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A NOTE ON THE TRANSCENDENCE OF INFINITE PRODUCTS
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Jan Štěpnička,2 Ostrava
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Abstract. The paper deals with several criteria for the transcendence of infinite products

of the form
∞∏

n=1
[bnαan ]/bnαan where α > 1 is a positive algebraic number having a con-

jugate α∗ such that α 6= |α∗| > 1, {an}
∞

n=1 and {bn}
∞

n=1 are two sequences of positive
integers with some specific conditions.
The proofs are based on the recent theorem of Corvaja and Zannier which relies on the

Subspace Theorem (P.Corvaja, U.Zannier: On the rational approximation to the powers of
an algebraic number: solution of two problems of Mahler and Mendès France, Acta Math.
193, (2004), 175–191).
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1. Introduction

Following Erdős [4], Corvaja and Zannier [2] we prove

Theorem 1. The number x =
∞
∏

n=1
[n(

√
5 + 1)kn

]/n(
√

5 + 1)kn

is transcendental

for all integers k greater than 4.

Here [z] means the integer part of the number z. The authors do not know if the

number x is also transcendental or irrational for k = 2, 3 and 4.

1 This paper has been elaborated in the framework of the IT4Innovations Centre of Ex-
cellence project, reg. no.CZ.1.05/1.1.00/02.0070 supported by Operational Programme
‘Research and Development for Innovations’ funded by Structural Funds of the European
Union and state budget of the Czech Republic and by grants no. ME09017, P201/12/2351
and MSM 6198898701.

2 The authors were supported by the grant 01798/2011/RRC of the Moravian-Silesian
region.
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In 2000 Zhu [14] proved some criteria for an infinite product to be transcenden-

tal. Making use of linear recurrence sequences of the second order Nyblom [11]

constructed a set of transcendental valued infinite products. Utilizing theta series

Kim [9] and Koo described some interesting infinite products. Recently Corvaja and

Hančl [1] established a criterion for an infinite product to be transcendental. Tachiya

[12] found some transcendental valued infinite products of algebraic numbers. Zhou

[13] worked with similar products and obtained some irrationality results. All this

shows that metric properties of infinite products are of current interest.

Erdős [4] proved that if a = {an}∞n=1 is an increasing sequence of positive integers

such that lim inf
n→∞

a
1/2n

n = ∞ then the expressible set Ea =
{ ∞

∑

n=1
1/ancn, cn ∈ N

}

does not contain rational numbers. Using this idea of Erdős, Hančl, Nair and Šustek

[6] found some necessary conditions for the Lebesgue measure of Ea to be equal to

zero. For other applications of the method of Erdős see e.g. [5], [7] or [8]. It seems

likely that this method still has great potential.

Our main theorem is Theorem 2. Its proof makes use of the main theorem in [2].

See also [3]. Theorem 2 and the method of Erdős yield Theorems 3–7. In all of

Theorems 2–7 we suppose that α is a positive algebraic number greater than 1 having

a conjugate α∗ such that α 6= |α∗| > 1 where |z| means the usual absolute value of
the number z. Denote by N and Q the set of all natural and rational numbers,

respectively. If α is an algebraic number then set d = [Q(α) : Q], the degree of the

algebraic number field Q(α).

2. Main results

Theorem 2. Let x and γ be real numbers such that γ > 0. If for infinitely many

positive integers n, p and q

(2.1) 0 <
∣

∣

∣
x − p

qαn

∣

∣

∣
<

1

αn(1+γ)q1+γ+d
,

then the number x is transcendental.

Theorem 3. Let {an}∞n=1 be a strictly increasing sequence of positive integers

with lim sup
n→∞

n
√

an > 2. Then the number x =
∞
∏

n=1
[αan ]/αan is transcendental.

Theorem 4. Let ε > 0. Suppose that {an}∞n=1 is a non-decreasing sequence of

positive integers with lim sup
n→∞

n
√

an > 2 + 1/ε. Assume that αan > n1+ε for every

sufficiently large n. Then the number x =
∞
∏

n=1
[αan ]/αan is transcendental.
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Theorem 5. Let δ and ε be two positive real numbers. Assume that

(2.2)
1 + d + δ

1 + d
· ε

1 + ε
> 1.

Suppose that {an}∞n=1 and {bn}∞n=1 are two sequences of positive integers such that

the sequence {Bn}∞n=1 = {bnαan}∞n=1 is non-decreasing and

(2.3) lim sup
n→∞

B1/(2+d+δ)n

n = ∞.

Assume that Bn > n1+ε for every sufficiently large n. Then the number x =
∞
∏

n=1
[Bn]/Bn =

∞
∏

n=1
[bnαan ]/bnαan is transcendental.

Theorem 6. Assume that s is a non-negative real number. Suppose that {an}∞n=1

and {bn}∞n=1 are two sequences of positive integers such that {an}∞n=1 is strictly

increasing, {Bn}∞n=1 = {bnαan}∞n=1 is non-decreasing,

(2.4) lim sup
n→∞

n
√

an > 2 +
sd

s + 1

and

(2.5) bn = αsan + o(αsan).

Then the number x =
∞
∏

n=1
[Bn]/Bn =

∞
∏

n=1
[bnαan ]/bnαan is transcendental.

Theorem 7. Assume that ε and s are real numbers with s > 0 and ε > 0.

Suppose that {an}∞n=1 and {bn}∞n=1 are two sequences of positive integers such that

{an}∞n=1 is non-decreasing,

lim sup
n→∞

n
√

an >
(

1 +
sd

s + 1

)(

1 +
1

ε

)

+ 1,(2.6)

αan > n1+ε(2.7)

and

(2.8) bn = αsan + o(αsan).

Then the number x =
∞
∏

n=1
[bnαan ]/bnαan is transcendental.
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3. Proofs

P r o o f of Theorem 1. Theorem 1 is an immediate consequence of Theorem 5. It

is enough to set α =
√

5 + 1, ε = 7, δ = 1
2 , bn = n and an = 5n for all n ∈ N. Then

d = 2 and α has only one conjugate α∗ = −
√

5 + 1. �

P r o o f of Theorem 2. In fact Theorem 2 is a consequence of the main theorem

in [2]. Assume Theorem 2 does not hold. Thus x is an algebraic number. Let H(α)

be the Weil height for the number α. So H(αn) = Hn(α) for all n ∈ N. From

this we obtain that there exists a positive real number a such that a < 1 and for

all n ∈ N we have αn > H(αn)a. Now, set δ := x, q := qn, ε := aγ and u := αn

where qn is a suitable integer corresponding to αn. Hence inequality (1.1) from [2]

holds for infinitely many pairs (q, u). Therefore qnαnx is a pseudo-Pisot number

for infinitely many positive integers n. (A pseudo-Pisot number β is an algebraic

number with |β| > 1, having all absolute values of conjugates strictly less then 1

and with TrQ(β)/Q ∈ Z.) From the definition of α we have that α has a conjugate

α∗ with α 6= |α∗| > 1. Thus there exists an authomorphism σ of the set K such

that α∗ = σ(α) where K is the Galois closure over Q of the field Q(α, x). (For more

information see e.g. [10], chapter 5, page 243, lines 8–12 from the top. See also

Lemma 4 from [1].) Hence for all n ∈ N the authomorphism σ maps the number

qnαnx to its conjugate and for infinitely many positive integers n the number qnαnx

is a pseudo-Pisot number. So for infinitely many n either qnαnx = σ(qnαnx) =

qn(α∗)nσ(x) or 1 > |σ(qnαnx)| = |qn||α∗|n|σ(x)|. But for the number α∗ we have

|α∗| > 1. So the number of n such that 1 > |σ(qnαnx)| = |qn||α∗|n|σ(x)| is finite.
Therefore x/σ(x) = (α∗/α)n for infinitely many n ∈ N which is a contradiction with

the fact that |α∗/α| is a positive real number which is not equal to 1. �

Lemma 1. Let y be a positive real number and let {an}∞n=1 be an non-decreasing

sequence of positive real numbers such that

(3.1) lim sup
n→∞

n
√

an > y + 1.

Then lim sup
n→∞

(

an/
n−1
∑

j=1

aj

)

> y.

P r o o f of Lemma 1. Let us assume that lim sup
n→∞

(

an/
n−1
∑

j=1

aj

)

6 y. Then for

every δ > 0 there exists n0 ∈ N such that an 6
n−1
∑

j=1

aj(y + δ) for every n > n0. From
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this we obtain that for all n > n0

an 6 (y + δ)
n−1
∑

j=1

aj = (y + δ)

(

an−1 +
n−2
∑

j=1

aj

)

6 (y + δ)

(

(y + δ)
n−2
∑

j=1

aj +
n−2
∑

j=1

aj

)

= (y + δ)(1 + y + δ)

n−2
∑

j=1

aj 6 . . . 6 (y + δ)(1 + y + δ)n−n0−1
n0
∑

j=1

aj .

Hence lim sup
n→∞

n
√

an 6 1 + y which contradicts (3.1). �

P r o o f of Theorem 3. LetN0 be a sufficiently large positive integer. Form > N0

set p = p(m) =
m
∏

n=1
[αan ] and N = N(m) =

m
∑

n=1
an. Then

(3.2)
∣

∣

∣
x − p

αN

∣

∣

∣
=

∣

∣

∣

p

αN

∣

∣

∣
·
∣

∣

∣

∣

1 −
∞
∏

n=m+1

[αan ]

αan

∣

∣

∣

∣

.

Using the inequality |1 − t| 6 |log t| for 0 < t < 1 we deduce from the above
∣

∣

∣

∣

1 −
∞
∏

n=m+1

[αan ]

αan

∣

∣

∣

∣

6

∣

∣

∣

∣

log

( ∞
∏

n=m+1

[αan ]

αan

)
∣

∣

∣

∣

.

On the other hand

log

( ∞
∏

n=m+1

[αan ]

αan

)

=
∞
∑

n=m+1

log
(

1 − {αan}
αan

)

,

where the symbol {·} stands for the fractional part. Using the inequality |log(1−t)| 6

|2t| for 0 < t < 1
2 , and the fact that the fractional part {·} is always < 1, we obtain

∞
∑

n=m+1

∣

∣

∣
log

(

1 − {αan}
αan

)∣

∣

∣
<

∞
∑

n=m+1

2

αan
<

2

αam+1
· α

α − 1
.

From the above inequalities, (3.2) and the fact that p/αN 6 1 we obtain that

(3.3)
∣

∣

∣
x − p

αN

∣

∣

∣
<

2

αam+1
· 1

α − 1
.

We shall now compare the integer N =
m
∑

n=1
an with am+1. From Lemma 1 we obtain

that there is a γ > 0 such that am+1 > (1 + γ)N for infinitely many m. This and

(3.3) yield that for infinitely many m with N =
m
∑

n=1
an

∣

∣

∣
x − p

αN

∣

∣

∣
<

2

αam+1
· 1

α − 1
6

2

α(1+γ)N
· 1

α − 1
6

1

α(1+γ/2)N
.

This and Theorem 2 (setting q = 1 in (2.1)) imply that the number x is transcen-

dental. �
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Lemma 2. Let ε > 0 and {bn}∞n=1 be a non-decreasing sequence of positive real

numbers such that bn > n1+ε. Then
∞
∑

j=n

1/bj < (1 + 2ε/ε)/b
ε/(1+ε)
n for every n > 1.

P r o o f of Lemma 2. We have

(3.4)
∞
∑

j=n

1

bj
=

∑

n+j6b
1/(1+ε)
n

1

bn+j
+

∑

n+j>b
1/(1+ε)
n

1

bn+j
.

We will estimate both sums on the right hand side of the equation (3.4). For the

first summand we have

(3.5)
∑

n+j6b
1/(1+ε)
n

1

bn+j
6

[b
1/(1+ε)
n ] − n + 1

bn
6

b
1/(1+ε)
n − n + 1

bn
.

Now we will estimate the second summand.
∑

n+j>b
1/(1+ε)
n

1

bn+j
6

∑

n+j>b
1/(1+ε)
n

1

(n + j)1+ε
(3.6)

<

∫

∞

[b
1/(1+ε)
n ]

dx

x1+ε
=

1

ε[b
1/(1+ε)
n ]ε

=
1

ε

1

b
ε/(1+ε)
n

b
ε/(1+ε)
n

[b
1/(1+ε)
n ]ε

6
1

ε

1

b
ε/(1+ε)
n

(

1 +
1

[b
1/(1+ε)
n ]

)ε

6
1

ε

1

b
ε/(1+ε)
n

(

1 +
1

n

)ε

.

From (3.4), (3.5) and (3.6) we obtain that

∞
∑

j=n

1

bj
=

∑

n+j6b
1/(1+ε)
n

1

bn+j
+

∑

n+j>b
1/(1+ε)
n

1

bn+j

<
b
1/(1+ε)
n − n + 1

bn
+

1

ε

1

b
ε/(1+ε)
n

(

1 +
1

n

)ε

=
1 − n/b

1/(1+ε)
n + 1/b

1/(1+ε)
n

b
1−1/(1+ε)
n

+
ε−1 (1 + 1/n)ε

b
ε/(1+ε)
n

6
1 + ε−1 (1 + 1/n)

ε

b
ε/(1+ε)
n

<
1 + 2ε/ε

b
ε/(1+ε)
n

and the proof of Lemma 2 is complete. �

P r o o f of Theorem 4. LetN0 be a sufficiently large positive integer. Form > N0

set p = p(m) =
m
∏

n=1
[αan ] and N = N(m) =

m
∑

n=1
an. Now we proceed as in the proof

of Theorem 3 to obtain that

∣

∣

∣
x − p

αN

∣

∣

∣
<

∞
∑

n=m+1

2

αan
.
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This and Lemma 2 yield that

∣

∣

∣
x − p

αN

∣

∣

∣
<

∞
∑

n=m+1

2

αan
= 2 ·

∞
∑

n=m+1

1

αan
< 2 · 1 + 2ε/ε

αam+1ε/(1+ε)
.

We shall now compare the integer N =
m
∑

n=1
an with am+1. From Lemma 1 we obtain

that there is a γ such that for infinitely many n

ε

1 + ε
am+1 >

ε

1 + ε

(

1 +
1

ε
+ γ

)

N =
(

1 +
ε

1 + ε
γ
)

N.

This and Theorem 2 imply that the number x is transcendental. �

P r o o f of Theorem 5. From (2.3) we obtain that there exist infinitely many n

such that

(3.7) B(2+d+δ)−n

n > max
j=1,...,n−1

B
(2+d+δ)−j

j .

Otherwise there exist a positive integer n0 such that for all n > n0

B(2+d+δ)−n

n 6 max
j=1,...,n0−1

B
(2+d+δ)−j

j

which contradicts (2.3). The inequality (3.7) implies that for infinitely many n

Bn >
(

max
j=1,...,n−1

B
(2+d+δ)−j

j

)(2+d+δ)n

>
(

max
j=1,...,n−1

B
(2+d+δ)−j

j

)(1+d+δ)((2+d+δ)n−1+(2+d+δ)n−2+...+1)

>

( n−1
∏

j=1

Bj

)1+d+δ

.

From this we obtain that for infinitely many n

(3.8) Bε/(1+ε)
n >

( n−1
∏

j=1

Bj

)(1+d+δ)ε/(1+ε)

.

Now we proceed as in the proof of Theorem 4. Hence we obtain that for all sufficiently

large m we have

(3.9)

∣

∣

∣

∣

x −
∏m

k=1[Bk]
∏m

k=1 Bk

∣

∣

∣

∣

<
∞
∑

k=m+1

2

Bk
= 2 ·

∞
∑

k=m+1

1

Bk
< 2 · 1 + 2ε/ε

B
ε/(1+ε)
m+1

=
s

B
ε/(1+ε)
m+1
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where s = 2(1+2ε/ε). Set ε′ = 1
2 ((1+d+ δ)ε/(1 + ε)−1−d). From (2.2) we obtain

that ε′ > 0. The inequalities (2.2) and (3.8) imply that for infinitely many n

s

B
ε/(1+ε)
n

<
s

(
∏n−1

j=1 Bj

)(1+d+δ)ε/(1+ε)
=

s
(
∏n−1

j=1 Bj

)1+d+ε′
<

1
(
∏n−1

j=1 Bj

)1+d+ε′/2
.

From this, (3.9) and the fact that Bk = bkαak we obtain that for infinitely many n

∣

∣

∣

∣

x −
∏n−1

k=1 [Bk]
(
∏n−1

k=1 bk

)

α
∑n−1

k=1 ak

∣

∣

∣

∣

=

∣

∣

∣

∣

x −
∏n−1

k=1 [Bk]
∏n−1

k=1 bkαak

∣

∣

∣

∣

=

∣

∣

∣

∣

x −
∏n−1

k=1 [Bk]
∏n−1

k=1 Bk

∣

∣

∣

∣

<
s

B
ε/(1+ε)
n

<
1

(
∏n−1

j=1 Bj

)1+d+ε′/2
=

1
(
∏n−1

k=1 bkαak

)1+d+ε′/2

6
1

α(1+ε′/2)
∑n−1

k=1 ak
(
∏n−1

k=1 bk

)1+d+ε′/2
.

This and Theorem 2 imply that the number x is transcendental. �

P r o o f of Theorem 6. From (2.5) we obtain that there is a sufficiently small

positive real number δ such that α(s−δ/3)aM 6 bM 6 α(s+δ/3)aM for all sufficiently

large M . Similarly as in the proofs of Theorems 3–5 we have

∣

∣

∣

∣

x −
∏m

n=1[Bn]
∏m

n=1 Bn

∣

∣

∣

∣

<
∞
∑

n=m+1

K

Bn

for all sufficiently large positive integersm whereK is a suitable positive real constant

which does not depend onm. From this and the fact that α(s−δ/3)aM 6 bM we obtain

that for all sufficiently large positive integers m

∣

∣

∣

∣

x −
∏m

n=1[Bn]
∏m

n=1 Bn

∣

∣

∣

∣

<
∞
∑

n=m+1

K

Bn
6

∞
∑

n=m+1

1

α(s+1−δ/2)an
(3.10)

6
1

α(s+1−δ/2)am+1
· 1

1 − 1/αs+1−δ/2

=
1

α(s+1−δ/2)am+1
· αs+1−δ/2

αs+1−δ/2 − 1
6

1

α(s+1−δ)am+1
.

From (2.4) and Lemma 1 we obtain that for infinitely many m

(3.11) am+1 >
(

1 +
sd

s + 1
+ δ′

)

m
∑

n=1

an
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where δ′ is a real number such that 0 < δ′ < lim sup
n→∞

n
√

an − 2 − sd/(s + 1). From

(3.11) and the fact that δ is a sufficiently small positive real number we obtain that

for infinitely many m

(s + 1 − δ)am+1 > (s + 1 − δ)
(

1 +
sd

s + 1
+ δ′

)

m
∑

n=1

an

=
(

s + 1 + sd + (s + 1)δ′ − δ
(

1 +
sd

s + 1
+ δ′

))

m
∑

n=1

an

=
(

1 + (s + δ)(d + 1) + δ′ + sδ′ − δ
(

d + 2 +
sd

s + 1
+ δ′

))

m
∑

n=1

an

> (1 + (s + δ)(d + 1) + δ′)

m
∑

n=1

an.

From this, (3.10) and the fact that bM 6 α(s+δ/3)aM we obtain that for infinitely

many m
∣

∣

∣

∣

x −
∏m

n=1[Bn]
(
∏m

n=1 bn

)

α
∑m

n=1 an

∣

∣

∣

∣

=

∣

∣

∣

∣

x −
∏m

n=1[Bn]
∏m

n=1 Bn

∣

∣

∣

∣

6
1

α(s+1−δ)am+1

6
1

α((s+δ)(1+d)+1+δ′)
∑m

n=1 an

=
1

α((s+δ/2)(1+d+δ′/(s+δ+1))+ 1
2 δ(1+d+δ′/(s+δ+1))+1+δ′/(s+δ+1))

∑
m
n=1 an

6
1

(
∏m

n=1 bn

)1+d+δ′/(s+δ+1)
α(1+δ′/(s+δ+1))

∑m
n=1 an

.

This and Theorem 2 imply that the number x is transcendental. �

P r o o f of Theorem 7. From (2.8) we obtain that there is a sufficiently small

positive real number δ such that α(s−δ/3)aM 6 bM 6 α(s+δ/3)aM for all sufficiently

large M . Similarly as in the proofs of Theorems 3–6 we have
∣

∣

∣

∣

x −
∏m

n=1[Bn]
∏m

n=1 Bn

∣

∣

∣

∣

<

∞
∑

n=m+1

K

Bn

where K is a suitable positive real constant which does not depend on m. From this,

Lemma 2, (2.7) and the fact that α(s−δ/3)aM 6 bM we obtain that for all sufficiently

large positive integers m

∣

∣

∣

∣

x −
∏m

n=1[Bn]
∏m

n=1 Bn

∣

∣

∣

∣

<

∞
∑

n=m+1

K

Bn
6

∞
∑

n=m+1

1

α(s+1−δ/2)an
(3.12)

6
1 + 2ε/ε

α(ε/(1+ε))(s+1−δ/2)am+1
6

1

α(ε/(1+ε))(s+1−δ)am+1
.
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From (2.6) and Lemma 1 we obtain that for infinitely many m

(3.13) am+1 >
((

1 +
sd

s + 1

)1 + ε

ε
+ δ′

)

m
∑

n=1

an

where δ′ is a real number such that 0 < δ′ < lim sup
n→∞

n
√

an − 1 − (1 + (sd/(s + 1))×
(1+ε)/ε). From (3.13) and the fact that δ is a sufficiently small positive real number

we obtain that for infinitely many m

ε

1 + ε
(s + 1 − δ) am+1 >

ε

1 + ε
(s + 1 − δ)

((

1 +
sd

s + 1

)1 + ε

ε
+ δ′

)

m
∑

n=1

an

=
(

(s + δ)(d + 1) + 1 +
ε(s + 1)

2(1 + ε)
δ′

)

m
∑

n=1

an.

From this, (3.12), and the inequality bM 6 α(s+δ/3)aM we obtain that for infinitely

many m

∣

∣

∣

∣

x −
∏m

n=1[Bn]
(
∏m

n=1 bn

)

α
∑m

n=1 an

∣

∣

∣

∣

=

∣

∣

∣

∣

x −
∏m

n=1[Bn]
∏m

n=1 Bn

∣

∣

∣

∣

6
1

α(ε/(1+ε))(s+1−δ)am+1

6
1

α((s+δ)(1+d)+1+ 1
2 εδ′(s+1)/(1+ε))

∑
m
n=1 an

=
1

α((s+δ/2)(1+d+ε′)+1+ε′+( 1
2 εδ′(s+1)/(1+ε)+ 1

2 δ(1+d)−ε′(1+s+δ/2)))
∑

m
n=1 an

6
1

(
∏m

n=1 bn

)(1+d+ε′)
α(1+ε′)

∑m
n=1 an

where ε′ is a real number such that 1
2δ′ε(s + 1)/(1 + ε)+ 1

2δ(1+d) > ε′(1+s+ 1
2δ) > 0.

This and Theorem 2 imply that the number x is transcendental. �
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