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Abstract. The aim of the paper is to propose a definition of numerical range of an operator
on reflexive Banach spaces. Under this definition the numerical range will possess the
basic properties of a canonical numerical range. We will determine necessary and sufficient
conditions under which the numerical range of a composition operator on a weighted Hardy
space is closed. We will also give some necessary conditions to show that when the closure
of the numerical range of a composition operator on a small weighted Hardy space has zero.
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1. Introduction

The concept of the numerical range of an operator on a Hilbert space was presented

by O.Toeplitz in 1918 ([13]). The numerical range of a bounded operator T on

a Hilbert space H is the set of complex numbers

V (T ) = {〈Th, h〉 : h ∈ H, ‖h‖ = 1}.

The Toeplitz-Hausdorff Theorem ([6], [13]) establishes the convexity of the numerical

range for any operator on a Hilbert space. Some properties and further developments

of the numerical range of a bounded linear operator on a Hilbert space can be found

in [4], [5]. The concept of the numerical range on a Banach space X , extended by

Baure and Lumer in [1], [8], is not necessarily convex, see [2, Example 21.6].

This investigation has been supported by project 88414 of the Islamic Azad University,
Shiraz Branch, Iran.
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Let X be a Banach space. Every x ∈ X defines an element x̂ ∈ X∗∗ (second dual

of X) by x̂(x∗) = x∗(x), where x∗ ∈ X∗ and ‖x‖ = ‖x̂‖. Recall that X is a reflexive

Banach space if X∗∗ = {x̂ : x ∈ X}.

In this paper, by giving a definition of numerical range for operators on Banach

spaces, we want to investigate some properties that are consistent for the Hilbert

case.

A holomorphic function ϕ that takes the open unit disc D into itself induces a linear

composition operator Cϕ on the space H(D) of all holomorphic functions on D as

follows:

Cϕ(f) =: foϕ (f ∈ H(D)).

A lot of work has been done in studying composition operators on Hardy spaces and

weighted Hardy spaces (see for example [3], [9]–[12], [14]).

We recall that the classical weighted Hardy space H2(β), with a weight sequence

β(n), is the function Hilbert space with a complete orthogonal set of nonzero mono-

mials 1, z, z2, . . . in H2(β). Writing β(n) = ‖zn‖, the orthogonality implies that the

norm of the formal power series f(z) =
∞
∑

n=0
f̂(n)zn in H2(β) is given by

‖f‖2
β =

∞
∑

n=0

|f̂(n)|2β(n)2.

Also, recall that the inner product is given by

〈 ∞
∑

n=0

f̂(n)zn,
∞
∑

n=0

ĝ(n)zn

〉

=
∞
∑

n=0

f̂(n)ĝ(n)β(n)2.

We can extend the definitions to Banach spaces Hp(β) as follows. Let {β(n)} be

a sequence of nonzero complex numbers with β(0) = 1 and 1 6 p < ∞. We consider

the space of sequences f = {f̂(n)}∞n=0 such that

‖f‖p = ‖f‖p
β =

∞
∑

n=0

|f̂(n)|p|β(n)|p < ∞.

The notation f(z) =
∞
∑

n=0
f̂(n)zn will be used wether or not the series converges for

any value of z ∈ D. These are called formal power series. Let Hp(β) denote the space

of such formal power series. It is called a weighted Hardy space. For 1 < p < ∞,

Hp(β) ∼= Lp(µ), where µ is the σ-finite measure defined on the set of positive integers

by µ(K) =
∑

n∈K

β(n)p, K ⊆ N∪{0}. Let fk(z) = zk, then {fk}k forms a basis for the
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reflexive Banach space Hp(β) ([12], [15]). Note that the dual of Hp(β) is Hq(βp/q),

where 1 < p < ∞, 1/p+1/q = 1 and βp/q = {β(n)p/q}∞n=0. If {β(n)}n is a sequence of

positive numbers with β(0) = 1 and limβ(n)1/n = 1, then Hp(β) is a Banach space

of analytic functions on D. The Hardy, Bergman and Dirichlet spaces can be viewed

as such if we set respectively β(n) ≡ 1, β(n) = (n + 1)−1/2 and β(n) = (n + 1)−1/2.

Let λ be a complex number. The functional of evaluation at λ, eλ, is defined by

eλ(p) = p(λ) for all polynomials p. Also, λ is said to be a bounded point evaluation

on Hp(β) if the function eλ extends to be a bounded linear functional on Hp(β). In

this case we have eλ(f) = f(λ), f ∈ Hp(β).

Theorem 1.1 ([15]). A complex number λ is a bounded point evaluation on

Hp(β) if and only if {λn/β(n)}n ∈ lq, where 1/p + 1/q = 1.

The functional of evaluation of the j-th derivative at λ is denoted by e
(j)
λ . Also,

we note that eλ(z) =
∞
∑

n=0
λ̄nβ(n)−pzn and e

(j)
λ = (dj/dλ̄j)(eλ). Thus

e
(j)
λ (z) =

∑

n> j

n(n − 1) . . . (n − j + 1)
(λ̄)n−j

β(n)p
zn.

For some sources on these topics one can refer to [3], [7], [9], [15]–[26].

2. Preliminaries

In this section we give a definition of numerical range for Banach spaces which

extends the earlier definition to the case of Hilbert spaces. Then, using this definition

we will investigate some well-known properties that are consistent for Hilbert spaces.

Definition 2.1. Let X be a reflexive Banach space and T ∈ B(X). The numer-

ical range of T is defined by

W (T ) = co(V (T )),

where co(V (T )) is the convex hull of V (T ) and

V (T ) = {x∗(T (x)) : x ∈ X, x∗ ∈ X∗; ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Obviously, W(T) is convex and contains V(T). We use the usual notation

σ(T ), σp(T ) and σap(T ) respectively for the spectrum, eigenspace, and approxi-

mate point spectrum of T. Note that σp(T ) ⊆ σap(T ).
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Proposition 2.2. Let X be a reflexive Banach space and T ∈ B(X). Then

(i) W (T ) = W (T ∗);

(ii) W (T ) is a convex subset of the complex plane that lies in the closed disc with

radius ‖T ‖ centred at origin;

(iii) σp(T ) ⊆ W (T );

(iv) σ(T ) ⊆ W (T ).

P r o o f. (i): Note that W (T ∗) = co{x̂(T ∗x∗); x∗ ∈ X∗, x̂ ∈ X∗∗, ‖x̂‖ = ‖x∗‖ =

x̂(x∗) = 1}. Since X is a reflexive Banach space with x̂(x∗) = x∗(x), ‖x‖ = ‖x̂‖ for

all x ∈ X , we have W (T ∗) = W (T ).

(ii): ObviouslyW (T ) is convex and |x∗T (x)| 6 ‖T ‖ for all unit vectors x ∈ X and

x∗ ∈ X∗. Thus (ii) holds.

(iii): Let λ ∈ σp(T ). Then there exists a nonzero vector x ∈ X such that ‖x‖ = 1

and Tx = λx. By the Hahn-Banach Theorem, there exists x∗ ∈ X∗ such that

‖x‖ = ‖x∗‖ = x∗(x) = 1. Thus, x∗(Tx) = x∗(λx) = λx∗(x) = λ and so λ ∈ W (T ).

(iv): It is well known that

σ(T ) = σap(T ) ∪ σp(T
∗).

By (ii) and (iii) we have σp(T
∗) ⊆ W (T ∗) = W (T ). Let λ ∈ σap(T ), then there exists

a sequence {xn} in Ball(X) such that (T − λ)xn → 0 as n → ∞. Now by the Hahn

Banach Theorem, there exists x∗
n ∈ X∗ such that

x∗
n(xn) = ‖xn‖ = 1; ‖x∗

n‖ = 1,

for all n. Thus, x∗
n(Txn) → λ as n → ∞ and λ ∈ W (T ). So σap(T ) ⊆ W (T ). This

proves that σ(T ) ⊆ W (T ). �

3. Main results

Note that in [26] we used a definition of the numerical range of an operator acting

on Hp(β) that is not necessarily convex. Here by the general Definition 2.1. for

Banach spaces, the numerical range is convex and we can extend some earlier re-

sults. In this section, we prove some results about the numerical range of a compact

operator acting on the Banach space Hp(β).
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Theorem 3.1. If T is a compact operator on a reflexive Banach space X , then

V (T ) ⊆ {cα : 0 6 c 6 1, α ∈ V (T )}.

P r o o f. Let β ∈ V (T ). Then there exists a sequence {x∗
n(Txn)}n in V (T ) such

that x∗
nTxn → β as n → ∞, where ‖x∗

n‖ = ‖xn‖ = x∗
n(xn) = 1. Note that BallX

is weakly compact, thus there exists a subsequence {xnk
}k of {xn}n and x ∈ BallX

such that xnk
→ x weakly. Also

(1) x∗
nk

(Tx
n

k
) → β, {x∗

nk
}k ⊆ Ball X∗.

But Ball X∗ is ωk∗ compact and {x∗
nk

}k ⊆ BallX∗, thus there exists a subsequence

{x∗
nkm

}m of {x
∗
nk

}k such that x∗
nkm

→ x∗ weak star for some x∗ ∈ X∗ with

‖x∗‖ 6 1. Note that (1) holds also for the subsequence {x∗
nkm

}m. For simplicity,

we suppose that xn
ωk
→ x, x∗

n
ωk∗
→ x∗ and x∗

n(Tx
n
) → β as n → ∞. Since T is

compact, it is completely continuous and so Tx
n
→ Tx. We have (x∗

n − x∗)Tx → 0,

since x∗
n − x∗ ωk∗

→ 0. Also note that

(2) |x∗
n(Txn) − x∗(Tx)| 6 ‖T (xn − x)‖ ‖x∗

n‖ + |(x∗
n − x∗)Tx|.

Hence, x∗
n(Txn) → x∗(Tx) as n → ∞ and so indeed β = x∗Tx.

If β 6= 0, then x and x∗ are nonzero and we get

β = ‖x‖‖x∗‖
( x∗

‖x∗‖
T

( x

‖x‖

))

.

But by the Hahn-Banach Theorem, there exists y∗ ∈ X∗ such that y∗(x/‖x‖) = 1

and ‖y∗‖ = 1. Put t = x∗(x)/‖x‖‖x∗‖. Then ‖t‖ 6 1 and we have

T ∗
(

ty∗
( x

‖x‖

))

= T ∗
( x∗(x)

‖x‖ ‖x∗‖

)

.

Thus,

ty∗
(

T
( x

‖x‖

))

=
x∗

‖x∗‖

(

T
( x

‖x‖

))

.

Hence, β = ‖x∗‖‖x‖ty∗(Tx/‖x‖) where y∗(x/‖x‖) = ‖y∗‖ = 1.

Thus, y∗(T (x/‖x‖)) ∈ V (T ). So β ∈ cV (T ) for some 0 6 c 6 1. Hence,

V (T ) ⊆ {cα : 0 6 c 6 1, α ∈ V (T )}.

�

499



Corollary 3.2. If T is a compact operator on a reflexive Banach space, then

W (T ) ⊆ {cα : 0 6 c 6 1, α ∈ W (T )}.

P r o o f. By Theorem 3.1, we get

V (T ) ⊆ {cα : 0 6 c 6 1, α ∈ V (T )} ⊆ {cα : 0 6 c 6 1, α ∈ W (T )}.

Note that W (T ) is convex and so {cα : 0 6 c 6 1, α ∈ W (T )} is convex, thus

co(V (T )) ⊆ {cα : 0 6 c 6 1, α ∈ W (T )}.

On the other hand, co(V (T )) = co(V (T )) = W (T ). Hence, W (T ) ⊆ {cα, 0 6 c 6

1, α ∈ W (T )}. �

Theorem 3.3. Let 1/p + 1/q = 1 and
∑

n>0

nqj/β(n)q = ∞ for some j. If Cϕ is

bounded on Hp(β), then 0 ∈ W (Cϕ).

P r o o f. Let {zk}k>1 be any sequence in D with zk → z0 for some z0 ∈ ∂D.

Also, let j be the least non-negative integer such that
∞
∑

n=1
nqj/β(n)q = ∞. Set

ek = e
(j)
zk

/‖e
(j)
zk

‖. Then ‖ek‖ = 1 and for j = 0 we have

lim
k

‖ezk
‖q = lim

k

∑

n>0

|zk|
nq

β(n)q
=

∑

n>0

1

β(n)q
= +∞.

So if s is a polynomial, then lim
k

ek(s) = lim
k

s(zk)/‖ezk
‖ = 0. But polynomials are

dense in Hp(β). Thus, ek → 0 weakly as k → ∞. If j > 0, then since |zk| → 1 and
∑

n>0

nqj/β(n)
q

= ∞, we have

lim
k

‖ez
(j)
k

‖q = lim
k

∥

∥

∥

∥

∑

n>0

n(n − 1) . . . (n − j + 1)
(z̄k)n−j

β(n)p
zn

∥

∥

∥

∥

q

= lim
k

∑

[n(n − 1) . . . (n − j + 1)]q
|zk|

(n−j)q

β(n)q

= ∞.

Since polynomials are dense in Hp(β), by using the same argument as in the previous

case, we can see that ek → 0 weakly as k → ∞. Thus C∗
ϕ(ek) → 0 weakly as

k → ∞. Now by the Hahn-Banach Theorem, there exists F ∈ Hp(β) such that

ek(F ) = ‖ek‖ = 1 and ‖F‖ = 1. Thus, F (C∗
ϕek) ∈ V (C∗

ϕ) ⊆ W (C∗
ϕ) = W (Cϕ)

and F (C∗
ϕek) → 0 weakly as k → ∞. Thus indeed 0 ∈ W (Cϕ) and so the proof is

complete. �
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Corollary 3.4. Under the conditions of Theorem 3.3, if Cϕ is compact, then

0 ∈ W (Cϕ) if and only if W (Cϕ) is closed.

P r o o f. If W (cϕ) is closed, then by Theorem 3.3, 0 ∈ W (cϕ). Let α ∈ W (Cϕ).

Thus, by Corollary 3.2, there exists 0 6 c 6 1 such that α ∈ cW (Cϕ). If α 6= 0

and c 6= 0, then α/c ∈ W (Cϕ). Since W (Cϕ) is convex and 0 ∈ W (Cϕ), we have

α ∈ W (Cϕ). Therefore, W (Cϕ) ⊆ W (Cϕ) ⊆ W (Cϕ) . This implies that W (Cϕ) is

closed �

Remark 3.5. We have denoted the numerical range of an operator T acting on

a Banach space byW (T ) and defined it byW (T ) = co(V (T )), and we noted that the

set V (T ) is not necessarily convex ([2, Example 21.6]). Our idea of this definition is to

obtain the same properties as those holding under the earlier definition of numerical

range of an operator acting on a Hilbert space, such as the properties stated in

Proposition 2.2. In particular, the property of convexity of W (T ) is useful and it

is used in the proof of Theorem 3.3. In the proof of Theorem 3.3, we should show

that W (Cϕ) is normed closed, but we could only prove thatW (Cϕ) is weakly closed.

Then its convexity and boundedness imply that it should be also normed closed.

Recall that Hp(β) is a small weighted Hardy space, if Hp(β) is contained in the

disc algebra A(D). Let 1/p + 1/q = 1 and
∑

n>0

1/β(n)q < ∞. Then the weighted

Hardy space Hp(β) is small, since if f(z) =
∞
∑

n=0
f̂(n)zn is in Hp(β), then by the

Hölder inequality we have

∞
∑

n=0

|f̂(n)| 6

( ∞
∑

n=0

|f̂(n)|pβ(n)p

)1/p( ∞
∑

n=0

1

β(n)q

)1/q

< ∞.

Some additional conditions which have been used to define a small weighted Hardy

space Hp(β) include:

1)
∞
∑

n=0
nq/β(n)q < ∞, where 1/p + 1/q = 1.

2)
∞
∑

n=0
β[αn]/β(n)q < ∞ for some 0 < α < 1 and {β(n)}n is increasing.

Condition (1) shows that the space Hp(β) has derivative which extends continu-

ously to D ([3]).

In condition (2), since {β(n)} is an increasing sequence and β(0) = 1, we have
∞
∑

n=0
1/β(n)q 6

∞
∑

n=0
β[αn]/β(n)q < ∞.
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Theorem 3.6. Suppose that {β(n)}n is an increasing sequence such that
∞
∑

n=0
β[αn]/β(n)q converges for some 0 < α < 1 . If ϕr(z) = (1 − r) + rz, then

0 ∈ W (Cϕr
) for all 0 < r < α.

P r o o f. It is obvious that ϕr maps the open unit disc D into itself with ‖ϕr‖∞ =

1. Define TN : Hp(β) −→ Hp(β) by TNf =
N
∑

n=1

f̂(n)ϕn
r for all f(z) =

∞
∑

n=0

f̂(n)zn in

Hp(β) . Notice that ϕn
r , being a polynomial, belongs to Hp(β). Thus

‖TN − Cϕr
‖ = sup

‖f‖p=1

‖TN(f) − Cϕr
f‖p = sup

‖f‖p=1

∥

∥

∥

∥

∞
∑

N

f̂(n)ϕn
r

∥

∥

∥

∥

p

,

hence lim
N

‖TN −Cϕr
‖ = 0. Therefore Cϕr

is compact. On the other hand, a compact

operator on an infinite dimensional space Hp(β) is not invertible . Hence 0 is in the

spectrum of Cϕr
and therefore 0 ∈ W (Cϕr

). �
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