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ON µ-SINGULAR AND µ-EXTENDING MODULES

Yahya Talebi and Ali Reza Moniri Hamzekolaee

Abstract. Let M be a module and µ be a class of modules in Mod−R
which is closed under isomorphisms and submodules. As a generalization of
essential submodules Özcan in [8] defines a µ-essential submodule provided it
has a non-zero intersection with any non-zero submodule in µ. We define and
investigate µ-singular modules. We also introduce µ-extending and weakly
µ-extending modules and mainly study weakly µ-extending modules. We
give some characterizations of µ-co-H-rings by weakly µ-extending modules.
Let R be a right non-µ-singular ring such that all injective modules are
non-µ-singular, then R is right µ-co-H-ring if and only if R is a QF-ring.

1. Introduction

Let R be a ring with identity. All modules we consider are unitary right
R-modules and we denote the category of all such modules by Mod−R.

Let µ be a class of modules. For any module M the trace of µ in M is denoted
by Tr(µ,M) =

∑
{Im f : f ∈ Hom(C,M), C ∈ µ}. Dually the reject of µ in M is

denoted by Rej(M,µ) =
⋂
{Ker f : f ∈ Hom(M,C), C ∈ µ}.

Let N be a submodule of M (N ≤ M). The notations N � M , N ≤e M
and N ≤d M is used for a small submodule, an essential submodule and a direct
summand of M , respectively. Soc(M) will denote the socle of M . An R-module
M is said to be small, if M ∼= L � K for some R-modules L and K. Dually, M
is called singular if M ∼= N/K such that K ≤e N . Every module M contains a
largest singular submodule which is denoted by Z(M). Then Z(M) = Tr(U ,M)
where U denotes the class of all singular modules.

Simple modules split into four disjoint classes by combining the exclusive choices
[injective or small] and [projective or singular]. Also note that if a module M is
singular and projective, then it is zero.

Talebi and Vanaja in [10], define cosingular modules as a dual of singular
modules. Let M be a module and M denotes the class of all small modules. Then
Z(M) =

⋂
{ker g | g ∈ Hom(M,L), L ∈ M} is a submodule of M . Then M is

called cosingular (non-cosingular) if Z(M) = 0 (Z(M) = M). Every small module
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is cosingular. The class of all cosingular modules is closed under submodules, direct
sums and direct products ([10, Corollary 2.2]).

In Section 2, we give the definition of µ-singular modules and discuss some
properties of such modules. It is proved that R is a GCO-ring (i.e. every simple
singular module is injective) if and only if for everyM-singular module N , Z(N) =
N if and only if for every δ-singular module N , Z(N) = N (Corollary 2.14).
When we consider the class of all finitely cogenerated modules FC we prove
that every finitely cogenerated R-module is projective if and only if for every
FC-singular R-module N , Rej(N,FC) = N if and only if R is semisimple Artinian
(Corollary 2.16).

In Section 3, we define µ-extending and weakly µ-extending modules and show
that any direct summand of a weakly µ-extending module and any homomorphic
image of a weakly µ-extending module are weakly µ-extending modules (Proposi-
tion 3.12 and Corollary 3.13).

In Section 4, we discuss when a direct sum of weakly µ-extending modules is a
weakly µ-extending module. We show that a direct sum of a µ-singular module
and a semisimple module is weakly µ-extending (Theorem 4.2).

In Section 5, we study rings in which every projective module is µ-extending. We
call such rings µ-co-H-ring. We show that a ring R is µ-co-H-ring if and only if every
R-module is weakly µ-extending (Theorem 5.3). Let R be a right non-µ-singular
ring such that all injective modules are non-µ-singular, then R is right µ-co-H-ring
if and only if R is a QF-ring (Corollary 5.6).

In this paper µ will be a class in Mod−R which is closed under isomorphisms and
submodules, unless otherwise stated. We shall call any member of µ, a µ-module.
In this article we denote the following classes:
S = {M ∈ Mod−R,M is simple},
M = {M ∈ Mod−R,M is small},
δ = {M ∈ Mod−R,Z(M) = 0} ,
µ− Sing = {M ∈ Mod−R,M is µ-singular},
FC = {M ∈ Mod−R,M is finitely cogenerated}.

2. µ-singular modules

Özcan in [8], investigate some properties of µ-essential submodules. Let M be
a module and N ≤M . Then N is called a µ-essential submodule of M , denoted
by N ≤µe M , if N ∩K 6= 0 for any nonzero submodule K of M such that K ∈ µ.
Now we list the properties of µ-essential submodules. We omit the proofs because
they are similar to those for essential submodules (see, [4]).

Lemma 2.1. Let M be a module.
a) Let N ≤ L ≤M . Then N ≤µe M if and only if N ≤µe L ≤µe M .
b) If K1 ≤µe L1 ≤M , K2 ≤µe L2 ≤M , then K1 ∩K2 ≤µe L1 ∩ L2.
c) If f : N →M is a homomorphism and K ≤µe M , then f−1(K) ≤µe N .
d) If N/L ≤µe K/L ≤M/L, then N ≤µe K.
e) Let Ki (i ∈ I) be an independent family of submodules of M . If Ki ≤µe Li ≤M
for all i ∈ I, then

⊕
i∈I Ki ≤µe

⊕
i∈I Li.
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Definition 2.2. Let M be a module. M is called µ-singular if M ∼= K/L such
that L ≤µe K.

Every module M contains a largest µ-singular submodule which we denote by
Zµ(M) = Tr(µ − Sing,M) where µ − Sing is the class of all µ-singular modules.
Then Z(M) ≤ Zµ(M). If M is a µ-singular module (i.e. Zµ(M) = M) and a
µ-module, then M is singular. For, let M ∈ µ and M ∼= K/L where L ≤µe K.
We claim that L ≤e K. Let 0 6= X ≤ K and assume that L ∩ X = 0. Then
X ∼= (L ⊕X)/L ≤ K/L and so X ∈ µ. Since L ≤µe K we have a contradiction.
This proves that M is singular. If Zµ(M) = 0, then M is called non-µ-singular.
Proposition 2.3. Let M be a µ-singular module and f ∈ HomR(R,M). Then
Ker f ≤µe R.
Proof. By assumption, f(R) ∼= L/K where K ≤µe L. Since R is projective, there
exists a homomorphism g : R → L such that πg = f where π is the natural
epimorphism L→ L/K. Then ker f = g−1(K) ≤µe R by Lemma 2.1. �

Proposition 2.4. Let P be a projective module and X ≤ P . Then P/X is
µ-singular if and only if X ≤µe P .
Proof. If I ≤ RR and R/I is µ-singular, then I ≤µe R by Proposition 2.3. Now
let P/X be µ-singular and assume X �µe P . Let F be a free module such that
F = P ⊕ P ′, P ′ ≤ F . Then F/(X ⊕ P ′) ∼= P/X is µ-singular and X ⊕ P ′ �µe F .
So we may assume that P is free i.e. P =

⊕
Ri, each Ri is a copy of R. Then

Ri/(Ri ∩X) ∼= (Ri +X)/X ≤ P/X is µ-singular. So Ri ∩X ≤µe Ri. This implies
that (

⊕
Ri) ∩X ≤µe

⊕
Ri = P , i. e. X ≤µe P . �

Lemma 2.5. Let M be a module. Then Zµ(M) = {x ∈M | xI = 0, I ≤µe R}.
Proof. Let xI = 0 for some I ≤µe R. Then R/I is µ-singular. Define f : R/I → xR
by r+ I 7→ xr. Hence, x ∈ Tr(µ− Sing,M). Conversely assume that x = x1 + · · ·+
xn = f1(l1)+· · ·+fn(ln) and xi ∈ Im fi where fi : Li →M such that Li is µ-singular.
For each i we have liR ∼= R/ ann(li) which implies that Ii = ann(li) ≤µe R by
Proposition 2.4. Take I =

⋂n
i=1 Ii. Then I ≤µe R by Lemma 2.1 and xI = 0. This

completes the proof. �

Proposition 2.6. A module M is non-µ-singular if and only if HomR(N,M) = 0
for all µ-singular modules N .
Proof. See [4, Proposition 1.20]. �

Proposition 2.7. Let M be a non-µ-singular module and N ≤M . Then M/N is
µ-singular if and only if N ≤µe M .
Proof. If M/N is µ-singular and x is a nonzero element of M . Then xI = 0 for
some I ≤µe R. So, xI ≤ N . Since M is non-µ-singular, we have xI 6= 0 and thus
xR ∩N 6= 0. Therefore, N ≤µe M . �

Proposition 2.8. (1) The class of all non-µ-singular modules is closed under
submodules, direct products, µ-essential extension and module extension.

(2) The class of all µ-singular modules are closed under submodules, factor
modules and direct sums.



186 Y. TALEBI AND A. R. M. HAMZEKOLAEI

Proof. It follows from Lemma 2.5 and [4, Proposition 1.22]. �

Proposition 2.9. Assume that R is a right non-µ-singular ring, then:
(1) Zµ(M/Zµ(M)) = 0 for any R-module M .
(2) An R-module M is µ-singular if and only if HomR(M,N) = 0 for all

non-µ-singular modules N .
(3) The class of all µ-singular modules is closed under module extension and

µ-essential extension.
(4) The set of all µ-essential right ideals of R denoted by P(R) is closed under

finite products.

Proof. The proof is easy by [4, Proposition 1.23] and Lemma 2.5. �

Proposition 2.10. Let M be a simple module. Then M is either µ-singular or
projective, but not both.

Proof. See [4, Proposition 1.24]. �

It is easy to see that a ring R is right non-µ-singular if and only if all projective
right R-modules are non-µ-singular.

From the properties of µ-singular modules and Proposition 2.4 the following can
be seen easily.

Proposition 2.11. For an R-module M the following are equivalent:
(1) M is µ-singular:
(2) M ∼= F/K with F a projective (free) module and K ≤µe F ;
(3) For every m ∈M , the right annihilator annr(m) is µ-essential in R.

Lemma 2.12. Let M be a module. If Zµ(M) = 0 and K ≤c M , then Zµ(M/K) = 0.

Theorem 2.13. Let µ be closed under factor modules. Then the following are
equivalent:

(1) Every µ-module is projective;
(2) For every singular module N , Rej(N,µ) = N ;
(3) For every µ-singular module N , Rej(N,µ) = N ;
(4) For every simple singular module N , Rej(N,µ) = N .

Proof. (1)⇒ (2) Let N be a singular module and g : N → L where L ∈ µ. Then
N/ ker g ∈ µ. By (1), N/ ker g is projective. Since N is singular, we have that
N = ker g. Hence Rej(N,µ) = N .
(2)⇒ (3) Let N be a µ-singular module and g : N → L a homomorphism where
L ∈ µ. Then N/ ker g ∈ µ. This implies that Rej(N/ ker g, µ) = 0. Since N/ ker g
is µ-singular and a µ-module, it is singular. Then by (2), N = ker g. Hence
Rej(N,µ) = N .
(3)⇒ (2) and (2)⇒ (4) are clear.
(4)⇒ (1) Let N be a µ-module. We claim that N is semisimple. Let x ∈ N and K
a maximal submodule of xR. Then xR/K is a simple µ-module. By (4), it cannot
be singular. Hence xR/K is projective. This implies that K is a direct summand
of xR. Hence N is semisimple. By above process every simple submodule of N is
projective. It follows that N is projective. �
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If we consider the class M of all small modules, we have a characterization
of GCO-rings. A ring R is called a GCO-ring if every simple singular module is
injective.

Corollary 2.14. The following are equivalent for a ring R:
(1) Every small module is projective;
(2) Every singular module is non-cosingular;
(3) Every M-singular module is non-cosingular;
(4) R is a GCO-ring;
(5) Every δ-singular module is non-cosingular.

Proof. (1)⇔ (4) is by [7, Theorem 1.5]. (2)⇔ (4) is by [9, Theorem 4.1].
Simple modules are either injective or small. Hence (1)–(4) are equivalent by

Theorem 2.13.
(5)⇒ (2) is clear.
(3)⇒ (5) It is clear since M⊆ δ, every δ-singular module is M-singular. �

For the class δ of all cosingular modules we have the following corollary.

Corollary 2.15. If the class δ is closed under the factor modules the following
are equivalent:

(1) Every cosingular module is projective;
(2) For every singular module N , Rej(N, δ) = N ;
(3) For every δ-singular module N , Rej(N, δ) = N ;
(4) R is a GCO-ring.

Proof. See [9, Theorems 4.1 and 4.2] and Theorem 2.13. �

A module M is called finitely cogenerated if Soc(M) is finitely generated and
essential submodule of M . Let FC be the class of all finitely cogenerated R-modules.
Note that FC is closed under submodules. We next give a characterization of semi-
simple Artinian rings which is taken from [8]. We give the proof for completeness.

Corollary 2.16. The following statements are equivalent for a ring R:
(1) Every finitely cogenerated R-module is projective;
(2) For every singular module N , Rej(N,FC) = N ;
(3) For every FC-singular module N , Rej(N,FC) = N ;
(4) R is semisimple Artinian.

Proof. (1)⇒ (2)⇔ (3) By Theorem 2.13.
(4)⇒ (1) is clear.
(2)⇒ (4) Let E be an essential right ideal of R. Suppose that a is an element of

R but a /∈ E. Let F be a right ideal of R maximal with respect to the properties
that E is contained in F and a /∈ F . Then (aR+ F )/F is simple singular. By (2),
we have a contradiction. Hence R is semisimple Artinian. �

A ring R is a quasi-Frobenius ring (briefly QF-ring) if and only if every right
R-module is a direct sum of an injective module and a singular module. In this
result we may take µ-singular modules instead of singular as the following result
shows.
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Theorem 2.17. The following are equivalent for a ring R:
(1) R is a QF-ring;
(2) Every right R-module is a direct sum of an injective module and a µ-singular

module.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (1) Let M be a projective R-module. Then M is a direct sum of an

injective module and a µ-singular module. Since projective µ-singular modules are
zero, M is injective. Then R is a QF-ring. �

3. µ-extending modules

In this section µ-extending modules will be introduced. Then we define and study
weakly µ-extending modules. It is proved that any factor module, any direct
summand and any fully invariant submodule of a weakly µ-extending module are
weakly µ-extending.

Definition 3.1. Let M be a module. Then M is called an µ-extending module
if for every submodule N of M there exists a direct summand D of M such that
N ≤µe D.

Clearly every essential submodule is µ-essential. So µ-extending modules are a
generalization of extending modules.

Note that by [5, Proposition 2.4], a module M is extending if and only if every
closed submodule is direct summand. This may not be true for a µ-extending
module.

Let M be a module and K a submodule of M . Then K is called a µ-closed
submodule, denoted by K ≤µc M , provided K ≤µe L ≤M implies K = L, i.e. K
doesn’t have any proper µ-essential extension. A µ-closed submodule is closed but
the converse is true when M is a µ-module (see [8, Corollary 1.1]).

Proposition 3.2. The following statements hold for a module M .
(1) If K ≤µc M , then whenever Q ≤µe M such that K ⊆ Q, then Q/K ≤µe M/K.
(2) If L ≤µe M , then L/K ≤µe M/K.

Proof. (1) Suppose K ≤µc M . Let Q ≤µe M such that K ⊆ Q. Let P/K ≤M/K
be a µ-module such that (Q/K)∩ (P/K) = 0. By Lemma 2.1(b), K = Q∩P ≤µe P
and hence K = P . Thus Q/K ≤µe M/K.
(2) It is clear by Lemma 2.1(d). �

The following proposition is clear by definitions.

Proposition 3.3. Let M be a µ-extending module. Then every µ-closed submodule
is a direct summand.

We next give an equivalent condition for a µ-extending module.

Proposition 3.4. Let M be a module. Then M is µ-extending if and only if for
each submodule A of M there exists a decomposition M = M1 ⊕M2 such that
A ≤M1 and A+M2 ≤µe M2.
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Proof. Let M be µ-extending and A ≤ M . Then there exists a decomposition
M = M1 ⊕M2 such that A ≤µe M1. Since {A,M2} is an independent family of
submodules of M the result follows from Lemma 2.1.

The converse is clear. �

A module M is called µ-uniform if every proper nonzero submodule is µ-essential
in M .

Proposition 3.5. An indecomposable module M is µ-extending if and only if M
is µ-uniform.

Definition 3.6. Let M be a module. Then M is called weakly µ-extending if for
every submodule N of M there exists a direct summand K of M such that N ≤ K
and K/N is µ-singular.

The definition shows that every µ-extending module is weakly µ-extending. Also
any µ-singular module is weakly µ-extending.

Let M be a µ-singular module with unique composition series M ⊃ U ⊃ V ⊃ 0.
By [2], N = M ⊕ (U/V ) is not extending. But N is weakly µ-extending.

We next give some equivalent conditions for weakly µ-extending modules.

Proposition 3.7. The following are equivalent for a module M :
(1) M is weakly µ-extending;
(2) For every N ≤ M there exists a decomposition M = K ⊕ K ′ such that

N ≤ K and M/(K ′ +N) is µ-singular;
(3) For every N ≤M there exists a decomposition M/N = K/N ⊕K ′/N such

that K ≤d M and M/K ′ is µ-singular;
(4) For every N ≤M , there exists a direct summand K of M such that N ≤ K

and for any x ∈ K there is a right ideal I with I ≤µe R such that xI ≤ N .

Proposition 3.8. Let M be a non-µ-singular or projective module. Then, M is
µ-extending if and only if M is weakly µ-extending.

Proof. It is easy by Propositions 2.7 and 2.4. �

Some special submodules of a weakly µ-extending module are weakly µ-extending.
Recall that a submodule N of M is called fully invariant if f(N) ⊆ N for each
f ∈ End(M). A module M is called a duo module, if every submodule of M is fully
invariant.

Proposition 3.9. Let N ≤ M be fully invariant and M a weakly µ-extending
module. Then N is weakly µ-extending.

Proof. Let L ≤ N ≤M . By assumption, there exists a decomposition M = K⊕K ′
such that L ≤ K and K/L is µ-singular. Since N is fully invariant, we have
N = (N ∩ K) ⊕ (N ∩ K ′). Obviously, L ≤ N ∩ K and (N ∩ K)/L ≤ K/L is
µ-singular. Hence N is weakly µ-extending. �

The Proposition 3.9 shows that every submodule of a duo module or of a
multiplication weakly µ-extending module is weakly µ-extending.
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Proposition 3.10. Let M be a module and N a submodule of M .
(1) If M is weakly µ-extending and the intersection of N with any direct summand

of M is a direct summand of N , then N is weakly µ-extending.
(2) If N is weakly µ-extending and D a direct summand of M such that (D +

N)/D is non-µ-singular, then D ∩N is a direct summand of N .
(3) If M is weakly µ-extending and (D +N)/D is non-µ-singular for any direct

summand D of M , then N is weakly µ-extending if and only if D ∩N is a direct
summand of N for any direct summand D of M .

Proof. (1) It is similar to the proof of Proposition 3.9.
(2) Let Y = D ∩N . Since N is weakly µ-extending, there is a direct summand

K of N such that K/Y is µ-singular. By assumption, N/Y ∼= (D + N)/D is
non-µ-singular. Hence, K/Y ≤ N/Y is both µ-singular and non-µ-singular. It
follows that K = Y is a direct summand of N .

(3) It is a consequence of (1) and (2). �

The following proposition shows the equivalent condition of a cyclic submodule
of a module to be weakly µ-extending over a right weakly µ-extending ring.

Proposition 3.11. Let R be a right weakly µ-extending ring and M a cyclic
right R-module such that every nonzero direct summand of M contains a nonzero
µ-module. Then the following are equivalent:

(1) M is non-µ-singular;
(2) Every cyclic submodule of M is projective and weakly µ-extending;
(3) Every cyclic submodule of M is projective.

Proof. (1)⇒ (2) Suppose that M is non-µ-singular and N a cyclic submodule of
M . Then there is a right ideal I of R such that N ∼= R/I. Since R is µ-extending
and N is non-µ-singular, I is a µ-closed submodule of RR, hence I is a direct
summand of RR. Thus N is isomorphic to a direct summand of RR. Therefore, N
is projective and weakly µ-extending.

(2)⇒ (3) It is clear.
(3)⇒ (1) For anym ∈ Zµ(M),mR is projective and is isomorphic toR/ annr(m),

where annr(m) is the right annihilator of m. Since R is right weakly µ-extending
and mR is µ-singular, then annr(m) ≤µe R is a direct summand of R. Then,
R = annr(m)⊕ L. By assumption, if L 6= 0 then it contains a nonzero µ-module.
Hence, annr(m) = R and m = 0. Hence, Zµ(M) = 0. �

Any factor module of a µ-singular module is µ-singular and we show that any
image of a weakly µ-extending module is weakly µ-extending. The direct summand
of a µ-extending module may not be µ-extending. For weakly µ-extending modules,
we first show the following proposition and then show that any direct summand of
a weakly µ-extending module is weakly µ-extending.

Proposition 3.12. Let M be a weakly µ-extending module. Then any homomorphic
image of M is weakly µ-extending.

Proof. Let f : M → N be an epimorphism and L a submodule of N . Then there
is a submodule H of M such that L ∼= H/Ker f . Since M is weakly µ-extending,
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there are direct summands K, K ′ of M such that M = K ⊕K ′, H ≤ K and that
K/H is µ-singular. So N ∼= M/Ker f = (K/Ker f) ⊕ (K ′ + Ker f)/Ker f and
L ∼= H/Ker f ≤ K/Ker f . Since (K/Ker f)/(H/Ker f) ∼= K/H is µ-singular, N
is weakly µ-extending. �

Corollary 3.13. (1) Let M be a weakly µ-extending module. Then any direct
summand of M is weakly µ-extending.

(2) Let M be a µ-extending module. Then any non-µ-singular homomorphic
image of M is µ-extending.

Corollary 3.14. The following are equivalent:
(1) Every (resp., finitely generated) module is weakly µ-extending;
(2) Every (resp., finitely generated) projective module is weakly µ-extending.

Proposition 3.15. Let R be a right non-µ-singular ring and f : M → M ′ an
epimorphism. Suppose that M ′ is weakly µ-extending and Ker f is µ-singular
injective, then M is weakly µ-extending.

Proof. Let N be a submodule of M . First, we assume that Ker f ⊆ N ≤M , then
f(N) ≤M ′. Since M ′ is weakly µ-extending, there is a decomposition, M ′ = K⊕H
such that K/f(N) is µ-singular. So M = f−1(K) + f−1(H). Since Ker f ≤ f−1(H)
and Ker f is injective, then f−1(H) = T ⊕Ker f for some submodule T of f−1(H).
Thus M = f−1(K) + T . Since f−1(K) ∩ T ≤ f−1(K) ∩ f−1(H) = Ker f and
f−1(K) ∩ T ≤ Ker f ∩ T = 0, we have M = f−1(K)⊕ T and N ≤ f−1(K).

For any x ∈ f−1(K), f(x) ∈ K and there is an µ-essential right ideal I of R
such that f(x)I ≤ f(N). It is easy to see that xI ≤ N and that f−1(K)/N is
µ-singular.

Now we assume that N does not contain Ker f . Set L = N + Ker f , then
f(L) = f(N). As the case above, there is a decomposition M = f−1(K) ⊕ T
such that f−1(K)/L is µ-singular. Since Ker f is µ-singular, we have that (N +
Ker f)/N ∼= Ker f/(N ∩ Ker f) is µ-singular. Since R is right non-µ-singular, by
Proposition 2.9 we have that f−1(K)/N is µ-singular. In either case, M is weakly
µ-extending. �

Proposition 3.16. Let R be a right non-µ-singular ring and M a weakly µ-extending
module. Then M = Zµ(M)⊕ T for some µ-extending submodule T of M and T is
Zµ(M)-injective.

Proof. If Zµ(M) = 0 or Zµ(M) = M , it is clear.
Suppose that 0 < Zµ(M) < M . Since M is weakly µ-extending, there are direct

summands K, T of M such that M = K ⊕ T , Zµ(M) ≤ K and that K/Zµ(M) is
µ-singular. So K is µ-singular. Since Zµ(M) = Zµ(K)⊕ Zµ(T ) = K ⊕ Zµ(T ), so
Zµ(M) = K and T is non-µ-singular. By Proposition 3.12, T is µ-extending.

Since for any submodule N of Zµ(M), HomR(N,T ) = 0, so T is Zµ(M)-injective,
as required. �

Corollary 3.17. Let R be a right non-µ-singular ring and M an injective module.
Then Zµ(M) is injective.
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Corollary 3.18. Let R be a right non-µ-singular ring and M an indecompo-
sable weakly µ-extending module. Then M is either a µ-singular module or a
non-µ-singular µ-uniform module.

Proposition 3.19. Let M be a weakly µ-extending module which contains maximal
submodules. Then for any maximal submodule N of M , either M/N is µ-singular
or M = N ⊕ S for some simple submodule S of M .

Proof. Let N be a maximal submodule of M and suppose that M/N is not
µ-singular. Then N is a direct summand of M , i.e., M = N⊕S for some submodule
S of M . Since S ∼= M/N , so S is simple. �

A module M is called local if it has a largest submodule, i.e., a proper submodule
which contains all other proper submodules. For a local module M , Rad(M), the
Jacobson radical of M is small in M .

Corollary 3.20. Let M be a local weakly µ-extending module. Then M/Rad(M)
is µ-singular.

Proposition 3.21. Let R be a right hereditary ring and M an injective module.
Then any factor module of M is a direct sum of an injective module and a µ-singular
injective module.

Proof. Let L be any factor module of M , then there is a submodule N of M such
that L ∼= M/N . Since any injective module is weakly µ-extending, there are direct
summands K,K ′ of M such that M = K⊕K ′, N ≤ K and that K/N is µ-singular.
So L ∼= M/N = K/N ⊕ (K ′ +N)/N . Since R is hereditary and M is injective, so
M/N is injective. Thus K/N is a µ-singular injective module and (K ′ +N)/N is
injective. �

4. Direct sum of weakly µ-extending modules

A direct sum of µ-singular modules is also µ-singular. But a direct sum of
µ-extending modules may not be µ-extending. Also a direct sum of weakly µ-extending
modules need not be weakly µ-extending (see [1, Example 2.4]).

It may be interesting to see when a direct sum of weakly µ-extending modules
is weakly µ-extending.

Proposition 4.1. Let M =
⊕

i∈IMi be a distributive module. Then M is weakly
µ-extending if and only if each Mi is weakly µ-extending for i ∈ I.

Proof. Let N be any submodule of M , then N =
⊕

i∈I(N ∩Mi). Since Mi is
weakly µ-extending, there is direct summand Hi ≤d Mi, such that Mi = Hi ⊕H ′i
and (N ∩Mi) ≤ Hi and that Hi/(N ∩Mi) is µ-singular for i ∈ I. Hence M =
(
⊕

i∈I Hi) ⊕ (
⊕

i∈I H
′
i) and (N =

⊕
i∈I(N ∩ Mi)) ≤ (H =

⊕
i∈I Hi). Since

H
N =

⊕
i∈I

Hi⊕
i∈I

(N∩Mi)
∼=
⊕

i∈I
Hi

N∩Mi is µ-singular, so M is weakly µ-extending. �

Theorem 4.2. Let M = M1 ⊕M2 with M1 being µ-singular (µ-uniform) and M2
semisimple. Then M is weakly µ-extending.
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Proof. Let N be any submodule of M . Then N +M1 = M1 ⊕ [(N +M1) ∩M2].
Since M2 is semisimple, then (N + M1) ∩M2 is a direct summand of M2 and
therefore N+M1 is a direct summand of M . Note that (N+M1)/N ∼= M1/(N∩M1)
is µ-singular, since M1 is µ-singular (µ-uniform). So M is weakly µ-extending. �

Proposition 4.3. Let M = M1 ⊕M2 with M1 being weakly µ-extending and M2
semisimple. Suppose that for any submodule N of M , N ∩M1 is a direct summand
of N . Then M is weakly µ-extending.

Proof. Let N be any submodule of M . As in Theorem 4.2, N + M1 is a direct
summand of M . By the hypothesis, N = (N ∩M1) ⊕K for some submodule K
of N . Since M1 is weakly µ-extending, there is a direct summand T of M1 such
that T/(N ∩M1) is µ-singular. But N +M1 = (N ∩M1) +K +M1 = M1 ⊕K, so
(T ⊕K)/N = (T ⊕K)/[(N ∩M1)⊕K] ∼= T/(N ∩M1)⊕K/K is µ-singular. Since
T ⊕K is a direct summand of N +M1 and hence a direct summand of M , then
M is weakly µ-extending. �

Proposition 4.4. Let M = M1 ⊕M2 with M1 being weakly µ-extending and M2
injective. Suppose that for any submodule N of M , we have N ∩M2 is a direct
summand of N , then M is weakly µ-extending.

Proof. Let N ≤M . By the hypothesis, there is a submodule N ′ of N such that
N = (N ∩M2) ⊕N ′. Note that N ′ ∩M2 = 0 and hence (M2 + N ′)/N ′ ∼= M2 is
an injective module, so there is a submodule M ′ of M containing N ′ such that
M/N ′ = [(M2 + N ′)/N ′] ⊕ (M ′/N ′). Thus it is easy to see that M = M2 ⊕M ′
and that M ′ ∼= M/M2 ∼= M1. Hence M ′ is weakly µ-extending. There are direct
summands K,K ′ of M ′ such that M ′ = K ⊕ K ′ and that K/N ′ is µ-singular.
Since N ∩ M2 is a submodule of an injective module M2, so there is a direct
summand H of M2 such that H/(N ∩M2) is µ-singular. Following from the fact
that (H ⊕K)/[(N ∩M2)⊕N ′] ∼= [H/(N ∩M2)]⊕ (K/N ′) and that H ⊕K ≤d M ,
then M is weakly µ-extending. �

Proposition 4.5. Let M = M1 ⊕M2 such that M1 is weakly µ-extending and
M2 is an injective module. Then M is weakly µ-extending if and only if for every
submodule N of M such that N ∩M2 6= 0, there is a direct summand K of M such
that K/N is µ-singular.

Proof. Suppose that for every submodule N of M such that N ∩M2 6= 0, there is a
direct summand K of M such that K/N is µ-singular. Let N be a submodule of M
such that N ∩M2 = 0. Then, since (M2 +N)/N ∼= M2 is an injective module, there
is a submodule M ′ of M containing N such that M/N = (M ′/N)⊕ ((M2 +N)/N).
It is easy to see that M = M ′⊕M2. Since M ′ ∼= M/M2 ∼= M1 is weakly µ-extending,
there is a direct summand K of M ′, hence of M , such that K/N is µ-singular. So
M is weakly µ-extending. The converse is obvious. �

5. Rings whose projective modules are µ-extending

In [6], a ring R is called a right co-H-ring if every projective right R-module is
extending. It is known that a ring R is a right co-H-ring if and only if R is right
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-extending (i.e., any direct sum of RR is extending). In this section we introduce

rings in which all projective right modules are µ-extending. We call such rings
µ-co-H-rings. It is easy to check that a ring R is µ-co-H-ring if and only if any
direct sum of RR is µ-extending.

Lemma 5.1. Let R be a ring. A projective R-module M is weakly µ-extending if
and only if every factor module of M is a direct sum of a µ-singular module and a
projective module.

Proof. Suppose that M is weakly µ-extending. Let M ′ be any factor module of
M , then there is a submodule N of M such that M/N ∼= M ′. Since M is weakly
µ-extending, then there are direct summands K,K ′ of M such that M = K ⊕K ′
and K/N is µ-singular. Thus M/N = (K/N)⊕ ((K ′ +N)/N). As M is projective,
K ′ ∼= (K ′ +N)/N is projective. Conversely, let N be any submodule of M , then
M/N is a direct sum of a µ-singular module and a projective module. We may
assume that M/N = S/N ⊕ T/N , where S/N is µ-singular and T/N is projective.
Then M = S + T and as M/S ∼= T/N is projective, S is a direct summand of M .
Thus M is weakly µ-extending. �

Lemma 5.2. Let R be any right non-µ-singular ring. Then the following are
equivalent:

(1) All modules are weakly µ-extending;
(2) All projective modules are weakly µ-extending;
(3) All non-µ-singular modules are µ-extending.

Proof. (1)⇔ (2) By Corollary 3.14.
(1)⇔ (3) This is a consequence of Propositions 3.8 and 3.12 and the fact that

over a right non-µ-singular ring all projective modules are non-µ-singular. �

As an immediate consequence of Lemmas 5.1, 5.2 and Proposition 3.8, we have:

Theorem 5.3. Let R be any ring, then the following are equivalent:
(1) R is a right µ-co-H-ring;
(2) All right R-modules are weakly µ-extending;
(3) All projective right R-modules are µ-extending;
(4) All projective right R-modules are weakly µ-extending;
(5) Every factor module of any projective module is a direct sum of a µ-singular

module and a projective module.

Theorem 5.4. Let R be a right non-µ-singular ring, consider the following:
(1) R is a right µ-co-H-ring;
(2) Every non-µ-singular module is projective;
(3) Every module is weakly µ-extending;
(4) Every non-µ-singular module is µ-extending.
Then (1)⇔ (3)⇔ (4) and (1)⇒ (2).

Proof. (1)⇒ (2) Suppose that R is a right µ-co-H-ring and M a non-µ-singular
module. Then there is a projective module P and an epimorphism f : P →M . Set
K = Kerf , then K is a µ-closed submodule of P . Since P is µ-extending, then K
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is a direct summand of P and hence M is isomorphic to a direct summand of P .
Thus M is projective.

(1)⇔ (3) By Theorem 5.3.
(1)⇒ (4) It is clear by Propositions 3.8 and 3.12.
(4) ⇒ (1) Since a ring R is right non-µ-singular if and only if all projective

modules are non-µ-singular, by (4), all projective modules are µ-extending and R
is a right µ-co-H-ring. �

Corollary 5.5. Let R be a ring such that all µ-singular modules are projective,
then R is a right µ-co-H-ring if and only if R is semisimple.

Proof. Suppose that R is a right µ-co-H-ring. Let M be an R-module module
and N a submodule of M , then by Theorem 5.3, M is weakly µ-extending, i.e.,
there is a direct summand K of M such that N ≤ K and K/N is µ-singular. By
hypothesis, K/N is projective, so N is a direct summand of K and hence a direct
summand of M . Thus M is semisimple and R is semisimple.

The converse is obvious. �

It is known from [3, Theorem 24.20] that a ring R is a QF-ring if and only if all
projective modules are injective if and only if all injective modules are projective.
Obviously every QF-ring R is a left and right µ-co-H-ring. As an immediate
consequence of Theorem 5.4, we have:

Corollary 5.6. Let R be a right non-µ-singular ring such that all injective modules
are non-µ-singular. Then R is a right µ-co-H-ring if and only if R is a QF-ring.
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