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Abstract. A graph is called magic (supermagic) if it admits a labeling of the edges by
pairwise different (and consecutive) integers such that the sum of the labels of the edges
incident with a vertex is independent of the particular vertex. In this paper we characterize
magic joins of graphs and we establish some conditions for magic joins of graphs to be
supermagic.
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1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated

vertices. If G is a graph, then V (G) and E(G) stand for the vertex set and the edge

set of G, respectively. Cardinalities of these sets are called the order and the size

of G.

Let a graph G and a mapping f from E(G) into positive integers be given. The

index-mapping of f is the mapping f∗ from V (G) into positive integers defined by

f∗(v) =
∑

e∈E(G)

η(v, e)f(e) for every v ∈ V (G),

where η(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise.

An injective mapping f from E(G) to positive integers is called a magic labeling of

G for an index λ if its index-mapping f∗ satisfies

f∗(v) = λ for all v ∈ V (G).

A magic labeling f of G is called a supermagic labeling of G if the set {f(e) : e ∈

E(G)} consists of consecutive positive integers. We say that a graph G is supermagic

(magic) whenever there exists a supermagic (magic) labeling of G.
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The concept of magic graphs was introduced by Sedláček [10]. The regular magic

graphs are characterized in [3]. Two different characterizations of all magic graphs

are given in [9] and [8]. Supermagic graphs were introduced by Stewart [12]. There is

by now a considerable number of papers published on supermagic graphs; we single

out [6], [4], [7], [11], [1] as being more particularly relevant to the present paper, and

refer the reader to [5] for comprehensive references.

Let G ∪ H denote the disjoint union of graphs G and H . The join G ⊕ H of the

disjoint graphs G and H is the graph G ∪ H together with all edges joining vertices

of V (G) and vertices of V (H). In this paper we will deal with magic and supermagic

joins of graphs.

2. Magic graphs

In this section, we characterize magic joins of graphs. Since, except for the com-

plete graph of order 2, no graph with less than 5 vertices is magic, we consider only

joins of order at least 5. Moreover, if G and H are edgeless graphs then G ⊕ H

is isomorphic to the complete bipartite graph Km,n, where m and n are the orders

of G and H . Since the graph Km,n is magic (and also supermagic) if and only if

m = n 6= 2, we consider only joins G ⊕ H where E(G) ∪ E(H) 6= ∅.

We say that a graphG is of type A if it has two edges e1, e2 such that G−{e1, e2} is

a balanced bipartite graph with a partition V1, V2, and the edge ei joins two vertices

of Vi. A graph G is of type B if it has two edges e1, e2 such that G − {e1, e2} has a

component C which is a balanced bipartite graph with partition V1, V2, and ei joins

a vertex of Vi with a vertex of V (G)− V (C). For any non-empty subset S of V (G),

ΓG(S) denotes the set of vertices in G adjacent to a vertex in S.

In what follows we will use the following characterization of magic graphs.

Proposition 1 (Jeurissen [8]). A connected non-bipartite graph G is magic if and

only if G is neither of type A nor of type B, and |ΓG(S)| > |S| for every independent

non-empty subset S of V (G).

Magic graphs G⊕K1 were characterized in [11]. Now we can prove an extension.

Theorem 1. Let G and H be graphs such that |V (G)| > |V (H)| > 1, |V (G)| +

|V (H)| > 5 and |E(G)| + |E(H)| > 1. The graph G ⊕ H is magic if and only if the

following conditions are satisfied:

(i) |ΓG(S)| + |V (H)| > |S| for every independent subset S of V (G).

(ii) G does not contain an isolated edge when |V (H)| = 1.

(iii) |E(H)| > 1 and |E(G)| + |E(H)| > 3 when |V (H)| = |V (G)|.
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P r o o f. Assume that the graph G⊕H is not magic. Since |E(G)|+ |E(H)| > 1,

G⊕H is a non-bipartite graph. According to Proposition 1, we consider the following

cases.

A. Suppose that G⊕H is of type A. As G⊕H is a balanced bipartite graph with

two added edges it has at least 6 vertices and the corresponding partition is V (G),

V (H). Added edges join two vertices in V (G) and two vertices in V (H). Therefore,

|V (H)| = |V (G)| and |E(H)| = |E(G)| = 1, i.e., condition (iii) is not satisfied.

B. Suppose that G ⊕ H is of type B. The edge-connectivity of G ⊕ H is at most

two in this case. Thus, |V (H)| 6 2. If |V (H)| = 2 then any 2-edge cut of G ⊕ H

consists of edges incident to an isolated vertex v of G. The graph G ⊕ H − v is

bipartite only if both G and H are edgeless graphs, contrary to |E(G)|+ |E(H)| > 1.

If |V (H)| = 1 then any edge cut of G ⊕ H contains an edge incident to u, where

V (H) = {u}. As u is adjacent to all other vertices, it is not a vertex of the bipartite

component C of G ⊕ H − {e1, e2}. Therefore, V (C) ⊂ V (G), |V (C)| = 2 and the

unique edge of C is an isolated edge of G, contrary to (ii).

C. There exists an independent set S of vertices of G⊕H such that |ΓG⊕H(S)| 6

|S|. The set S is independent, thus either S ⊆ V (H) or S ⊆ V (G). If S ⊆ V (H),

then V (G) ⊆ ΓG⊕H(S). Therefore, S = V (H) and |V (H)| = |V (G)|, i.e., condition

(iii) is not satisfied. If S ⊆ V (G), then ΓG⊕H(S) = V (H) ∪ ΓG(S) and condition (i)

is not satisfied.

The converse implication is obvious. �

A complete k-partite graph is a graph whose vertices can be partitioned into k > 2

disjoint classes V1, . . . , Vk such that two vertices are adjacent if and only if they

belong to distinct classes. If |Vi| = ni for all i = 1, . . . , k, then the complete k-partite

graph is denoted by Kn1,...,nk
. If ni = n for all i = 1, . . . , k, then the complete

k-partite graph is regular of degree (k − 1)n and is denoted by Kk[n]. Similarly, if

ni = n for all i = 1, . . . , k and nk+1 = p then the complete (k + 1)-partite graph is

denoted by Kp,k[n].

Clearly, Kn1,...,nk
= Knk

⊕ Kn1,...,nk−1
, where Knk

is an edgeless graph of order

nk. According to Theorem 1 we have immediately

Corollary 1. Let k > 3 and 1 6 n1 6 . . . 6 nk be integers. The complete

k-partite graph Kn1,...,nk
is magic if and only if

n1 + . . . + nk−1 > nk and n1 + . . . + nk > 5.

The problem of characterizing supermagic joins of general graphs seems to be

difficult. In the next sections we present only some necessary and some sufficient

conditions.
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3. Necessary conditions

Any supermagic graph is magic. Thus the conditions of Theorem 1 are necessary

for G ⊕ H to be supermagic. In this section we establish some other necessary

conditions.

Theorem 2. Let G be a graph with n vertices and m edges. Let g be the

greatest common divisor of integers n and 2m, and let ν = n/g, ε = 2m/g. If G

admits a supermagic labeling onto {a, a + 1, . . . , a + m− 1} for an index λ, then g is

a divisor of (m − 1)m and there exists an integer t such that

λ = ετ and a =
1 − m

2
+ ντ,

where

m + 1

2ν
6 τ =

{

t for odd m,

t + 1
2 for even m.

P r o o f. Suppose that f : E(G) → {a, a + 1, . . . , a + m − 1} is a supermagic

labeling of G for an index λ. Then we have

nλ =
∑

v∈V (G)

∑

e∈E(G)

η(v, e)f(e) = 2
∑

e∈E(G)

f(e)

= 2[a + . . . + (a + m − 1)] = (2a + m − 1)m.

Thus, nλ−2ma = (m−1)m, i.e., the pair (λ, a) is a solution of the linear Diophantine

equation

(1) nx − 2my = (m − 1)m.

It is well known that this equation has a solution if and only if g = gcd(n, 2m) divides

(m − 1)m. Moreover, if (x0, y0) is one solution then all other solutions are given by

(x0 + 2mg−1t, y0 + ng−1t) for any integer t.

If m is odd then (1 − m)/2 is an integer and n0 − 2m(1 − m)/2 = (m − 1)m.

Therefore, (0, (1−m)/2) is a solution of (1) and so there exists an integer t such that

λ = 0 +
2m

g
t = ετ and a =

1 − m

2
+

n

g
t =

1 − m

2
+ ντ.

Ifm is even then g = gcd(n, m), because g = 2 gcd(n, m) does not divide (m−1)m.

Thus, ε is even and ν is odd. Consequently, ε/2 and (ν + 1 − m)/2 are integers. As

n
ε

2
− 2m

ν + 1 − m

2
= n

2m

2g
− m

n

g
+ (m − 1)m = (m − 1)m,
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(ε/2, (ν + 1−m)/2) is a solution of the equation (1) and so there exists an integer t

such that

λ =
ε

2
+

2m

g
t = ετ and a =

ν + 1 − m

2
+

n

g
t =

1 − m

2
+ ντ.

Finally, a is a positive integer and so (1 − m)/2 + ντ = a > 1, which implies

τ > (m + 1)/2ν. �

Corollary 2. Let α, β be positive integers and let p, q be odd positive integers.

(i) If α > β then there exists no supermagic graph with 2αp vertices and 2βq edges.

(ii) If α = β then there exists no supermagic graph with 2αp vertices and 2βq edges

having a component of odd order.

P r o o f. Let G be a graph of order n = 2αp and size m = 2βq and let f be

a supermagic labeling of G onto {a, a + 1, . . . , a + m − 1} for an index λ. Suppose

that g and ε are as in Theorem 2.

If α > β then g = 2β+1 gcd(p, q). Clearly, in this case g does not divide (m−1)m =

(2βq − 1)2βq, contrary to Theorem 2.

Assume that G has a component C of odd order. If α = β then g = 2β gcd(p, q)

and ε = 2q/ gcd(p, q). According to Theorem 2, λ = ε(t + 1
2 ) = (2t + 1)q/ gcd(p, q).

Therefore, λ is odd. Hence λ|V (C)| is odd, too. On the other hand,

|V (C)|λ =
∑

v∈V (C)

∑

e∈E(G)

η(v, e)f(e) = 2
∑

e∈E(C)

f(e),

a contradiction. �

Note that a special case of the previous result concerning regular graphs is proved

in [6]. An assertion equivalent to (i) is proved in [4].

Let S be a non-empty set of vertices of a graph G. The average degree of S

is denoted by d(S), i.e., d(S) = |S|−1
∑

v∈S

deg(v). Evidently, d(G) = d(V (G)) =

2|E(G)|/|V (G)|.

Lemma 1. Let G be a graph as in Theorem 2. Any independent set S of G

satisfies

2ν|d(S) − d(G)|τ 6 d(S)(m − |S|d(S)).

P r o o f. The set of edges incident to a vertex of S is denoted by ES . Evidently,

|ES | = |S|d(S). Suppose that f : E(G) → {a, a + 1, . . . , a + m − 1} is a supermagic

labeling of G for an index λ. If d(S) = d(G) then the desired inequality is satisfied.

Thus, we consider the following two cases.
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A. Suppose d(S) > d(G). Then we have

|S|λ =
∑

v∈S

∑

e∈E(G)

η(v, e)f(e) =
∑

e∈ES

f(e)

> a + . . . + (a + |ES | − 1) = |ES |
(

a +
|ES | − 1

2

)

.

Using Theorem 2 we get

|S|ετ > |ES |
(1 − m

2
+ ντ +

|ES | − 1

2

)

.

As d(G) = 2m/n = ε/ν and |ES | = |S|d(S), we have

2ν(d(G) − d(S))τ > d(S)(|S|d(S) − m),

which implies the desired inequality.

B. Suppose d(S) < d(G). Then we have

|S|λ =
∑

v∈S

∑

e∈E(G)

η(v, e)f(e) =
∑

e∈ES

f(e)

6 (a + m − 1) + . . . + (a + m − |ES |) = |ES |
(

a + m −
|ES | + 1

2

)

.

Using Theorem 2 we get

|S|ετ 6 |ES |
(1 − m

2
+ ντ + m −

|ES | + 1

2

)

.

As d(G) = 2m/n = ε/ν and |ES | = |S|d(S), we have

2ν(d(G) − d(S))τ 6 d(S)(m − |S|d(S)),

which implies the desired inequality. �

Theorem 3. Let G be a supermagic graph of order n and size m. Any indepen-

dent set S of G satisfies

(m + 1)
∣

∣

∣
d(S) −

2m

n

∣

∣

∣
6 d(S)(m − |S|d(S)).

P r o o f. Let G be a graph as in Theorem 2 and let S be any independent set

of G. We can assume that d(S) 6= d(G), because the desired inequality is trivial

otherwise. According to Theorem 2, τ > (m + 1)/2ν. By Lemma 1,

τ 6
d(S)(m − |S|d(S))

2ν|d(S) − d(G)|
and so

m + 1

2ν
6

d(S)(m − |S|d(S))

2ν|d(S) − d(G)|
.

As d(G) = 2m/n, we get the desired inequality after routine manipulation. �

For joins we have
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Corollary 3. Let G be a graph of order n and average degree d. If Kp ⊕ G is

a supermagic graph then

n 6
1

4p
(d2 + 4pd + 2p2 − 2 + ω),

where ω =
√

d4 + 8pd3 + 20p2d2 + 16p3d + 4p4 − 4d2 + 8p2 + 4.

P r o o f. The join Kp ⊕ G has n + p vertices and nd/2 + np edges. The set of

vertices of Kp is an independent set of Kp ⊕ G and each of its p vertices has degree

n. According to Theorem 3 we have

(

n
d

2
+ np + 1

)∣

∣

∣
n −

nd + 2np

n + p

∣

∣

∣
6 n

(

n
d

2
+ np − pn

)

.

After routine manipulation we get

(nd + 2np + 2)|n − p − d| 6 nd(n + p).

If n 6 p + d, then the inequality is satisfied because it is easy to see that ω >

2p2 − d2 + 2.

If n > p + d, then (nd + 2np + 2)(n − p − d) 6 nd(n + p). This implies

2pn2 − (d2 + 4pd + 2p2 − 2)n − 2(p + d) 6 0,

and the desired bound follows. �

Note that a special case of the previous result concerning p = 1 is proved in [11].

Corollary 4. Let G be a graph of order n and size m. If Kp ⊕G is a supermagic

graph then

p 6
1

2n

(

n2 − 2m − 1 +
√

n4 + 4n2m − 4m2 + 2n2 − 4m + 1
)

.

P r o o f. The join Kp ⊕ G has n + p vertices and m + np edges. The set of

vertices of Kp is an independent set of Kp ⊕ G and each of its p vertices has degree

n. According to Theorem 3 we have

(m + np + 1)
∣

∣

∣
n −

2m + 2np

n + p

∣

∣

∣
6 n(m + np − pn).

After routine manipulation we obtain

(m + np + 1)|n2 − np − 2m| 6 nm(n + p).
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If n2 > np+2m, then p 6 n−2m/n. However, the desired upper bound is greater

than n − 2m/n = ((n2 − 2m− 1) + (n2 − 2m + 1))/2n because n4 + 4n2m − 4m2 +

2n2 − 4m + 1 = (n2 − 2m + 1)2 + 8m(n2 − m) and n2 > m.

If n2 < np + 2m, then (m + np + 1)(np + 2m−n2) 6 nm(n + p) and consequently

n2p2 − (n2 − 2m − 1)np − (2n2m + n2 − 2m2 − 2m) 6 0.

This inequality immediately implies the desired bound. �

Since Kp,k[n] = Kp ⊕Kk[n] and Kk[n] is a graph with kn vertices and k(k−1)n2/2

edges, we immediately get

Corollary 5. Let p, n and k > 2 be positive integers. If Kp,k[n] is a supermagic

graph then

p 6
1

2kn

(

kn2 − 1 +
√

k2(2k2 − 1)n4 + 2kn2 + 1
)

.

4. Sufficient conditions

Clearly, if f is a supermagic labeling of a regular graph G, then f + κ, for every

integer κ > −min{f(e) : e ∈ E(G)}, is a supermagic labeling of G, too. Therefore,

a regular graph G is supermagic if and only if it admits a supermagic labeling f :

E(G) → {1, 2, . . . , |E(G)|}. This can be generalized as follows.

Theorem 4. A graph G is supermagic if and only if there are a bijection g :

E(G) → {1, 2, . . . , |E(G)|} and a non-negative integer κ such that

g∗(u) − g∗(v) = κ(deg(v) − deg(u)) for all u, v ∈ V (G).

P r o o f. Suppose that f : E(G) → {a, a+1, . . . , a+ |E(G)|− 1} is a supermagic

labeling of a graph G for an index λ. Consider the mapping g defined by

g(e) = f(e) − a + 1 for all e ∈ E(G).

Evidently, g is a bijection from E(G) onto {1, 2, . . . , |E(G)|}. Moreover, g∗(w) =

λ − (a − 1) deg(w) for any vertex w ∈ V (G). Therefore

g∗(u) − g∗(v) = (a − 1)(deg(v) − deg(u))

for all u, v ∈ V (G).
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Assume that g : E(G) → {1, 2, . . . , |E(G)|} is a bijection satisfying g∗(u)−g∗(v) =

κ(deg(v) − deg(u)) for all u, v ∈ V (G). Consider the mapping f given by

f(e) = g(e) + κ for all e ∈ E(G).

Clearly, f is a bijection from E(G) onto {κ + 1, κ + 2, . . . , κ + |E(G)|}. Moreover,

f∗(w) = g∗(w) + κ deg(w) for any vertex w ∈ V (G). This implies

f∗(u) − f∗(v) = (g∗(u) − g∗(v)) + κ(deg(u) − deg(v)) = 0

for all u, v ∈ V (G), which means that f is a supermagic labeling of G. �

Let S(n; d, r) denote the family of all d-regular graphs of order n which admit

a supermagic labeling f onto {1, 2, . . . , nd/2} such that the set of edges {e : f(e) 6

nr/2} induces an r-factor of a graph. Clearly, G ∈ S(n; d, r) is a supermagic graph

(and d > 3 when n > 2). On the other hand, any supermagic d-regular graph of order

n belongs to S(n; d, 0) and S(n; d, d). Moreover, it is easy to see that G ∈ S(n; d, r)

if and only if G ∈ S(n; d, d − r).

Now we present a construction of supermagic irregular graphs.

Theorem 5. Let p, n, d and r be integers such that d > r > 0, n > d > 3 and

n > p > 2. Put

̟ =
1

2
((p + d) + n((d2/2 − rn − 1) + p(p + 2d − r − n)))

and suppose that the following conditions are satisfied:

(i) n ≡ p (mod 2);

(ii) n − p − d 6= 0;

(iii) ̟(n − p − d) > 0;

(iv) ̟ ≡ 0 (mod |n − p − d|).

If G is any regular graph belonging to S(n; d, r) then the join Kp⊕G is a supermagic

graph.

P r o o f. Let H = (Kp ⊕ G) − E(G). Evidently, H is a spanning subgraph of

Kp⊕G isomorphic to Kp,n. As n > p > 2 and n ≡ p (mod 2), the complete bipartite

graph Kp,n is degree-magic (see [1]). This means there is a bijection h : E(H) →

{1, 2, . . . , pn} such that h∗(w) = 1
2 (1 + pn) degH(w) for every vertex w ∈ V (H).

Since G belongs to S(n; d, r) there is a supermagic labeling f of G onto {1, 2, . . . ,

nd/2} such that the set of edges {e ∈ E(G) : f(e) 6 nr/2} induces an r-factor of G.

Clearly, f∗(v) = (1 + nd/2)d/2 for every vertex v ∈ V (G).
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Consider a mapping g from E(Kp ⊕ G) into positive integers given by

g(e) =











f(e) if e ∈ E(G) and f(e) 6 nr/2,

h(e) + nr/2 if e ∈ E(H),

f(e) + np if e ∈ E(G) and f(e) > nr/2.

Evidently, g is a bijection from E(Kp⊕G) onto {1, 2, . . . , np+nd/2}. For any vertex

v ∈ V (G) we have

g∗(v) = f∗(v) + (d − r)np + h∗(v) +
1

2
pnr

=
1

2
(1 + nd/2)d + (d − r)np +

1

2
(1 + np)p +

1

2
pnr

=
1

2

(

(p + d) + n
(1

2
d2 + p2 + 2pd − pr

))

.

Similarly, for every vertex u ∈ V (Kp) we have

g∗(u) = h∗(u) +
1

2
nnr =

1

2
(1 + np)n +

1

2
n2r

=
1

2
(1 + np + nr)n.

Thus, ̟ = g∗(v) − g∗(u) for any v ∈ V (G) and u ∈ V (Kp). According to (iii) and

(iv), there is a non-negative integer κ such that ̟ = κ(n − p − d). Therefore,

g∗(v) − g∗(u) = κ(n − p − d) = κ(deg(u) − deg(v))

for any v ∈ V (G) and u ∈ V (Kp). So g∗(v) − g∗(u) = κ(deg(u) − deg(v)) for any u,

v of Kp ⊕ G. By Theorem 4, Kp ⊕ G is a supermagic graph. �

Corollary 6. Let G be a supermagic d-regular graph of order n > 6, where

3 6 d ≡ 1 (mod 2) and n ≡ 2 (mod 4). For p ∈ {n − d + 1, n − d − 1}, p > 2, the

join Kp ⊕ G is a supermagic graph.

P r o o f. Suppose that p = n − d + 1. A graph G belongs to S(n; d, d) and

conditions (i), (ii), (iv) of Theorem 5 are satisfied in this case. Moreover,

̟ =
1

2

(

n + 1 + n
(1

2
d2 + n − dn − d

))

=
1

2

(

(1 − d)n(n + 1) + 1 +
1

2
nd2

)

<
1

2

(

(1 − d)n(n + 1) +
1

2
n(n + 1)d

)

=
1

2

(

1 − d +
1

2
d
)

n(n + 1) < 0.

Thus, (iii) is also satisfied.
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Assume that p = n − d − 1 > 2. A graph G belongs to S(n; d, 0) and conditions

(i), (ii), (iv) of Theorem 5 are satisfied. Moreover,

̟ =
1

2

(

n − 1 + n
(

nd − n −
1

2
d2

))

>
n

2

(

nd − n −
1

2
d2

)

=
n

4
(n2 − 2n− n2 + 2nd − d2) =

n

4
(n(n − 2) − (n − d)2) > 0,

because n > d > 3. Therefore, (iii) is also satisfied. �

Corollary 7. Let G be a supermagic d-regular graph of order n > 6, where

4 6 d ≡ 0 (mod 2) and n ≡ 1 (mod 2). For p ∈ {n − d + 2, n − d − 2}, p > 2, the

join Kp ⊕ G is a supermagic graph.

P r o o f. Suppose that p = n − d + 2. A graph G belongs to S(n; d, d) and

conditions (i) and (ii) of Theorem 5 are satisfied in this case. We have

̟ =
1

2

(

n + 2 + n
(1

2
d2 + 2n − dn − 2d + 3

))

=
1

2

(

(2 − d)(n + 1)2 +
1

2
d(2 + nd)

)

<
1

2

(

(2 − d)(n + 1)2 +
1

2
(n + 1)2d

)

=
1

2

(

2 − d +
1

2
d
)

(n + 1)2 6 0.

This implies that (iii) is satisfied. Moreover,

̟ =
2 − d

2
(n + 1)2 +

d

2

2 + nd

2
.

As d is even and n is odd, (2 − d)/2, d/2, (2 + nd)/2 are integers and either d/2 or

(2 + nd)/2 is an even integer. Thus, ̟ is an even integer, and (iv) is also satisfied

in this case.

Assume that p = n − d − 2 > 2. A graph G belongs to S(n; d, 0) and conditions

(i) and (ii) of Theorem 5 are satisfied. We have

̟ =
1

2

(

n − 2 + n
(

nd − 2n−
1

2
d2 + 3

))

=
1

2

(

nd
(

n −
1

2
d
)

− 2(n − 1)2
)

>
n

2

(

nd − 2n −
1

2
d2

)

>
n2

2

(

d − 2 −
1

2
d
)

> 0,

because d > 4. Therefore, (iii) is satisfied. Moreover,

̟ = n
d

2

(

n −
d

2

)

− (n − 1)2.

As d is even and n is odd, d/2 and n − d/2 are integers and one of them is even.

Thus, ̟ is an even integer, and (iv) is also satisfied. �
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In [6], supermagic regular complete multipartite graphs Kk[n] are characterized.

According to the characterization, Corollary 6 and Corollary 7, we immediately get

Corollary 8. Let p, n, k > 2 be positive integers such that one of the following

conditions is satisfied:

(i) p = 2, 6 6 k ≡ 2 (mod 4), n = 1;

(ii) p = n − 1, k ≡ 2 (mod 4), 3 6 n ≡ 1 (mod 2);

(iii) p = n + 1, k ≡ 2 (mod 4), 3 6 n ≡ 1 (mod 2);

(iv) p = 3, 7 6 k ≡ 1 (mod 2), n = 1;

(v) p = 5, k ≡ 1 (mod 2), n = 3;

(vi) p = n − 2, k ≡ 1 (mod 2), 5 6 n ≡ 1 (mod 2);

(vii) p = n + 2, k ≡ 1 (mod 2), 5 6 n ≡ 1 (mod 2).

Then the complete multipartite graph Kp,k[n] is supermagic.

We conclude this paper with a sufficient condition for Kp,2[n] to be supermagic,

but first we prove the following auxiliary result.

Lemma 2. Let n be an odd positive integer. The complete bipartite graph Kn,n

belongs to S(2n; n, r) for every integer r, 0 6 r 6 n.

P r o o f. In the proof we use Latin squares. A Latin square of order n is a square

matrix of order n such that every row and column is a permutation of integers

{1, 2, . . . , n}. Two Latin squares A = (ai,j) and B = (bi,j) of order n are called

orthogonal, if all n2 ordered pairs [ai,j , bi,j ], i, j ∈ {1, 2, . . . , n}, are different. In [2] it

is proved that two orthogonal Latin squares of order n exist if and only if n /∈ {2, 6}.

Therefore, there exist two orthogonal Latin squares A and B of order n in this case.

Denote the vertices of Kn,n by u1, u2, . . . un, v1, v2, . . . , vn in such a way that

{u1, u2, . . . , un} and {v1, v2, . . . , vn} are its maximal independent sets. Consider

a mapping f : E(Kn,n) → {1, 2, . . . , n2} given by

f(uivj) = (ai,j − 1)n + bi,j .

Since A and B are Latin squares of order n, 1 6 f(uivj) 6 n2 for every edge uivj of

Kn,n. Moreover, f(uivj) = f(usvt) if and only if [ai,j , bi,j ] = [as,t, bs,t] and so f is

injective, because A, B are orthogonal. As |E(Kn,n)| = n2, f is a bijection. For any

vertex ui we have

f∗(ui) =

n
∑

j=1

f(uivj) =

n
∑

j=1

(ai,j − 1)n +

n
∑

j=1

bi,j

= (0 + 1 + . . . + n − 1)n + (1 + 2 + . . . + n) =
n

2
(n2 + 1).
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Similarly, f∗(vj) = 1
2n(n2 + 1) for any vertex vj . Therefore, f is a supermagic

labeling of Kn,n.

Let Hr be a subgraph of Kn,n induced by {e ∈ E(Kn,n) : f(e) 6 nr}. Then

ΓHr
(ui) = {vj : ai,j 6 r} and degHr

(ui) = |ΓHr
(ui)| = r. Similarly, degHr

(vj) =

|{ui : ai,j 6 r}| = r. The subgraph Hr is r-regular and so Kn,n belongs to

S(2n; n, r). �

Theorem 6. Let s > t be positive integers. Then the complete tripartite graph

K2t,2[2s+1] is supermagic.

P r o o f. The graph K2t,2[2s+1] is isomorphic to K2t ⊕ K2[2s+1]. According

to Lemma 2, K2[2s+1] belongs to S(4s + 2; 2s + 1, t) and conditions (i) and (ii) of

Theorem 5 are satisfied in this case. Moreover, we have

̟ =
1

2

(

2t + 2s + 1 + 2(2s + 1)
(1

2
(2s + 1)2 − 2t(2s + 1) − 1 + 2t2

))

= (2s − 2t + 1)((2s + 1)(s − t) + s).

Now it is easy to see that ̟ > 0 and conditions (iii) and (iv) are satisfied. By

theorem 5, K2t,2[2s+1] is a supermagic graph. �
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