Acta Universitatis Carolinae. Mathematica et Physica

Ladislav Bican; Aleš Drápal; Tomáš Kepka

Cancellative relations and matrices

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 28 (1987), No. 1, 21--31
Persistent URL: http://dml.cz/dmlcz/142582

Terms of use:

© Univerzita Karlova v Praze, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Cancellative Relations and Matrices

L. BICAN, A. DRÁPAL AND T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 20 May 1986

In the paper, a connection between cancellative relations and certain matrices is investigated.
V článku se studuje souvislost mezi relacemi s krácením a jistými maticemi.

В статье изучается связь между отношениями со сокращением и некоторыми матрицами.

1. Introduction

Throughout this paper, let N^{*} denote the set of non-negative integers, N that of positive integers and Z the ring of integers.

Let $n \in N$ and let r be an n-ary relation defined on a set M, i.e. $r \subseteq M^{(n)}$. We denote by $Q_{i}(r), 1 \leqq i \leqq n$, the set of $a \in M$ such that $\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \in$ $\in r$ for some $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n} \in M$ and we put $q_{i}(r)=\operatorname{card}\left(Q_{i}(r)\right)$. The relation r is said to be cancellative if $b=c$ whenever $1 \leqq i \leqq n, b_{1}, \ldots, b_{i-1}$, $b_{i+1}, \ldots, b_{n}, b, c \in M$ and $\left(b_{1}, \ldots, b_{i-1}, b, b_{i+1}, \ldots, b_{n}\right),\left(b_{1}, \ldots, b_{i-1}, c, b_{i+1}, \ldots, b_{n}\right) \in r$.

Let $Q(r)=Q_{1}(r) \cup \ldots \cup Q_{n}(r)$ and let S be a semigroup with unit element 1_{s}. A mapping $\varphi: Q(r) \rightarrow S$ is said to be a homomorphism if $\varphi\left(a_{1}\right) \ldots \varphi\left(a_{n}\right)=1_{S}$ for every $\left(a_{1}, \ldots, a_{n}\right) \in r$. The homomorphism φ is said to be trivial if $\operatorname{card}\left(\varphi\left(Q_{i}(r)\right)\right)=$ $=1$ for each $1 \leqq i \leqq n$.

Let $G(+)$ be an Abelian group and let $1 \leqq i \leqq n$. A mapping $\varphi: Q(r) \rightarrow G(+)$ is said to be an i-homomorphism if $\varphi^{\prime}\left(a_{1}\right)+\ldots+\varphi\left(a_{i-1}\right)+\varphi\left(a_{i+1}\right)+\ldots+\varphi\left(a_{n}\right)=$ $\left.=\varphi^{\prime} a_{i}\right)$ for every $\left(a_{1}, \ldots, a_{n}\right) \in r$.

2. Matrices of special type

Throughout this paper, let R be a non-trivial associative and commutative ring with unit element 1_{R}. We denote by $P=P(R)$ the prime subring of R, i.e. the subring generated by 1_{R}. Then P is isomorphic to Z_{σ} for uniquely determined $\sigma \in N^{*}, \sigma \neq 1$. Notice that σ is a prime number, provided $\sigma \neq 0$ and R is an integral domain.

[^0]For $m, n \in N$, let $\mathfrak{M}(R, m, n)$ designate the set of matrices of type (m, n) over R. Then $\mathfrak{M}(R, m, n)$ is a free R-module of rank equal to $m n$. If $A(B, \ldots)$ is a matrix then $a_{i j}\left(b_{i j}, \ldots\right)$ will be the elements of $A(B, \ldots), a_{i}\left(b_{i}, \ldots\right)$ the rows and ${ }_{j} a\left({ }_{j} b, \ldots\right)$ the columns.

Consider the following conditions for a matrix $A \in \mathfrak{M l}(R, m, n)$:
(1) $a_{i j} \in\{0,1\}$ for all $1 \leqq i \leqq m$ and $1 \leqq j \leqq n$.
(2) For every $1 \leqq j \leqq n$ there exists at least one $1 \leqq i \leqq m$ with $a_{i j}=1$.

Let $\alpha \in N, 2 \leqq \alpha \leqq n+2$.
(3, α) If $1 \leqq i<k \leqq m$ then $a_{i j}=1=a_{k j}$ for at most $\alpha-2$ indices $j, 1 \leqq j \leqq n$. Let $\alpha \in N, \alpha \leqq n$ and let $\beta \in N^{(\alpha)}$ be such that $\Sigma \beta=\beta_{1}+\ldots+\beta_{\alpha}=n$.
$(4, \alpha, \beta)$ For every $1 \leqq i \leqq m$ there are exactly α indices $t_{1}, \ldots, t_{\alpha}$ with $1 \leqq t_{1} \leqq$ $\leqq \beta_{1}<t_{2} \leqq \beta_{1}+\beta_{2}<\ldots \leqq \beta_{1}+\ldots+\beta_{x-1}<t_{\alpha} \leqq \beta_{1}+\ldots+\beta_{\alpha}=n$ and $a_{i j}=1$ iff $j \in\left\{t_{1}, \ldots, t_{\alpha}\right\}$.
2.1. Lemma. (i) If A satisfies (1) then $A \in \mathfrak{M}(P, m, n)$.
(ii) If A satisfies (1) and (2) then A satisfies $(4, \alpha, \beta)$ for at most one ordered pair (α, β) with $1 \leqq \alpha \leqq n, \beta \in N^{(\alpha)}$ and $n=\Sigma \beta$.

Proof. (i) This is obvious.
(ii) Suppose that A satisfies $(4, \alpha, \beta)$ and $\left(4, \alpha^{\prime}, \beta^{\prime}\right)$. Let $\beta_{1}<\beta_{1}^{\prime}$ and $\beta_{1}<j \leqq \beta_{1}^{\prime}$. Then it is easy to see that the column ${ }_{j} a$ is a zero column, a contradiction with (2). Hence $\beta_{1}=\beta_{1}^{\prime}$. Similarly, $\beta_{2}=\beta_{2}^{\prime}$, etc., and therefore $\alpha=\alpha^{\prime}$.
2.2. Lemma. Let $3 \leqq \alpha \leqq n,(n-\alpha+2) / 2<m \in N, \beta \in N^{(\alpha)}, \Sigma \beta=n$, be such that there exists a matrix $A \in \mathfrak{M}(R, m, n)$ satisfying $(1),(3, \alpha)$ and $(4, \alpha, \beta)$. Then:
(i) $\operatorname{card}\left(\left\{1 \leqq i \leqq \alpha \mid \beta_{i}=1\right\}\right) \leqq \alpha-3$.
(ii) $\alpha+3 \leqq n$ and $3 \leqq m$.

Proof. Easy.

3. Annihilators

Let $A \in \mathfrak{M}(R, m, n)$. We denote by $\operatorname{Mod}(A, R)(\operatorname{resp} . \operatorname{Mod}(R, A))$ the submodule generated by the rows (resp. columns) of A in the free R-module $R^{(n)}$ (resp. $R^{(m)}$). Further, let $\operatorname{Ann}(A, R)=\left\{w \in R^{(n)} \mid A w=0\right\}$ and $\operatorname{Ann}(R, A)=\left\{w \in R^{(m)} \mid w A=\right.$ $=0\}$. Then $\operatorname{Ann}(A, R)$ is a submodule of $R^{(n)}$ and $\operatorname{Ann}(R, A)$ is a submodule of $R^{(m)}$.
Now, suppose that $A \in \mathfrak{M}(P, m, n)$. Then there exist invertible matrices $C \in$ $\in \mathfrak{M}(P, m, m)$ and $D \in \mathfrak{M}(P, n, n)$ such that the matrix $B=C A D$ is diagonal and $b_{i i}$ divides $b_{i+1},{ }_{i+1}$ in P for all $1 \leqq i \leqq k=\min (m, n)$.
3.1. Lemma. $R b_{11} \supseteq R b_{22} \supseteq \ldots \supseteq R b_{k k}$ and both the R-modules $\operatorname{Mod}(A, R)$ and $\operatorname{Mod}(R, A)$ are isomorphic to the outer direct sum $R b_{11} \oplus \ldots \oplus R b_{k k}$ of principal ideals of R.

Proof. Obvious.
3.2. Lemma. $\left(0: b_{11}\right)_{R} \subseteq\left(0: b_{22}\right)_{R} \subseteq \ldots \subseteq\left(0: b_{k k}\right)_{R}$, the R-module Ann (A, R) is isomorphic to the outer direct sum $\left.\left(0: b_{11}\right)_{R} \oplus \ldots \oplus\left(0: b_{k k}\right)_{R} \oplus R^{(n-k}\right)$ and the R-module $\operatorname{Ann}(R, A)$ is isomorphic to the outer direct sum $\left(0: b_{11}\right)_{R} \oplus \ldots$ $\left.\ldots \oplus\left(0: b_{k k}\right)_{R} \oplus R^{(m-k}\right)$ of annihilator ideals of R.

Proof. Obvious.
Although the invertible matrices C and D and the diagonal matrix B are not determined uniquely by A, it follows from the next lemma that the number of non-zero elements of B is determined uniquely by A. We denote this number by $\operatorname{rank}(A)$. So, $0 \leqq \operatorname{rank}(A) \leqq \min (m, n)$.
3.3. Lemma. Let $1 \in N$ and let $x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l} \in R$ be such that $R x_{1} \supseteq \ldots$ $\ldots \supseteq R x_{l}, R y_{1} \supseteq \ldots \supseteq R y_{l}$ and the R-modules $X=R x_{1} \oplus \ldots \oplus R x_{l}$ and $Y=$ $=R y_{1} \oplus \ldots \oplus R y_{l}$ are isomorphic. Then $R x_{1} \cong R y_{1}, \ldots, R x_{l} \cong R y_{l}$.

Proof. We shall proceed by the induction on l. For $l=1$ there is nothing to prove. Assume $l \geqq 2$ and let φ be an isomorphism of X onto Y. Clearly, $\varphi\left(x_{1}\right)=\lambda y_{1}$ and $\varphi^{-1}\left(y_{1}\right)=\varrho x_{1}$ for some $\lambda, \varrho \in R$. Consequently, $\varphi\left(R x_{1}\right)=R y_{1}$ and the R-modules $R x_{2} \oplus \ldots \oplus R x_{l} \cong X / R x_{1}$ and $R y_{2} \oplus \ldots \oplus R y_{l} \cong Y \mid R y_{1}$ are isomorphic.
3.4. Corollary. Suppose that either $\sigma=0$ or σ is a prime. Then $\operatorname{Ann}(A, R)$ is a free R-module of rank equal to $n-\operatorname{rank}(A)$ and $\operatorname{Ann}(R, A)$ is a free R-module of rank equal to $m-\operatorname{rank}(A)$.

Let $1 \leqq \alpha \leqq n$ and let $\beta \in N^{(\alpha)}$ be such that $\Sigma \beta=n$. We denote by $R(\alpha, \beta)$ the set of all $w \in R^{(n)}$ such that $w_{1}=\ldots=w_{\beta_{1}}, w_{\beta_{1}+1}=\ldots=w_{\beta_{1}+\beta_{2}}, \ldots, w_{\beta_{1}+\ldots+\beta_{\alpha-1}+1}=\ldots$ $\ldots=w_{n}$ and $w_{\beta_{1}}+w_{\beta_{1}+\beta_{2}}+\ldots+w_{\beta_{1}+\ldots+\beta_{\alpha-1}+1}+w_{n}=0$. Obviously, $R(\alpha, \beta)$ is a submodule of $R^{(n)}$ and $R(\alpha, \beta)$ is a free R-module of rank $\alpha-1$.

A matric $A \in \mathfrak{M}(R, m, n)$ will be called (R, α, β)-flat if Ann $(A, R)=R(\alpha, \beta)$.
3.5. Lemma. Let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and (4, $\alpha, \beta)$. Then:
(i) $R(\alpha, \beta) \subseteq \operatorname{Ann}(A, R)$.
(ii) $\operatorname{rank}(A) \leqq n-\alpha+1$.
(iii) $\operatorname{rank}(A)=n-\alpha+1$ and $m \geqq n-\alpha+1$, provided A is (R, α, β)-flat.

Proof. (i) This is an easy consequence of $(4, \alpha, \beta)$.
(ii) By (i), $P(\alpha, \beta) \subseteq \operatorname{Ann}(A, P)$ and $P(\alpha, \beta)$ is isomorphic to $P^{(\alpha-1)}$. By 3.3, Ann (A, P) is isomorphic to $P^{(n-l)} \oplus M$ where $l=\operatorname{rank}(A)$ and $M=$ $=\left(0: b_{11}\right)_{P} \oplus \ldots \oplus\left(0: b_{l l}\right)_{P}$. In particular, $b M=0, b=b_{l l}$. If $\sigma=0$ then $M=0$ and clearly $\alpha-1 \leqq n-l$. Suppose that $\sigma \neq 0$. Then the module $(P b)^{(n-l)}$ contains a submodule isomorphic to $(P b)^{(\alpha-1)}$, and hence $r^{\alpha-1} \leqq r^{n-l}$, $r=\operatorname{card}(P b) \geqq 2, r$ finite, so that $\alpha-1 \leqq n-l$.
(iii) Put $l=\operatorname{rank}(A)$. By (ii), $l \leqq n-\alpha+1$. By 3.3, Ann (A, R) possesses a free direct summand of rank $n-l$. But $\operatorname{Ann}(A, R)=R(\alpha, \beta)$ is a free module of rank $\alpha-1$. Consequently, $n-l \leqq \alpha-1$ and $n-\alpha+1 \leqq l$.
3.6. Lemma. Let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and (4, $\alpha, \beta)$. Suppose that A is (R, α, β)-flat. Then $l=\operatorname{rank}(A)=n-\alpha+1$ and $\left(0: b_{11}\right)_{R}=\ldots$ $\ldots=\left(0: b_{l l}\right)_{R}=0$.

Proof. First, $l=n-\alpha+1$ by $3.5(\mathrm{iii})$. Further, by 3.3, $\operatorname{Ann}(A, R)$ is isomorphic to $R^{(\alpha-1)} \oplus M, M=\left(0: b_{11}\right)_{R} \oplus \ldots \oplus\left(0: b_{l l}\right)_{R}$. On the other hand, $\operatorname{Ann}(A, R)=$ $=R(\alpha, \beta)$ is isomorphic to $R^{(\alpha-1)}$, and therefore $R^{(\alpha-1)}$ is isomorphic to $R^{(\alpha-1)} \oplus M$. We are going to show that $M=0$. Assume on the contrary that $M \neq 0$. The module M as a direct summand of $R^{(\alpha-1)}$ is finitely generated. Hence $I M \neq M$ for a maximal ideal I of R. Put $S=R / I$, so that S is a field. The S-modules $S^{(\alpha-1)}$ and $S^{(x-1)} \oplus$ $\oplus M \mid I M$ are isomorphic, hence $M \mid I M=0, I M=M$, a contradiction.
3.7. Proposition. Let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and (4, $\alpha, \beta)$. The following conditions are equivalent:
(i) A is (P, α, β)-flat.
(ii) $l=\operatorname{rank}(A)=n-\alpha+1$ and $\left(0: b_{l l}\right)_{P}=0\left(\operatorname{then}\left(0: b_{11}\right)_{P}=\ldots=\left(0: b_{l l}\right)_{P}=\right.$ $=0$).

Proof. (i) implies (ii) by 3.6.
(ii) implies (i). First, let $\sigma=0$ and let Q be a quotient field of P. Then both $Q(\alpha, \beta)$ and $\operatorname{Ann}(A, Q)$ are isomorphic to $Q^{(\alpha-1)}$. Consequently, $Q(\alpha, \beta)=\operatorname{Ann}(A, Q)$ and it is easy to see that A is (P, α, β)-flat. Now, let $\sigma \neq 0$. Then the equality $\operatorname{card}\left(P^{\prime}(\alpha, \beta)\right)=\operatorname{card}(\operatorname{Ann}(A, P))$ yields the equality $P(\alpha, \beta)=\operatorname{Ann}(A, P)$.
3.8. Corollary. Suppose that either $\sigma=0$ or σ is a prime. Let $A \in \mathfrak{M l}(R, m, n)$ be a matrix satisfying (1) and $(4, \alpha, \beta)$. Then A is (P, α, β)-flat iff $\operatorname{rank}(A)=n-\alpha+1$.
3.9. Proposition. Suppose that R is a domain. Let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and (4, $\alpha, \beta)$. Then A is (R, α, β)-flat iff $\operatorname{rank}(A)=n-\alpha+1$.

Proof. Similar to that of 3.7.

4. Auxiliary results

Let $\alpha, n, m \in N, \alpha \leqq n, \beta \in N^{(\alpha)}, \Sigma \beta=n$. Let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and (4, α, β).
4.1. Lemma. Suppose that A is (R, α, β)-flat. Then A satisfies (2).

Proof. Easy.
4.2. Lemma. Let $a_{i}=a_{k}$ for some $1 \leqq i<k \leqq m$ and let B be the matrix obtained from A by omitting the k-th row. Then:
(i) $B \in \mathfrak{M}(R, m-1, n)$ satisfies (1) and (4, $\alpha, \beta)$.
(ii) B satisfies (2) iff A does so.
(iii) $\operatorname{Ann}(A, R)=\operatorname{Ann}(B, R)$.
(iv) B is (R, α, β)-flat iff A is so.

Prcof. Easy.

Now, let $1 \leqq i<k \leqq m$ be such that $a_{i} \neq a_{k}$ and $a_{i j_{1}}=a_{k j_{1}}=\ldots=a_{i j_{\alpha-1}}=$ $=a_{k j_{\alpha-1}}=1$ for some $1 \leqq j_{1}<\ldots<j_{\alpha-1} \leqq n$ (in particular, A does not satisfy (3)). Then there exist $1 \leqq r, s \leqq n$ such that $r \neq s, r, s \neq j_{1}, \ldots, j_{\alpha-1}$ and $a_{i r}=$ $=a_{k s}=1$. Moreover, both r and s are contained in just one from the intervals $\left[1, \beta_{1}\right],\left[\beta_{1}+1, \beta_{1}+\beta_{2}\right], \ldots,\left[\beta_{1}+\ldots+\beta_{\alpha-1}+1, n\right]$. Let $r, s \in\left[\beta_{0}+\ldots\right.$ $\left.\ldots+\beta_{1}+1, \beta_{1}+\ldots+\beta_{l+1}\right]$, where $\beta_{0}=0,0 \leqq l \leqq \alpha-1$ Put $t=\min (r, s)$ and $u=\max (r, s)$. We shall define a matrix $C \in \mathfrak{M}(R, m-1, n-1)$ as follows: $c_{x y}=a_{x y}$ and $c_{z y}=a_{z+1, y}$ for all $1 \leqq x<k \leqq z \leqq m-1$ and all y such that either $1 \leqq y<t$ or $t<y<u ; c_{x y}=a_{x, y+1}$ for all $1 \leqq x<k$ and all $u \leqq y \leqq$ $\leqq n-1 ; c_{z y}=a_{x+1, y+1}$ for all $k \leqq x \leqq m-1$ and $u \leqq y \leqq n-1 ; c_{x t}+a_{x r}+$ $+a_{x s}$ for all $1 \leqq x<k ; c_{x t}=a_{x+1, r}+a_{x+1, s}$ for all $k \leqq x \leqq m-1$.
4.3. Lemma. (i) $C \in \mathfrak{M}(R, m-1, n-1)$ satisfies (1) and C satisfies (2) iff A does so.
(ii) C satisfies $(4, \alpha, \gamma)$ for $\gamma=\left(\beta_{1}, \ldots, \beta_{1}, \beta_{l+1}-1, \beta_{l+2}, \ldots, \beta_{\alpha}\right)$.
(iii) If $z \in \operatorname{Ann}(A, R)$ then $z_{r}=z_{s}$.
(iv) C is (R, α, γ)-flat iff A is (R, α, β)-flat.

Proof. Let $w \in R^{(n-1)}$ and $x \in R^{(n)}$ be such that $x_{1}=w_{1}, \ldots, x_{u-1}=w_{u-1}, x_{u}=$ $=w_{t}, x_{u+1}=w_{u}, \ldots, x_{n}=w_{n-1}$. Let $C w=v$ and $A x=y$. Then $v_{1}=y_{1}, \ldots, v_{k-1}=$ $=y_{k-1}, v_{k}=y_{k+1}, \ldots, v_{n-1}=y_{n}$ and $v_{i}=y_{k}=y_{i}$.

In the next lemma, let $\varrho_{1}, \ldots, \varrho_{m} \in R$ and $1 \leqq i \leqq m$ be such that $\varrho_{1} a_{1}+\ldots$ $\ldots+\varrho_{m} a_{m}=0$ and $\left(0: \varrho_{i}\right)_{R}=0$. Denote by D the matrix obtained from A by omitting the i-th row.
4.4. Lemma. (i) $D \in \mathfrak{M}(R, m-1, n)$ satisfies (1) and (4, $\alpha, \beta)$ and D satisfies (2) iff A does so.
(ii) $\operatorname{Ann}(D, R)=\operatorname{Ann}(A, R)$.
(iii) D is (R, α, β)-flat iff A is so.

Proof. Easy.

5. Determinants

Let $\alpha, n, m \in N, 2 \leqq \alpha \leqq n$ and $m=n-\alpha+1$. Let $1 \leqq r_{1}<\ldots<r_{\alpha-1} \leqq n$. For a matrix $A \in \mathfrak{M}(R, m, n)$ we denote by $A\left(r_{1}, \ldots, r_{\alpha-1}\right)$ the square matrix of
type (m, n) obtained from A by omitting the $r_{1}, \ldots, r_{\alpha-1}$-th columns. Further, define a square matrix $C=A\left[r_{1}, \ldots, r_{\alpha-1}\right]$ of type (n, n) as follows: $c_{i}=a_{i}$ for all $1 \leqq$ $\leqq i \leqq m ; c_{m+j, k}=0$ for all $1 \leqq j \leqq \alpha-1$ and $1 \leqq k \leqq n, k \neq r_{j} ; c_{m+j, r_{j}}=1$ for all $1 \leqq j \leqq \alpha-1$.
5.1. Lemma. $\operatorname{det} C=(-1)^{l} \operatorname{det} B$ for $l=r_{1}+\ldots+r_{\alpha-1}+(\alpha-1) n-$ $-(\alpha-1)(\alpha-2) / 2$.

Proof. Easy.
5.2. Lemma. (i) $w \in \operatorname{Ann}(C, R)$ iff $w \in \operatorname{Ann}(A, R)$ and $w_{r_{1}}=\ldots=w_{r_{\alpha-1}}=0$.

Proof. Obvious.
Now, let $\beta \in N^{(\alpha)}, \Sigma \beta=n$. Denote by $J(\beta)$ the set of all ordered $\alpha-1$-tuples $s=\left(s_{1}, \ldots, s_{\alpha-1}\right)$ such that $1 \leqq s_{1}<\ldots<s_{\alpha-1} \leqq n$ and each from the intervals $\left[1, \beta_{1}\right],\left[\beta_{1}+1, \beta_{1}+\beta_{2}\right], \ldots,\left[\beta_{1}+\ldots+\beta_{\alpha-1}+1, n\right]$ contains at most one from the numbers $s_{1}, \ldots, s_{\alpha-1}$. Then exactly $\alpha-1$ intervals contain each just one of those numbers and one interval contains none.
Let $r=\left(r_{1}, \ldots, r_{\alpha-1}\right) \in J(\beta)$, let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and (4, α, β) and let $B=A(r)$ and $C=A[r]$.
5.3. Lemma. Ann $(C, R) \cap R(\alpha, \beta)=0$.

Proof. This is an easy consequence of 5.2 .
5.4. Lemma. Suppose that A is (R, α, β)-flat. Then:
(i) $\operatorname{Ann}(C, R)=0$.
(ii) $\operatorname{rank}(C)=n$.
(iii) $(0: \operatorname{det} C)_{R}=0$.
(iv) If $\sigma \neq 0$ then C is invertible in $\mathfrak{M}(P, n, n)$.
(v) C is invertible in $\mathfrak{M}(S, n, n)$ where S is the classical quotient ring of R.
$\operatorname{Proof}(\mathrm{i})$ We have $R(\alpha, \beta)=\operatorname{Ann}(A, R), \operatorname{Ann}(C, R) \subseteq \operatorname{Ann}(A, R)$ and $\operatorname{Ann}(C, R) \cap R(\alpha, \beta)=0$. Thus $\operatorname{Ann}(C, R)=0$.
(ii) This is an easy consequence of 3.2 .
(iii) This is clear from (i).
(iv) Put $c=\operatorname{det} C$. Then $(0: c)_{R}=0$, so that c is invertible in P and C in $\mathfrak{M}(P, n, n)$.
(v) Similar to (iii).
5.5. Lemma. If $\operatorname{Ann}(C, R)=0$ then A is (R, α, β)-flat.

Proof. Let $w \in \operatorname{Ann}(A, R)$. We shall restrict ourselves to the case $r_{\alpha-1} \leqq \beta_{1}+\ldots$ $\ldots+\beta_{\alpha-1}$, the other cases being similar. Consider $x \in R^{(n)}$ such that $x_{1}=\ldots$ $\ldots=x_{\beta_{1}}=w_{r_{1}}, x_{\beta_{1}+1}=\ldots=x_{\beta_{1}+\beta_{2}}=w_{r_{2}}, \ldots, x_{\beta_{1}+\ldots+\beta_{\alpha-2}+1}=\ldots$
$\ldots=x_{\beta_{1}+\ldots+\beta_{\alpha-1}}=w_{r_{\alpha-1}}$ and $x_{\beta_{1}+\ldots+\beta_{\alpha-1}+1}=\ldots=x_{n}=-w_{r_{1}}-\ldots-w_{r_{\alpha-1}}$.
Then $x \in R(\alpha, \beta)$. Moreover, $w-x \in \operatorname{Ann}(C, R)$ by $5.2(\mathrm{i})$. Hence $w=x$ and $w \in$ $\in R(\alpha, \beta)$.
5.6. Proposition. The following conditions are equivalent:
(i) A is (R, α, β)-flat.
(ii) $\operatorname{Ann}(C, R)=0$.
(iii) $(0: \operatorname{det} C)_{R}=0$.

Proof. (i) implies (ii) and (iii) by 5.4, (ii) implies (i) by 5.5 and the implication (iii) implies (ii) is easy.
5.7. Proposition. Suppose that either $\sigma=0$ or σ is a prime. The following conditions are equivalent:
(i) A is (P, α, β)-flat.
(ii) $\operatorname{rank}(A)=n-\alpha+1$.
(iii) $\operatorname{rank}(C)=n$.
(iv) $\operatorname{det} C \neq 0$.
(v) $\operatorname{det} B \neq 0$.

Proof Use 3.8 and the fact that P is an integral domain.
Let $r, s \in J(\beta)$.
5.8. Lemma. Let I be a prime ideal of R. Then $\operatorname{det} A[r] \in I$ iff det $A[s] \in I$.

Proof. Denote by g the natural homomorphism of R onto $S=R / I$ and suppose that $\operatorname{det} A[r] \in I$. We have $g(A[r])=g(A)[r], 0=g(\operatorname{det} A[r])=\operatorname{det} g(A)[r]$ and $\operatorname{rank}(g(A))<n-\alpha+1$ by 5.7 and $3.5(i i)$. However, now we can proceed conversely and we have $\operatorname{det} A[s] \in I$.

6. Some matrices

Let $4 \leqq m \in N, m$ even, $k=m / 2$ and $n=m+2$. Let $B \in \mathfrak{M}(Z, k, k)$ be a matrix satisfying (1), (2) and $(4,1, k)$ such that $b_{i i}=0$ for each $1 \leqq i \leqq k$. Notice that each column as well as each row of B contains just one non-zero element. Consider the following matrix $A \in \mathfrak{M}(Z, m, n)$:

$$
\left(\begin{array}{l|l|l|l}
I_{k} & I_{k} & 1 & 0 \\
& & \vdots & \vdots \\
& & 1 & 0 \\
\hline & & 0 & 1 \\
I_{k} & B & \vdots & \vdots \\
& & 0 & 1
\end{array}\right),
$$

where $I_{k} \in \mathfrak{M}(R, k, k)$ is the unit matrix.
6.1. Lemma. A satisfies (1), (2), $(3,3)$ and $(4,3, \beta)$ for $\beta=(k, k, 2)$.

Proof. Obvious.
Now, put $C=A(m, n)$ (clearly $(m, n) \in J(A))$. The matrix C has the following form:

$$
\left(\begin{array}{l|l|l}
I_{k} & I_{k-1} & \vdots \\
& 0 \ldots 0 & 1 \\
\hline & & 0 \\
I_{k} & D & \vdots \\
& & 0
\end{array}\right),
$$

where D is the matrix obtained from B by omitting the last column. It is easy to see that $\operatorname{det} C= \pm \operatorname{det} E$, where E is the following matrix:

$$
\left(\begin{array}{l|l|r}
I_{k} & I_{k-1} & \vdots \\
& 0 \ldots 0 & 1 \\
\hline & & -1 \\
0 & D-L & \vdots \\
& & -1
\end{array}\right) .
$$

Here, $L=\binom{I_{k-1}}{0 \ldots 0} \in \mathfrak{M}(Z, k, k-1)$.
Similarly, $\operatorname{det} C= \pm \operatorname{det} F$, where F is as follows:
$\left(\begin{array}{r|r|r}I_{k} & 0 & 0 \\ & & \vdots \\ \hline 0 & D-L & \vdots \\ & & -1\end{array}\right)$.

Denote by G the matrix $\left(\begin{array}{rr}-1 \\ D-L, & \vdots \\ & -1\end{array}\right) \in \mathfrak{M}(Z, k, k)$.
6.2. Lemma. $\operatorname{det} C= \pm \operatorname{det} G$.

Proof. The result follows easily from the equality $\operatorname{det} C= \pm \operatorname{det} F$.
Let H be the matrix obtained from B by omitting the last row and the last column. Put $K=H-I_{k-1}$.
6.3. Lemma. $\operatorname{det} C= \pm k \operatorname{det} K$.

Proof. If we add in G to the last row the remaining rows, we get the following matrix:

$$
\left(\begin{array}{l|r}
K & -1 \\
& -1 \\
\hline 0 \ldots 0 & -k
\end{array}\right)
$$

6.4. Lemma. $\operatorname{det} K \in\{0,1,-1\}$.

Proof. By induction on $l \in N$, we shall prove such an assertion: Let $V \in \mathfrak{M}(Z, l l)$ be a matrix satisfying (1) such that each row as well as each column of V contains at most one non-zero element. Then $\operatorname{det} W \in\{0,1,-1\}$, where $W=V-I_{l}$. First, observe that if $v_{i i}=1$ for some $1 \leqq i \leqq l$ then W contains a zero row, so that $\operatorname{det} W=0$. Hence assume that $v_{i i}=0$ for each i. Further, if the matrix V contains a zero row (resp. column), then we can apply the induction hypothesis. So, let each row as well as each column of V contain exactly one non-zero element. Then the sum of all rows of W is equal to zero, so that det $W=0$.

There is a permutation μ of the set $\{1,2, \ldots, k\}$ such that $b_{i j}=1$ iff $j=\mu(i)$.
6.5. Lemma. Suppose that $k \geqq 3$. Then $\operatorname{det} K \neq 0$ iff μ is a cycle.

Proof. Denote by f the natural homomorphism of Z onto $Z / 2 Z=S$. Clearly, $\operatorname{det} K \neq 0$ iff $\operatorname{det} f^{\prime}(K) \neq 0$. However, $\operatorname{det} f(K) \neq 0$ iff the rows of $f(K)$ are linearly independent over S. It is easy to see that if T is a proper non empty subset of $\{1,2, \ldots, k\}$ then $\sum_{i \in T} f\left(k_{i}\right)=0$ iff $\mu(T)=T$. The rest is clear.
6.6. Corollary. Let $m \geqq 6$. The matrix A is $(Z, 3, \beta)$-flat iff μ is a cycle.

7. The numbers $\boldsymbol{\delta}(\boldsymbol{R}, I, \alpha)$

Let $1 \leqq \alpha \leqq n, \beta \in N^{(\alpha)}, \Sigma \beta=n, 3 \leqq n, m=n-\alpha+1$. Let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and (4, $\alpha, \beta)$. We denote by $\left.\lambda^{\prime}, A\right)$ the set of all non-zero (proper) prime ideals I of R such that $\operatorname{det} A[r] \in I$ for some (and then for all - see 5.8) $r \in J(\beta)$.
7.1. Lemma. The following conditions are equivalent for a non-zero prime ideal \boldsymbol{I} of R :
(i) $I \in \lambda(A)$.
(ii) $f_{I}(A)$ is not (S, α, β)-flat where $f_{I}: R \rightarrow R / I=S$ is the natural projection.
(iii) $\operatorname{rank}\left(f_{I}(A)\right)<m$.

Proof. The conditions (ii) and (iii) are equivalent by 3.9 and the conditions (i) and (iii) are equivalent by 5.7 .

Let I be a non-zero prime ideal of R and let $2 \leqq \alpha \in N$. We let $\left.\delta^{\prime} R, I, \alpha\right)$ designate the minimum of all $m \in N$ such that there exist $\beta \in N^{(\alpha)}$ with $n=\Sigma \beta=m+\alpha-1$ and a matrix $A \in \mathfrak{M}(R, m, n)$ satisfying (1), (2), (3, α) and (4, $\alpha, \beta)$ such that $I \in \lambda(A)$ and A is (R, α, β)-flat. We put $\delta(R, I, \alpha)=\infty$ if there exists no matrix with these properties. For a prime $\pi \in N$, let $\left.\delta(\pi, \alpha)=\delta_{(}^{\prime} Z, Z \pi, \alpha\right)$.
7.2. Lemma. Suppose that R is a domain .Let $m, n \in N, \beta \in N^{(\alpha)}, \Sigma \beta=n$ and let $A \in \mathfrak{M}(R, m, n)$ be a matrix satisfying (1) and $(4, \alpha, \beta)$ such that A is (R, α, β)-flat and $f_{I}(A)$ is not $(R / I, \alpha, \beta)$-flat. Then $\delta(R, I, \alpha) \leqq m$.

Proof. First, A satisfies (2) by 4.1. Further, with respect to 4.2 and 4.3, we can assume that A satisfies $(3, \alpha)$. By 3.5 , $\operatorname{rank}(A)=n-\alpha+1 \leqq m$. On the other hand, with regard to 4.4 , we can assume that the rows of A are linearly independent over R. Then they are linearly independent over the quotient field of R, so that $m \leqq \operatorname{rank}(A)$ and $m=n-\alpha+1$.
7.3. Proposition. Let $2 \leqq \alpha, \pi \in N$ and let π be a prime. Then $\log _{\alpha} \pi<\delta(\pi, \alpha)$.

Proof. Let $\beta \in N^{(\alpha)}, \Sigma \beta=n=m+\alpha-1$ and let $A \in \mathfrak{M}(Z, m, n)$ be a matrix satisfying (1), (2), $(3, \alpha)$ and $(4, \alpha, \beta)$ such that $I=Z \pi \in \lambda(A)$ and A is (Z, α, β)-flat. Take $r \in J(\alpha)$ and put $B=A(r)$. Then B is a square matrix of type (m, m) and each row of B contains at most α non-zero elements. Moreover, at least one row contains at most $\alpha-1$ non-zero elements. Hence $|\operatorname{det} B|<\alpha^{m}$. Finally, $\operatorname{det} f_{I}(B)=$ $=f_{I}(\operatorname{det} B)=0$, so that π divides det B and $\pi<\alpha^{m}$. From, this $\log _{\alpha} \pi<m$.
7.4. Proposition. Let $3 \leqq \pi$ be a prime. Then $\delta(\pi, 3) \leqq 2 \pi$.

Proof. The result is an easy consequence of 6.6.

8. Cancellative relations and matrices

Let $2 \leqq \alpha \in N$ and let r be a non-empty α-ary relation defined on a finite set M. Put $q_{i}=q_{i}(r), \quad n=\Sigma q_{i}, \beta=\left(q_{1}, \ldots, q_{\alpha}\right), \quad m=\operatorname{card}(r), \quad Q_{i}(r)=\left\{z_{i 1}, \ldots, z_{i q_{i}}\right\}$, $Q=Q(r)$. Further, let ϱ be a linear ordering of $r=\left\{x_{1}, \ldots, x_{m}\right\},\left(x_{l}, x_{k}\right) \in \varrho$ iff $k \leqq l$. We shall define a matrix $E=E(r, \varrho) \in \mathfrak{M}(R, m, n)$ as follows: $e_{i j} \in\{0,1\}$ for all $1 \leqq i \leqq m$ and $1 \leqq j \leqq n$; if $1 \leqq i \leqq m$ and $x_{i}=\left(a_{1}, \ldots, a_{\alpha}\right)$ then, for $1 \leqq j \leqq n, e_{i j}=1$ iff there exists $0 \leqq k \leqq \alpha-1$ with $q_{1}+\ldots+q_{k}<j \leqq q_{1}+\ldots$ $\ldots+q_{k+1}$ and $a_{k+1}=z_{k+1, l}, l=j-q_{1}-\ldots-q_{k}$.
8.1. Proposition. The matrix $E(r, \varrho)$ satisfies the conditions (1), (2), $(3, \alpha)$ and $(4, \alpha, \beta)$.

Proof. Obvious.
Let $\varphi: Q \rightarrow R$ be a mapping. Define $w \in R^{(\alpha)}$ by $w_{1}=\varphi\left(z_{11}\right), \ldots, w_{q_{1}}=\varphi\left(z_{1 q_{1}}\right)$, $w_{q_{1}+1}=\varphi_{(}^{\prime}\left(z_{21}\right), \ldots, w_{q_{1}+q_{2}}=\varphi\left(z_{2 q_{2}}\right), \ldots, w_{n}=\varphi\left(z_{\alpha q_{\alpha}}\right)$.
8.2. Lemma. φ is a homomorphism of r into the additive group $R(+)$ iff $E w=0$. In this case, φ is trivial iff $w \in R(\alpha, \beta)$.

Proof. Obvious.
8.3. Corollary. Every homomorphism of r into $R(+)$ is trivial iff $E(r, \varrho)$ is (R, α, β)-flat.

Let $\varphi: Q \rightarrow R$ be a mapping and let $1 \leqq i \leqq \alpha$. Define

$$
\begin{aligned}
& v \in R^{(x)} \quad \text { by } \quad v_{1}=\varphi\left(z_{11}\right), \ldots, v_{q_{1}+\cdots+q_{i-1}}=\varphi\left(z_{i-1, q_{i-1}}\right) \\
& v_{q_{1}+\cdots+q_{i-1}+1}=-\varphi\left(z_{i 1}\right), \ldots, v_{q_{1}+\cdots+q_{i}}=-\varphi\left(z_{i q_{i}}\right), n^{\prime \prime} \\
& v_{q_{1}+\cdots+q_{i}+1}=\varphi\left(z_{i+1,1}\right), \ldots, v_{n}=\varphi\left(z_{\alpha q_{\alpha}}\right)
\end{aligned}
$$

8.4. Lemma. φ is an i-homomorphism of r into $R(+)$ iff $E v=0$. In this case, φ is trivial iff $v \in R(\alpha, \beta)$.
8.5. Corollary. Every i-homomorphism of r into $R(+)$ is trivial iff $E(r, \varrho)$ is (R, α, β)-flat.

[^0]: *) Sokolovská 83, 18600 Praha 8, Czechos!ovakia.

