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1987 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 28. NO. 1 

Cancellative Relations and Matrices 

L. BICAN, A. DRAPAL A N D T. KEPKA 

Department of Mathematics, Charles University, Prague*) 

Received 20 Mav 1986 

In the paper, a connection between cancellative relations and certain matrices is investigated. 

V clanku se studuje souvislost mezi relacemi s kracenim a jistymi maticemi. 

B CTaTBe H3ynaeTCH CBH3B Me>K/jy OTHOHIeHHflMH CO COKpaiHeHHeM H HeKOTOpMMH MaTpHIiaMH. 

1. Introduct ion 

Throughout this paper, let N* denote the set of non-negative integers, N that of 
positive integers and Z the ring of integers. 

Let n e N and let r be an n-ary relation defined on a set M, i.e. r ^ M(n). We 
denote by Qi(r), 1 = i S n, the set of a e M such that (al9..., at-l9 a, ai+1, ..., an) e 
er for some a1? . . . ,# ._! , ai+l9..., an e M and we put q^r) = card (Qi(r)). The 
relation r is said to be cancellative if b = c whenever 1 = i = n, bl9 ..., bi-1> 

bi+l9..., bn9b,ceMand(b1,...,bi-1,b,bi+l9...9bn)9(bl9...9bi-l9c9bi+1,..., b„)er. 
Let Q(r) = Qi(r) u ... u Q„(r) and let S be a semigroup with unit element l s . 

A mapping <p: Q(r) —> S is said to be a homomorphism if <p(ax) ... <p(an) = ls for 
every (al9..., an) e r. The homomorphism <p is said to be trivial if card (<p(Qt(r))) = 
= 1 for each 1 = i = n. 

Let G( + ) be an Abelian group and let 1 = i = n. A mapping <p: Q(r) -> G( + ) is 
said to be an /-homomorphismif (p(a^) + ... + ^(a,-^ + (p(ai+1) + ... + <p(an) = 
= (p(a^) for every (al9...9 an) e r. 

2. M a t r i c e s of spec ia l type 

Throughout this paper, let R be a non-trivial associative and commutative ring 
with unit element 1R. We denote by P = P(R) the prime subring of R, i.e. the subring 
generated by 1R. Then P is isomorphic to Za for uniquely determined a e N*, o + 1. 
Notice that a is a prime number, provided a + 0 and R is an integral domain. 

*) Sokolovska 83, 186 00 Praha 8, Czechoslovakia. 
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For m,neN, let 9Jl(P, m, n) designate the set of matrices of type (m, n) over R. 
Then sJJl(P, m, n) is a free P-module of rank equal to mn. If A (B,...) is a matrix 
then a{j (bij9...) will be the elements of A (B,...), at (bi9...) the rows and ja (jb, ...) 
the columns. 

Consider the following conditions for a matrix A e sJJl(iv, m, n): 
(1) au E {0, 1} for all 1 = i = m and 1 = j = n. 
(2) For every 1 = j = n there exists at least one 1 = i ^ m with al7 = 1. 
Let a e N, 2 = a <; n + 2. 
(3, a) If 1 ^ / < fc = m then a0- = 1 = akj for at most a — 2 indices j , 1 = j' f^ n. 
Let a e N, a ^ n and let P e N(a) be such that IjS = /?! + ... + pa = n. 
(4, a, p) For every 1 = i ^ m there are exactly a indices l1?..., ta with 1 ;= *-. ;= 

^ ^ < t2 = J8, + p2 < ... = jS, + ... + £,_-. < ta = p, + ... + /?a = n 
and au = 1 iff j G {tx,..., ta}. 

2.1. Lemma, (i) If A satisfies (1) then A e ^ ( P , m, n). 
(ii) If A satisfies (1) and (2) then A satisfies (4, a, p) for at most one ordered pair 

(a, p) with 1 = a = n, pe N(a) and n = £/>. 

Proof, (i) This is obvious, 
(ii) Suppose that A satisfies (4, a, p) and (4, a', /T). Let /?! < P[ and pt < j = P[. 

Then it is easy to see that the column }a is a zero column, a contradiction with 
(2). Hence pt = P\. Similarly, p2 = p2, etc., and therefore a = a'. 

2.2. Lemma. Let 3 ^ a = n, (n - a + 2)/2 < meN, PeN(a), Xp = n, be such 
that there exists a matrix A e ^ ( R , m, n) satisfying (1), (3, a) and (4, a, p). Then: 
(i) card{{l = i = *\Pi = l}) = 0L- 3. 

(ii) a + 3 ^ n and 3 = m. 

Proof. Easy. 

3. Annihilators 

Let A G S01(R, m, rc). We denote by Mod (A, R) (resp. Mod (R, A)) the submodule 
generated by the rows (resp. columns) of A in the free K-module R(n) (resp. R(m)). 
Further, let Ann (A, R) = {w e R(n) \ Aw = 0} and Ann (R, A) = {w e R(m) | wA = 
= 0}. Then Ann (A, JR) is a submodule of R(n) and Ann (R, A) is a submodule of R(m). 

Now, suppose that A e 9K(P, m, n). Then there exist invertible matrices C e 
G 9JJ(P, m, m) and D e 2R(P, n, n) such that the matrix B = CAD is diagonal and bu 

divides bi+l, i+1 in P for all 1 ^ i ^ k = min (m, n). 

3.1. Lemma. Rblx 3 Kb22 ^ .. . ^ Pbu and both the R-modules Mod (A, R) 
and Mod(R,A) are isomorphic to the outer direct sum Pbn © ... ® Rbkk of 
principal ideals of R. 

Proof. Obvious. 
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3.2. Lemma. (0 : b11)R .= (0 : b22)R = ... = (0 : bkk)R, the K-module Ann (A, R) 
is isomorphic to the outer direct sum (0 : btl)R © ... © (0 : bkk)R © R(n~k)and the 
P-module Ann (R, A) is isomorphic to the outer direct sum (0 : 6 n ) R © ... 
• • © (0 : bkk)R © R(m~k) of annihilator ideals of R. 

Proof. Obvious. 

Although the invertible matrices C and D and the diagonal matrix B are not 
determined uniquely by A, it follows from the next lemma that the number of non-zero 
elements of B is determined uniquely by A. We denote this number by rank (A). So, 
0 = rank (A) ^ min (m, n). 

3.3. Lemma. Let 1 e N and let xl9...,xh y^ ..., yte R be such that Rx1 ~2 ... 
... ~2 Rxh P^! ~2 ... ~2 Ryt and the K-modules X = Rxt © ... © Rxt and Y = 
= Ryt © ... © Ryt are isomorphic. Then 1?xx =* Ryl9..., Rxt =; Ryh 

Proof. We shall proceed by the induction on /. For / = 1 there is nothing to prove. 
Assume / = 2 and let <p be an isomorphism of X onto 7. Clearly, <p(xi) = Xy1 and 
<P_1(yi) = £*i f ° r some X,QER. Consequently, q>(Rx^ = Ry^ and the P-modules 
Rx2 © ... © Rxl =- XJRxt and Py2 © ... © ity, i= Y/tfy! are isomorphic. 

3.4. Corollary. Suppose that either a = 0 or a is a prime. Then Ann (A, fl) is 
a free R-module of rank equal to n — rank (A) and Ann (R, A) is a free P-module 
of rank equal to m — rank (A). 

Let 1 = a = H and let £ e N(a) be such that I,p = n. We denote by K(a, P) the set of 
all w G K(n) such that wx = ... = w^, w,1 + 1 = ... = w^1+^2, ...,wPl + ...+Px_l + 1 = ... 
... = w„ and wfil + w,1 + / ,2 + ... + wPi + ...+figc_l + 1 + w„ = 0. Obviously, R(cc, p) is 
a submodule of R(n) and K(a, /?) is a free .R-module of rank a — 1. 

A matric A e 9K(P, m, n) will be called (R, a, j5)-flat if Ann (A, P) = P(a, p). 

3.5. Lemma. Let A e 90t(fl, m, n) be a matrix satisfying (l) and (4, a, /?). Then: 

(i) R((x, P) s Ann (A, K). 

(ii) rank (A) = n — a + 1. 

(iii) rank (A) = n — a + 1 and m _• w — a + 1, provided A is (R, CC, jS)-flat. 

Proof, (i) This is an easy consequence of (4, a, p). 
(ii) By (i), P(a, p) = Ann (A, P) and P(a, P) is isomorphic to P ( a - 1 ) . By 3.3, 

Ann (A, P) is isomorphic to p(n~l) © M where / = rank (A) and M = 
= (0 : b11)P © ... © (0 : bu)F. In particular, bM = 0, ft = fcn. If <r = 0 then 
M = 0 and clearly a — 1 = n — /. Suppose that (7 + 0. Then the module 
(Pb)(n~l) contains asubmodule isomorphic to(Pby""1^ and hence ra~l ^ r*~l, 

r = card (Pb) = 2, r finite, so that a - 1 = n - /. 
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(iii) Put / = rank (A). By (ii), / ^ n - a + 1. By 3.3, Ann (A, R) possesses a free 
direct summand of rank n — /. But Ann (A, R) = R(a, /?) is a free module 
of rank a — 1. Consequently, n — I ^ a — 1 and n — a + 1 ^ /. 

3.6. Lemma. Let A e 90i(K, m, n) be a matrix satisfying (1) and (4, a, /?). Suppose 
that A is (R, a, £)-flat. Then / = rank (A) = n - a + 1 and (0 : bn)R = ... 
. . . = ( 0 : b z / ) R = 0 . 

Proof. First, / = tz — a + 1 by 3.5(iii). Further, by 3.3, Ann (A, K) is isomorphic 
to K(a_1) e M, M = (0 : bll)R e ... e (0 : b/z)R. On the other hand, Ann (A, R) = 
= K(a, /?) is isomorphic to K(a_1), and therefore R(*~l) is isomorphic to K(a-1) e M. 
We are going to show that M = 0. Assume on the contrary that M -# 0. The module 
M as a direct summand of K(a~l) is finitely generated. Hence IM + M for a maximal 
ideal I of R. Put S = R\I, so that S is a field. The S-modules S ( a _ 1 ) and S(x~l) ® 
e M\IM are isomorphic, hence MJIM = 0, IM = M, a contradiction. 

3.7. Proposition. Let A e 9Jt(R, m, rc) be a matrix satisfying (1) and (4, a, /?). The 
following conditions are equivalent: 
(i) A is (P, a, jff)-flat. 

(ii) / = rank(A) = n - a + 1 and(0 : b„)p = 0(then(0 : blt)F = ... = (0 : bu)P = 
= 0). 

Proof, (i) implies (ii) by 3.6. 
(ii) implies (i). First, let a = 0 and let Q be a quotient field of P. Then both Q(a, />) 

and Ann (A, Q) are isomorphic to g ( a - 1 ) . Consequently, Q(a, /?) = Ann (A, Q) 
and it is easy to see that A is (P, a, /?)-flat. Now, let a + 0. Then the equality 
card (P(a, /?)) = card (Ann (A, P)) yields the equality P(a, fi) = Ann (A, P). 

3.8. Corollary. Suppose that either a = 0 or a is a prime. Let A e SJW(R, m, /1) be 
a matrix satisfying (1) and (4, a, ft). Then A is (P, a, /?)-flat iff rank (A) = n — a + 1. 

3.9. Proposition. Suppose that R is a domain. Let A e 9Jt(K, m, «) be a matrix 
satisfying (1) and (4, a, /?). Then A is (R, a, /?)-flat iff rank (A) = n — a + 1. 

Proof Similar to that of 3.7. 

4. Auxiliary results 

Let a,n,meN,oc^n,Pe N(a), L/? = n. Let A e 9[R(/*, m, n) be a matrix satisfying 
(1) and (4, a, p). 

4.1. Lemma. Suppose that A is (R, a, />)-flat. Then A satisfies (2). 

Proof. Easy. 
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4.2. Lemma. Let a{ = ak for some 1 __ i < k __ m and let B be the matrix obtained 
from A by omitting the k-th row. Then: 

(i) B e m(R, m - 1, n) satisfies (1) and (4, a, p). 
(ii) B satisfies (2) iff A does so. 

(Hi) Ann (A, R) = Ann (B9 R). 
(iv) B is (K, a, /?)-flat iff A is so. 

Proof. Easy. 
Now, let 1 _̂  i < k __ m be such that av + ak and at7l = afcyi = ... = aiJtt_l = 

= afcya_. = 1 for some 1 __ j 1 < ... < ja_i __ n (in particular, A does not satisfy 
(3)). Then there exist 1 _i r, s _̂  n such that r ^ s9 r9 s ^ j \ , . . . ,I a_i and air = 
= aks = 1. Moreover, both r and s are contained in just one from the intervals 
LUPtl [Pi + 1, Pi + j82]-..-,[/»! + .-. + Pa-i + 1 , 4 Let r, S G [ / / 0 + ... 
... + 0! + 1, j?! + ... + j8 /+1], where p0 = 0, 0 = I ^ a - 1 Put t = min (r, s) 
and u = max (r, s). We shall define a matrix Ce 90̂ (1*, m — 1, n — 1) as follows: 
cxy = axy and czy = az+iiy for all 1 __ x < k __ z __ m — 1 and all y such that 
either 1 __ y < t or t < y < u; cxy = aXjy+i for all 1 __ x < k and all u __ y __ 
__ n — 1; czy = a;c+i,y+i for all k _ x __ m — 1 and u __ y __ n — 1; cxt + axr + 
+ a^ for all 1 ^ x < k; cxf = ax + i , r + ax+ltS for all k __ x __ m — 1. 

4.3. Lemma, (i) C e 90t(R, m — 1, n — 1) satisfies (l) and C satisfies (2) iff A 
does so. 
(ii) C satisfies (4, a, 7) for y = (pi9 ..., fil9 Pl+l - 1, j&-+2,..., 0a). 

(iii) If z G Ann (A, R) then zr = zs. 
(iv) C is (R, a, y)-flat iff A is (K, a, )S)-flat. 

Proof. Let w e R ( n _ 1 ) and x G R(rt) be such that xx = wl9 ...,xM_i = wM_j, xu = 
= wt9 xu+1 = wM, ..., xn = w„_ 1. Let Cw = v and Ax = y. Then vx = yl9 ..., v^_ t = 
= y*-i> vk = yk+l,...,vn.1 = yn and vt = yk = yt. 

In the next lemma, let gl9 ...9QmeR and 1 ^ / ^ m be such that Oiai + ... 
... + Omam = 0 and (0 : Qt)R = 0. Denote by D the matrix obtained from A by 
omitting the i-th row. 

4.4. Lemma, (i) D e Wl(R9 m — 1, n) satisfies (1) and (4, a, /?) and D satisfies (2) 
iff A does so. 
(ii) Ann (D9 R) = Ann (A, R). 

(iii) D is (R, a, £)-flat iff A is so. 

Proof. Easy. 

5. Determinants 

Let a, n, m GN, 2 ^ a g n and m = n - a + 1. Let 1 ^ rx < ... < ra_x ^ n. 
For a matrix Ae$R(R9m,n) we denote by A(rl9..., ra_x) the square matrix of 
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type (m, n) obtained from A by omitting the rl9 ..., r__i-th columns. Further, define 
a square matrix C = A[rl9..., ra__] of type (n, n) as follows: c{ = ax for all 1 __ 
__ i __ m; cw+y>fe = 0 for all 1 __ j f_ a — 1 and 1 __ k __ M, k + ry, cm+jrj = 1 
for all 1 = j = a - 1. 

5.1. Lemma, det C = ( - 1 ) ' det B for / = rx + ... + ra__ + (a - 1) w -
- (a - 1) (a - 2)/2. 

Proof. Easy. 

5.2. Lemma, (i) w e Ann (C, R) iff w e Ann (A, _R) and wri = ... = wra_. = 0. 

Proof. Obvious. 

Now, let peN(a), I £ = n. Denote by J(p) the set of all ordered a - 1-tuples 
s = (s_, . . . ,s a_i) such that 1 ___ s_ < ... < sa_i __ n and each from the intervals 
[1, /?_], [/̂ i -f 1, /9j -f- / ? 2 ] , . . . , [/?i -f- ... + /^a_i + 1, n] contains at most one from 
the numbers s_,..., sa_x. Then exactly a — 1 intervals contain each just one of those 
numbers and one interval contains none. 

Let r = (r_, ..., ra_i) e J(/^), let A e Wl(R9 m, n) be a matrix satisfying (1) and 
(4, a, j8) and let B = A(r) and C = A[r]. 

5.3. Lemma. Ann (C, R) n K(a, p) = 0. 

Proof. This is an easy consequence of 5.2. 

5.4. Lemma. Suppose that A is (R, a, /?)-flat. Then: 
(i) Ann (C, H) = 0. 

(ii) rank (C) = n. 
(iii) (0 : det C)R = 0. 
(iv) If a + 0 then C is invertible in 2W(P, n, «). 
(v) C is invertible in 901(5, «, n) where 5 is the classical quotient ring of R. 

Proof (i) We have K(a, p) = Ann (A, R), Ann (C, K) __ Ann (A, R) and 
Ann (C, R) n K(a, j^) = 0. Thus Ann (C, R) = 0. 
(ii) This is an easy consequence of 3.2. 

(iii) This is clear from (i). 
(iv) Put c = det C. Then (0 : c)R = 0, so that c is invertible in P and C in 2K(P, n, n). 
(v) Similar to (iii). 

5.5. Lemma. If Ann (C, R) = 0 then A is (R, a, /j)-flat. 

Proof. Let w e Ann (̂ 4, R). We shall restrict ourselves to the case r__ _ __i /?_ + . . . 
... + /?a__, the other cases being similar. Consider x e R(n) such that JC_ = . . . 
... = x/5l = wri, x^1 + 1 = ... = Xpl+fi2 = w r 2 , . . . , x/j1 + ...+/?__2 + i = ••• 
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••• = xfil + ...+fia_l = w r . . . a n d xfil + ...+fu_l + 1 = . . . = xn = -wri - ... - wroc_t. 

Then x e R(a, /?). Moreover, w — xe Ann (C, R) by 5.2(i). Hence w = x and w e 
€ -R(<x, J8). 

5.6. Proposition. The following conditions are equivalent: 
(i) A is (R, a, 0)-flat. 

(ii) Ann (C, K) = 0. 
(iii) (0 : det C)R = 0. 

Proof, (i) implies (ii) and (iii) by 5.4, (ii) implies (i) by 5.5 and the implication (iii) 
implies (ii) is easy. 

5.7. Proposition. Suppose that either a = 0 or a is a prime. The following conditions 
are equivalent: 

(i) A is (P, a, j8)-flat. 
(ii) rank (A) = n — a + 1. 

(iii) rank (C) = n. 
(iv) det C * 0. 
(v) det B =j= 0. 

Proof Use 3.8 and the fact that P is an integral domain. 
Let r, s e J(p). 

5.8. Lemma. Let I be a prime ideal of R. Then det A[r] e I iff det A[s] e I. 

Proof. Denote by g the natural homomorphism of R onto 5 = Rjl and suppose 
that det A[r] eI . We have g(A[r]) = g(A) [r], 0 = #(det A[r]) = det g(A) [r] and 
rank (g(A)) < n — a + 1 by 5.7 and 3.5(H). However, now we can proceed conversely 
and we have det A[s] el. 

6. Some matrices 

Let 4 = m e N, m even, k = m/2 and n = m + 2. Let 5 e 9W(Z, k, fc) be a matrix 
satisfying (1), (2) and (4,1, k) such that bH = 0 for each 1 = i = k. Notice that each 
column as well as each row of B contains just one non-zero element. Consider the 
following matrix A e 9Jl(Z, m, n): 

(Һ Һ 1 0 \ 

1 0 

0 1 

Һ B • ; 

V Q iy 
where Ik e Wl(R, k, k) is the unit matrix. 
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6.1. Lemma. A satisfies (l), (2), (3, 3) and (4, 3, p) for p = (k, k, 2). 

Proof. Obvious. 

Now, put C = A(m9 n) (clearly (m, n) e J(A)). The matrix C has the following 
form: 

( Л 
Һ I*-l 

0 . . . 0 1 

0 

Һ D 

V 0 / 

where D is the matrix obtained from B by omitting the last column. It is easy to see 
that det C = ± det E, where E is the following matrix: 

/ 

Һ I*-l 

0...0 

\\ 

1 

- 1 
0 

V 
D - L 

-ч 
Here, L = 

(ó*::o) 
є Ш(Z, k,k- 1). 

Similarly, det C = ± det F, where F is as follows: 

/ 0 \ 

I. 0 
0 

- 1 
0 D -- L 

V -ч 
Denote by G the matrix { D - L, j ] e 9W(Z, k, k). 

6.2. Lemma, det C = ± det G. 

Proof. The result follows easily from the equality det C = ± det F. 

Let H be the matrix obtained from B by omitting the last row and the last column. 

Put K = if - / * _ ! . 

6.3. Lemma, det C = ± k det K. 
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Proof. If we add in G to the last row the remaining rows, we get the following matrix: 

- 1 

[K 
1 

І 0 . . . 0 -k 

6.4. Lemma. de tKe{0 , 1, - 1 } . 

Proof. By induction on leN, we shall prove such an assertion: Let Ve 9M(Z, / /) 
be a matrix satisfying (l) such that each row as well as each column of V contains at 
most one non-zero element. Then det We {0,1, —1}, where W= V— It. First, 
observe that if vH = 1 for some 1 ^ i ^ I then W contains a zero row, so that 
det W = 0. Hence assume that vu = 0 for each i. Further, if the matrix V contains 
a zero row (resp. column), then we can apply the induction hypothesis. So, let each 
row as well as each column of V contain exactly one non-zero element. Then the 
sum of all rows of Wis equal to zero, so that det W = 0. 

There is a permutation \i of the set {l, 2,..., k] such that btj = 1 iff 7 = fi(i). 

6.5. Lemma. Suppose that k ^ 3. Then det K =j= 0 iff /z is a cycle. 

Proof. Denote by / the natural homomorphism of Z onto Z/2Z = S. Clearly, 
det K -# 0 iff det/(K) #= 0. However, det/(K) #= 0 iff the rows of/(K) are linearly 
independent over S. It is easy to see that if T is a proper non empty subset of 
{1, 2,..., k) then £/(fc,) = 0 iff fi(T) = T The rest is clear. 

ieT 

6.6. Corollary. Let m = 6. The matrix A is (Z, 3, /?)-flat iff /i is a cycle. 

7. The numbers <5(R,I,a) 

Let 1 = a = n, P e N(a), 2£ = n, 3 = n, m = n - a + 1. Let A e 9M(R, m, n) be 
a matrix satisfying (1) and (4, a, /?). We denote by X(A) the set of all non-zero (proper) 
prime ideals I of R such that det A[r] el for some (and then for all — see 5.8) 
reJ(P). 

7.1. Lemma. The following conditions are equivalent for a non-zero prime ideal / 

ofK: 

( i ) I e i ( A ) . 

(ii) fi(A) is not (S, a, £)-flat where fa R -+ Rjl = S is the natural projection, 

(iii) rank (fj(A)) < m. 
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Proof. The conditions (ii) and (iii) are equivalent by 3.9 and the conditions (i) and 
(iii) are equivalent by 5.7. 

Let I be a non-zero prime ideal of R and let 2 = a e N. We let 6{R, I, a) designate 
the minimum of all m e N such that there exist P e N(a) with n = E / ? = m + a— 1 
and a matrix A e $Jl(R, m, n) satisfying (1), (2), (3, a) and (4, a, p) such that I e A(A) 
and A is (R, a, /?)-flat. We put d(R, I, a) = oo if there exists no matrix with these 
properties. For a prime ne N, let 5(n, a) = S(Z, Zn, a). 

7.2. Lemma. Suppose that R is a domain .Let m, n e N, P e N(a), I/? = n and let 
A G 901(1*, m, n) be a matrix satisfying (1) and (4, a, /?) such that A is (K, a, /?)-flat 
and f7(A) is not (R/I, a, #)-flat. Then <5(K, I, a) = m. 

Proof. First, A satisfies (2) by 4.1. Further, with respect to 4.2 and 4.3, we can as
sume that A satisfies (3, a). By 3.5, rank (A) = n — a + 1 :g m. On the other hand, 
with regard to 4.4, we can assume that the rows of A are linearly independent over R. 
Then they are linearly independent over the quotient field of R, so that m = rank (A) 
and m = n — a + 1. 

7.3. Proposition. Let 2 = a, n e N and let n be a prime. Then loga n < S(n, a). 

Proof. Let p € N(a), Ij? = n = m + a - 1 and let A e 9K(Z, m, n) be a matrix 
satisfying (1), (2), (3, a) and (4, a, p) such that I = Zne X(A) and .A is (Z, a, j8)-flat. 
Take r e J(a) and put B = A(r). Then B is a square matrix of type (m, m) and each 
row of B contains at most a non-zero elements. Moreover, at least one row contains 
at most a — 1 non-zero elements. Hence |det B\ < am. Finally, detfj(B) = 
= f/(det B) = 0, so that n divides det B and n < am. From, this loga n < m. 

1.4. Proposition. Let 3 = n be a prime. Then S(n, 3) ^ In. 

Proof. The result is an easy consequence of 6.6. 

8. Cancellative relations and matrices 

Let 2 = a e N and let r be a non-empty a-ary relation defined on a finite set M. 
Put qt = qt(r), n = I,qh p = (qu ..., qx), m = card (r), Qt(r) = {zn, ..., ziqi}, 
Q = Q(r)- Further, let Q be a linear ordering of r = {xl9 . . . , x m } , (xh xk)eQ iff 
k = 1. We shall define a matrix E = E(r, Q) e $Jl(R, m, n) as follows: eu e {0, 1} 
for all 1 = i = m and 1 = j;

 = n; if 1 ^ i = m and xt = (al9..., aa) then, for 
1 = j' = n, etj = 1 iff there exists 0 = k = a — 1 with qt + ... + qk < j ^ qt + ... 
... + qk+1 and a&+1 = zk+ul, I = j - qx - ... - afc. 

8.1. Proposition. The matrix E(r, Q) satisfies the conditions (1), (2), (3, a) and 

(4, «,/?)• 
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Proof. Obvious. 
Let (p: Q -> R be a mapping. Define w e R{cl) by vv_ = <p(Zu), ..., w_t = ^(Ziqi), 

W«, + l = < Z 2l) , -.., VV_1 + __ = <P(Z2J, ..., W„ = <p(zaJ. 

8.2. Lemma, <p is a homomorphism of r into the additive group -R( + ) iff Fw = 0. 
In this case, cp is trivial iff w e R(oc, /?). 

Proof. Obvious. 

8.3. Corollary. Every homomorphism of r into -R( + ) is trivial iff E(r, Q) is 
(R, a, /?)-flat. 

Let </>: 2 -» -R be a mapping and let 1 __ i _S a. Define 

veR00 by v_ = <p(Zn),..., _̂1 + ... + _i_1 = <Hz--i,_,-i) > 
^ , + ...+q,-i + i = -<P( z a) , . . -^_ 1 + ... + _l = -9(Z^)r 
*V + ... + «,+ l = <Kz .+ i,i)> •••> "„ = <Kza<J -

8.4. Lemma, cp is an i-homomorphism of r into #( + ) iff Fv = 0. In this case, 
cp is trivial iff v e R(oc, ft). 

8.5. Corollary. Every i-homomorphism of r into -R(+) is trivial iff E(r, Q) is 
(R, a, £)-flat. 
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