{T) = T. The rest is clear.

ieT

6.6. Corollary. Let m > 6. The matrix A4 is (Z, 3, f)-flat iff u is a cycle.

7. The numbers (R, [, x)

Letl1<a<n BeN Ip=n3<nm=n—oa+ 1 Let Ae MR, m, n) be
a matrix satisfying (1) and (4, «, ). We denote by A/ A) the set of all non-zero (proper)
prime ideals I of R such that det A[r] eI for some (and then for all — see 5.8)
re J(B).

7.1. Lemma. The following conditions are equivalent for a non-zero prime ideal I
of R:

(i) 1 € A(4).
(i) fi(4) is not (S, a, B)-flat where f;: R — R/I = S is the natural projection.
(iii) rank (f{(4)) < m.
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Proof. The conditions (ii) and (iii) are equivalent by 3.9 and the conditions (i) and
(iii) are equivalent by 5.7.

Let I be a non-zero prime ideal of R and let 2 < a e N. We let d(R, I, a) designate
the minimum of all m € N such that there exist fe N® withn = Zf =m + o — 1
and a matrix 4 € M(R, m, n) satisfying (1), (2), (3, «) and (4, o, B) such that I € A(4)
and A4 is (R, «, B)-flat. We put §(R, 1, ) = oo if there exists no matrix with these
properties. For a prime n € N, let {x, «) = 8\Z, Z~, ).

7.2. Lemma. Suppose that R is a domain .Let m,ne N, fe N®, £ = n and let
A e MR, m, n) be a matrix satisfying (1) and (4, «, ) such that A4 is (R, «, p)-flat
and fy(A) is not (R/I, a, )-flat. Then 6(R, I, o) < m.

Proof. First, A satisfies (2) by 4.1. Further, with respect to 4.2 and 4.3, we can as-
sume that A satisfies (3, @). By 3.5, rank (4) = n — « + 1 < m. On the other hand,
with regard to 4.4, we can assume that the rows of A4 are linearly independent over R.
Then they are linearly independent over the quotient field of R, so that m < rank (A4)
and m=n — a + 1.

7.3. Proposition. Let 2 < «, e N and let 7 be a prime. Then log, = < &{r, ).

Proof. Let BeN®, Ef=n=m + o — 1 and let A€ M(Z, m, n) be a matrix
satisfying (1), (2), (3, @) and (4, a, B) such that I = Zr e A(4) and 4 is (Z, «, p)-flat.
Take r € J(«) and put B = A(r). Then B is a square matrix of type (m, m) and each
row of B contains at most « non-zero elements. Moreover, at least one row contains
at most o — 1 non-zero elements. Hence |det B| < o™ Finally, det f/(B) =
= fi(det B) = 0, so that = divides det B and = < o™ From, this log, = < m.

7.4. Proposition. Let 3 < 7 be a prime. Then &(r, 3) < 2.

Proof. The result is an easy consequence of 6.6.

8. Cancellative relations and matrices

Let 2 < ae N and let r be a non-empty a-ary relation defined on a finite set M.
Put g, =q{r), n=2q;, B=(4y,-.»4,), m=card(r), Qfr) = {zi,...., 25}
Q = Q(r). Further, let ¢ be a linear ordering of r = {x, ..., X}, (x5, X;) € ¢ iff
k < 1. We shall define a matrix E = E(r, ¢) € (R, m, n) as follows: e, € {0, 1}
foral 1<i<mand 1<j<n;if 1 <i<mand x; =(ay,...,a,) then, for
1<j=<n,e;=1iffthereexists0 < k S a — 1withg, + ... + g <j =g, + ...
et G and gy =y p L= -4y — o0 — G

8.1. Proposition. The matrix E(r, ) satisfies the conditions (1), (2), (3, «) and
(4, o, B).

30



Proof. Obvious.
Let ¢: Q - R be a mapping. Define w e R® by w; = ¢(2y4), ..., Wg, = ¢(244,)s

Woit1 = PLZa1)s oo Wahgs = PZagy)s oo or W = 0(Z4g,)-

8.2. Lemma. ¢ is a homomorphism of r into the additive group R(+) iff Ew = 0.
In this case, ¢ is trivial iff w e R(a, B).

Proof. Obvious.

8.3. Corollary. Every homomorphism of r into R(+) is trivial iff E(r, o) is
(R, 2, p)-flat.
Let ¢: Q > R be a mapping and let 1 < i < a. Define

veR® by vy = @(zy1)s 0 Vgt tqiey = OZic1.g,0)) s
Ugi+etqumr+1 = —(p(zil)s cees vlh‘*'""“l( = —(p(ziq‘) ’"”
Vg otgi+1 = QD(ZHI,I)’ s Uy = (p(Zaq,) :

8.4. Lemma. ¢ is an i-homomorphism of r into R(+) iff Ev = 0. In this case,
@ is trivial iff v € R(a, f).

8.5. Corollary. Every i-homomorphism of r into R(+) is trivial iff E(r, ) is
(R, a, p)-flat.
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