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Some theorems on the shape of continuous convex or concave functions with respect to 
the logarithmic mean are presented. 

Throughout the paper a, b denote the numbers such that 0 < a < b < oo, I, 
J stand for the real open intervals such that J cz /, and log denotes the natural 
logarithm. 

Let M : I x / -* / be a mean, i.e. 

min {x,y} < M {x,y} < max {x,y},x,y e I. 

If, moreover, for all x,y e I, x ^ y these inequalities are sharp then M is said to 
be a strict mean. If M : I x / - • / i s a mean then 

M (x,x) = x, x e I, 

and 

M(J x j ) c j , j c / . 

The last property allows us to introduce the following 

Definition. A function / : J -> / is called: 

(i) M - convex iff f(M(x,y)) < M(f(x), f(y)), x,y e J, 
(ii) M - concave iff f(M(x,y)) > M(f(x), f(y)), x,y e J, 
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(iii) M - affine iff f(M(x9y)) = M(f(x)9 f(y))9 x9y e J, 

(comp. [4], [5]). 

We will restrict our considerations to L - convex or L - concave functions, 
where L : (0,oo)2 -> (0,oo) denotes the logarithmic mean defined by 

x — v 
L(x,y) = - , x ?- y, x, y e (0,GO), 

log x — log y 

L(x,y) = x, x = y, x, 3; G (0,oo) 

This mean has the following 

Properties ([1],[3]): 

1. L is a strict mean; 

2. L is a positively homogeneous, i.e. L(txjy) = tL(x,y\ t, x, y > 0 ; 

3. L is symmetric, i.e. L(x,y) = L(y,x), x, y > 0; 
4. for every x > 0 the function L(x, •) w increasing homeomorphism of (0, 00) 

onto /lse/f 

5. for all x, 3; > 0 we have 

V^<L(x,y)<^p; (1) 

moreover, the equalities occur iff x = y\ 

6. L w superadditive, i.e. 
L(xx + x2, jl! + y2) > L(xhyl) + L(x2,y2), xi9x29yuy2 > 0. 

The examples of convex or concave functions with respect to the logarithmic 
mean were given by J. Matkowski and J. Ratz in [4] and [5], Among others it is 
known that: 

the power function f(x) = xp, x e (0,oo) is L — convex iff p e U \ (0, 1) and it is 
L - concave iff p e [0, 1]; 
the exponential function f(x) = ax, x e (0, 00) is L - convex for every a > 1 and 
it is neither L - concave nor L - convex for any a e (0, 1); 
the logarithmic function f(x) = loga x, x e (1, 00) is L - concave for every a > 1. 

Moreover, J. Matkowski has proved in [3] that every continuous (at a point) 
L-affine function f: (0, 00) —• (0, 00) is either constant or has the following form 
f(x) = kx, x > 0, where k is an arbitrary positive constant. 

We will start our investigations with the intervally monotonic L-convex or 
/.-concave functions. A function f:(a, b) -* IR is called intervally monotonic if 
there exist points x0, x b ..., xn such that a = x0 < x{ < ... < xn = b, and the 
restriction of f to the intervals (xM, x,), i e {1,2, ..., n) are monotonic functions. 



Lemma 1. If f: (a, b) -> (0, oo) is a monotonic L - convex function then it is 
continuous. 

Proof. Assume that f is an increasing L-convex function and fix an arbitrary 
ze(a, b). Denoting by f(z~) the lefthand side and by f(z+) the righthand side 
limits of f at z we have f(z~) < f(z+). Take an arbitrary sequence zne(z, b) 
tending to z. By L-convexity of f and on account of (1) we get 

f(L(z, z„)) < L(f(z),f(zn)) < / ( Z ) + / ( Z " ) -

Letting n -+ oo we obtain 

/Ms/M±ZM. 

Consequently, f(z+) < f(z) and therefore f(z) = f(z+). Let (zn) be as above and 
take the sequence wn e (a, z), lim.,^^ w„ = z such that z = JL(W„, zn) for every 
positive integer n. According to the Lconvexity of f, and (1) we get 

f(z+) =f(L(Wn, zn)) < L(f(Wn), f(z„)) < / ( W " ) + / ( Z " ) . 

Letting n -> oo and using the equality f(z) = f(z+) we obtain 

which implies that f(z) = f(Z_1). Thus f is continuous at z. In the same man
ner our Lemma can be proved in the case of a decreasing function (using now 
zne(a,z)). • _ 

In a similar way (using the inequality yjxy < L(x, y) instead of L(x, y) < 2L^1) 
the following lemma can be proved. 

Lemma 2. If f: (a, b) -> (0, oo) is a monotonic L - concave function then it is 
continuous. ~~ 

Theorem 1. If f:(a, b) -• (0, oo) is an intervally monotonic L - convex 
(L - concave) function, then f is continuous. 

Proof. Let f be an Lconvex intervally monotonic function. By Lemma 1 it is 
enough to prove that f is continuous at z e (a, b) in which the monotonicity of 
f interchanges. Assume that f is decreasing (increasing) in a lefthand neighbour
hood (ab z) and f is increasing (decreasing) in a righthand neighbourhood (z, bx) 
of z. Take a sequence wn e (au z) converges to z. Then 

f(L(Wn,z))<L(f(Wn)J(z))<^±M. 



Letting with n to infinity we get f(z") < f(z). Similarly, taking a sequence zn e (z, b{) 
converges to z we can prove that f(z+) < f(z). Now take sequences wne(ah z) 
and zn G (z, b{) converge to z such that z = L(wn, zn) for n e N. By virtue of the 
L-convexity of f and (1) we have 

f(z) = f(L(w„, zn)) < '2—
y—£. 

Hence 

Therefore it is not true that f(z) < f(z~) and f(z) <f(z+) simultaneously. As
sume that for instance f(z~) > f(z), i.e. f(z~) = f(z). Then we have f(z) < f(z+) 
which proves in view of the earlier inequality f(z+) < f(z~) that f(z+) = f(z~), 
too. This ends the proof of continuity of f at point z. Similarly we prove the 
theorem in the case when f is an L-concave intervally monotonic function. • 

The following two theorems refer to the shapes of continuous /--convex and 
Z^concave functions. 

Theorem 2. Let f: (a, b) -> (0, oo) be a continuous L- convex function. Then 
there exist c, d, a < c < d < b such that f is strictly decreasing in (a, ft), f is 
constant in (c, d) and f is strictly increasing in (d, b). 

Proof. Let us put 

m:= inf {f(x); xe(a , b)} 
and 

Ta:= {xe(a, b); f(x) < cc} 

for every cc > m. Obviously, T% is closed. We will show that 7̂  is an interval, for 
a > m. For, take x1? x2e Ta and assume that there exists an x e [xb x2] such that 
x ^ Ta. Thus f(x) > a. We define Cx and Cx in the following way: 

Cx:= inf {se [xl9 x]; f(t) > a, t e (5, x)}; 

Cx := sup {se [x, x2]; f(t) > cc, t e (x, 5)}. 

Note that x{ < Cx < x < Cx < x2. According to the continuity of f we have 

j(Cx)=f(C) = a. 
Putting 

C:= L(CX,CX) 

we obtain by the L-convexity of f 

a < f(C) = f(L(Cx, Cx)) < L(f(Cx),f(C*)) = a, 

which is impossible. So, for every a > m the set Tx is an interval. Let 



T„ = n T.. 

If Tm is nonempty, then Tm = [c, d] n (a, ft) and evidently / is constant function 
on (c, d). Assume that a < c. We shall show that / is strictly decreasing on (a, c). 
For indirect proof suppose that there exist X! and x2, Xi < x2 such that 
f{*i) < f{xi)' Hence and by the definition of Ta we infer that x b c e 7}(Xl). Since 
x 2 e(x l 9 c) and Tf^ is an interval we have / ( x i ) = / ( x 2 ) . Let us put 
x* = sup {XG [x2, cj; /(x) = f{x{)}. Evidently, /(x*) = f{x{) and, moreover, 
f{u) < f{x{) for every u e [x b x*]. Choose a w e (xb x*) and a v e (x*, c) such 
that x* = L(w, v). According to the /.-convexity of / we get 

f(Xl) = f(X*) = f(L(u, v)) < L(f(u), f(v)) < f(Xl), 

a contradiction. Likewise one can show that / is strictly increasing on (d, b). If 
Tm is empty, then by continuity of / it is sufficient to show in analogous way that 
/ is strictly decreasing or strictly increasing on (a, b). The proof of Theorem 2 is 
completed. • 

Following Robert and Varberg ([6], p. 230) we call a function / : (a, ft) -* 1R 
quasiconvex if the level sets Ta are convex for every a e U. Thus we have the 
following 

Corollary 1. Every continuous L- convex function is quasiconvex. • 

In order to get the analogous (to Theorem 2) result it will be useful to prove the 
following 

Theorem 3. Let f:{a, ft) -• (0, oo) be an L - concave function. Then the 
function h{x):= j ^ x e (a, ft), is L - convex. 

Proof. By virtue of the definitions of h, Land on account of the L-concavity of 
/ and (1) for all x, y e (a, ft) we get 

L(/i,(x), h{y)) = L{jL jL) = wmL{f{x\ f{y)) = 

ШfШMГ > f(x)f(y) HAx)Ay)) -
> (JFm2 _J h(w (x v\\ n 
-^ f(x)f(y) f(L(x,y)) - n(L,[X9 y)). U 

A simple example of the function /(x) = ,̂ x E (0, oo) shows that the converse 
theorem does not hold. 

Theorem 4. If / : (a, ft) -> (0, oo) is continuous and L - concave then there exist 
constants c, d, a < c < d < b such that f is strictly increasing in (a, c), / is 
constant in (c, d) and f is strictly decreasing in {d, ft). 

Proof. According to Theorem 3 the function j is L-convex and continuous. Now 
our assertion follows easily from Theorem 2. • 



In [2] we have proved that every bounded L-convex function f: (0, oo) -> (0, 
oo) has to be constant. Theorem 3 also allow us to prove the analogous result for 
L-concave functions. Namely we have 

Theorem 5. Let f: (0, oo) -• (0, oo) be an L - concave function. If there exists 
a positive number m such that f(x) > m for all x e (0, oo) then f is constant in 
(0, oo). 

Proof. It follows from Theorem 3 and from the below boundedness of f that j 
is bounded L-convex function and therefore constant. Thus f has to be constant, 
too. • 

Immediately from Theorem 5 follows 

Corollary 2. Let f: (0, oo) —> (0, oo) be a non-constant increasing function such 
that limx^0+ f(x) > 0- Then f is not L - concave. • 

Corollary 3. Let p be a positive real number and let f: (p, oo) —> (0, oo) be 
strictly increasing function such that limx^p+ f(x) = 0. Then f is not L - convex. 

Proof. Suppose that f is a L-convex function. Observe that then the inverse 
function f _ 1 is L-concave function bounded below by a positive constant. By 
Theorem 5 f ~l is constant, a contradiction. • 

All L-convex functions (which we know) are also convex. We do not know 
whether it is generally true. We will present some partial results of this type. 

Theorem 6. Every decreasing L - convex function f: (a, b) -> (0, oo) is convex. 

Proof. By monotonicity, Z^convexity and (1) we get 

This means that f is convex in the Jensen sense and being continuous it is 
convex. • 

In the next statements we use the following 

Lemma 3. ([7], p. 13) Let f: I —> IR be a continuous function. Suppose that for 
any te I and d > 0 there exist tu t2e I n (t — S, t + S) and a e [0, 1] such that 
t = atl + (1 — a)t2 and f(t) < af(tt) + (1 — oc)f(t2). Then f is convex. • 

Theorem 7. Let f: (a, b) —•((), oo) be an L - convex function. If the function 
\jj(x):= ^ , x e (a, b) is increasing then f is convex. 

Proof. Note that since i// is increasing then also f is (strictly) increasing in (a, 
b). It is easy to check that the function cp: (1, oo) -• IR defined by the formula 
<p(s) • = S(s~- ljiogV is strictly decreasing. For arbitrary x, y e (a, b), x < y we have 



f(x) < f(y). By our assumption on \\r we get ^ < ^r. Consequently 1 < I < 7̂ 5 
and hence cp (j$) < cp (ty. Therefore 

j g - l - l o g j g j - l - l o g g 
(Jg-l)logjg - (£--)-<*£ 

or, equivalently 

Hf(4 f(y)) * / ( y j l { ( x ) (--(x, y) - x) + f(4 
y x 

According to the Z^convexity of / we obtain 
f(L(x, y)) < f{y)~{iX) «*> y) ~ x) +f(x). 

y x 

This means that the point (L(x, y), /(L(x, y))) lies below the segment joining the 
points (x, f(x)) and (y, /(y)). Now our assertion follows from Lemma 3. • 

We omit the proof of an analogous theorem for L-concave function. 

Theorem 8. Let f: (a, b) -* (0, oo) be an increasing L - concave function. If 
the function {//(x): = £̂% x e (a, b) is decreasing then f is concave. • 

Example. It follows from Theorem 7 that the function / : (p , oo) -> (0, oo) 
defined by the formula f(x) = kx — x~a, where positive constants a, /c, p are 
chosen such that /cpa+l > 1 is not L-convex in (p, oo). • 

Finally we prove the following 

Theorem 9. Let fg: (a, b) -> (0, oo) be Junctions such that f(x)<g (x), x e (a, b). 
If f is L - convex and g is L - concave then the function h(x):= g(x) — f (x), 
x e (a, b) is L - concave. 

Proof Making use of the assumptions and the superadditivity of L we get 

h(L(x, y)) = g(L(x, y)) - f(L(x, y)) > L(g(x), g(y)) - L(f(x), f(y)) = 

= L(g(x) - f(x) + f(x), g(y) - f(y) + f(y)) - L(f(x), f(y)) > 

> L(g(x) - f(x), g(y) - f(y)) = L(h(x), h (y)). D 

As a consequence of Theorem 9 we get that the function defined in our example 
is L-concave in (p, oo). 
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